Justice in Climate Engineering Towards a Rawlsian Appropriation

Total Page:16

File Type:pdf, Size:1020Kb

Justice in Climate Engineering Towards a Rawlsian Appropriation Justice in Climate Engineering Towards a Rawlsian Appropriation Augustine Thomas Pamplaniyil Thesis Submitted for the Award of Doctor of Philosophy School of Communications Dublin City University Supervisors: Prof. Bert Gordijn Institute of Ethics, Dublin City University Prof. Pat Brereton School of Communications, Dublin City University 2017 . Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of PhD is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: Name: Augustine Thomas Pamplaniyil Student ID: 11100630 Date: 5 September 2017 ii Acknowledgements This thesis owes a special debt of gratitude to a number of persons: Prof. Bert Gordijn, the supervisor of this thesis, initial discussions with whom led to the choice of this topic and whose constant guidance and support, challenging demands, and patient corrections throughout this research made this project a reality in its present format; Prof. Pat Brereton, the co- supervisor, whose creative observations and generous encouragement made immense contribution to its progress. Prof. Thomas Potthast and Prof. Ethna Regan, the external and internal reviewers respectively of the pre-examination draft of this thesis, whose immense scholarship and professional expertise in the field coupled with an earnest and painstaking effort at a thorough and critical review even of the minute technical details of this work have significantly enhanced the quality of this work. Prof. Jane Suiter, the chair of the viva, for the systematic organisation of the examination, particularly for making the logistical arrangements for the video conferencing and the quick processing of the reports. Prof. Donal O’Mathuna who made an interim evaluation of the initial chapters and gave a constructive and critical feedback for the improvement of this work. Dr. Jonathan Lewis and Dr. Fiachra O’Brolchain for their most opportune assistance in preparing me for the examination. TheSchool of Communications under the leadership of Prof. Pat Brereton whose partial financial support was helpful for the completion of this project. The officials and office staff of the registry and the postgraduate studies of DCU whose timely communications and prompt responses to the queries made up for the limitations of my remote location. My friends and colleagues for their fraternal accompaniment as always. JUSTICE IN CLIMATE ENGINEERING Towards a Rawlsian Appropriation Declaration ......................................................................................................................................... ii Acknowledgements .............................................................................................................................iii Abbreviations...................................................................................................................................... ix Abstract ............................................................................................................................................... x Chapter 1 Introduction 1.1 The Climate Engineering Debate .................................................................................................. 1 1.2 Framing the Research Question ................................................................................................... 3 1.3 Methodology and Outline of the Study .......................................................................................... 8 1.4 Conclusion .................................................................................................................................. 10 Chapter 2 Concept, Historical Development and Technological Approaches of Climate Engineering 2.1 Introduction................................................................................................................................. 12 2.2 Climate Engineering Definitions ............................................................................................... 12 2.2.1 Prevalent Ambiguities .............................................................................................................. 17 2.2.2 Remarks on the Definitions of Climate Engineering................................................................ 18 2.3 History of Climate Engineering................................................................................................. 20 2.3.1 The Mythical and Mystical Allusions ....................................................................................... 21 2.3.2 Early Motives – Weather Control ............................................................................................ 22 2.3.3 Weather Warfare ...................................................................................................................... 25 2.3.4 Controlling the Radiation Budget ............................................................................................ 28 2.3.5 Recent Developments ............................................................................................................... 29 2.3.6 Lessons from the History of Climate Engineering ................................................................... 35 2.4 Climate Engineering Schemes ................................................................................................... 38 2.4.1 CDR Methods ........................................................................................................................... 40 2.4.1.1 Carbon Capture and Sequestration ...................................................................................... 42 2.4.1.2 Ocean Fertilization ............................................................................................................... 43 2.4.1.3 Enhanced Weathering ........................................................................................................... 44 2.4.1.4 Oceanic Upwelling and Downwelling .................................................................................. 45 2.4.1.5 Afforestation .......................................................................................................................... 45 2.4.2 Solar Radiation Management .................................................................................................. 46 2.4.2.1 Surface Albedo Approaches .................................................................................................. 46 2.4.2.2 Cloud Albedo Enhancement .................................................................................................. 47 2.4.2.3 Stratospheric Aerosol Injection ............................................................................................ 48 2.4.2.4 Space Based Albedo Enhancement ....................................................................................... 49 2.5 Conclusion .................................................................................................................................. 50 . Chapter 3 The Ethics of Climate Engineering: A Review of Literature 3.1 Introduction................................................................................................................................. 52 3.2 Methodology ............................................................................................................................... 52 3.3 Results ................. ...................................................................................................................... 58 3.3.1 Arguments for Climate Engineering .................................................................................... 61 3.3.1.1 Climate Emergency Arguments ............................................................................................ 63 3.3.1.2 The Lesser Evil Argument .................................................................................................... 68 3.3.1.3 Argumentsin Favour of Climate Engineering Research ...................................................... 72 3.3.1.4 Feasibility Arguments .......................................................................................................... 74 3.3.1.5 Public Good Arguments ....................................................................................................... 76 3.3.1.6 Ecological Arguments ........................................................................................................... 76 3.3.2 Arguments against Climate Engineering ............................................................................. 77 3.3.2.1 Scientific Objections ............................................................................................................ 80 3.3.2.1.1 Side-effects of Climate Engineering .............................................................................. 80 3.3.2.1.2 Irreducible Uncertainties .............................................................................................. 82 3.3.2.1.3 Earth-system Complexity ............................................................................................... 83 3.3.2.1.4 Worsens Dangerous Climate Change ........................................................................... 84 3.3.2.1.5 Potential Scientific Alternatives ...................................................................................
Recommended publications
  • Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes
    From: Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes Hi Paul... The current hospital location is relatively safe from hurricanes making landfall to the west of Martha's Vineyard. For example storm surge from the 1938 hurricane at that location was between 4 and 6 feet. The location is much more susceptible to nor'easters. You might get 6 feet of surge associated with an intense nor'easter potentially with some large waves on top of that. However, my biggest concern is if an intense hurricane were to slowly pass to the east of the island. This would result in strong north and northeast winds that could pile significant storm surge and waves into Vineyard Haven Harbor. The October 3, 1841 hurricane was just such a storm. One of the key factors is the forward motion of the storm. If the storm track is to the east of the island and it is moving rapidly the speed of forward motion would be subtracted from the rotary winds of the west side of the storm and the duration of strong winds would be less (a couple of hours or less). If the storm moves slowly the duration of onshore hurricane force winds could be more like 6 to 10 hours. In this scenario the hospital might be in peril. You could get between 10 and 15 feet of storm surge in Vineyard Haven Harbor during such an event. From my read of the topographic map it looks like the hospital is between 10 and 20 feet above sea level.
    [Show full text]
  • History of Astronomy
    History of Astronomy © 2005 Pearson Education Inc., publishing as Addison-Wesley Ancient Astronomy What did ancient civilizations use astronomy for? • daily timekeeping • tracking the seasons and calendar • monitoring lunar cycles • monitoring planets and stars • predicting eclipses • and more… The sky was a map, a clock , a calendar, and© 2005a Pearsonbook Education of Inc.,stories publishing as Addison-Wesley Constellations From H.A. Rey’s book The Stars Not All Constellations are “Connect the Dots”… Australian Aboriginal astronomers made figures out of the dark clouds in the Milky Way – “The emu in the sky”. What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day The Reason for Seasons the Earth’s orbit around the Sun year © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Patterns in the Sky Motions in the Sky The Circling Sky day the rotation of the Earth about its axis The Reason for Seasons year the Earth’s orbit around the Sun Precession of the Earth’s Axis the wobbling of Earth’s axis The Moon, Our Constant Companion month the Moon’s orbit around the Earth © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day The Reason for Seasons the Earth’s orbit around the Sun year The Moon, Our Constant Companion month the Moon’s orbit around the Earth The Ancient Mystery of the Planets the various planets’ orbits around the Sun week © 2005 Pearson Education Inc., publishing as Addison-Wesley Days of week were named for Sun, Moon, and visible planets © 2005 Pearson Education Inc., publishing as Addison-Wesley Swaziland: Lemombo bone from ~35,000 B.C.
    [Show full text]
  • Mid-Term Exam 1
    Astronomy 101 16 September, 2016 Introduction to Astronomy: The Solar System Mid-term Exam 1 Practice Version Name (written legibly): ______________________________________ Honor Pledge: On my honor, I have neither given nor received unauthorized aid on this examination. Signature: ___________________________________ Student PID: ______________________ Instructions: On the scannable answer sheet (when you’re taking the real version): ● Fill in your name (last name, then first name) and ID number. ● Identify the form number with the last column of the sequence number block. ● Answer all 40 questions using a number 2 pencil. In addition: ● Do not open your exam until instructed to do so. ● Be sure to also answer each question in the blanks provided on this exam sheet. ● The exam ends at 1:10. ● When done, raise your hand and we will collect your exam. ● No one may leave between 12:55 and 1:10. And of course: ● You may not use any notes, texts, calculators or communications devices. ● All work must be your own. Score: _______ out of 40. Useful equations: p2 ∝ a3 F = m a 2 F = G m1 m2 / r Pick the best answer to each question. _____ 1. The influence of Muslim science can be seen in ... a. the names of many stars. b. technical words such as altitude and azimuth. c. the number zero. d. centuries of excellent observational records. e. All of the above. _____ 2. How was Pluto discovered? a. By predicting its location based on irregularities in the orbit of Uranus. b. By predicting its location based on irregularities in the orbit of Neptune.
    [Show full text]
  • Climate Change, Consequentialism, and the Road Ahead
    Chicago Journal of International Law Volume 13 Number 2 Article 8 1-1-2013 Climate Change, Consequentialism, and the Road Ahead Dale Jamieson Follow this and additional works at: https://chicagounbound.uchicago.edu/cjil Recommended Citation Jamieson, Dale (2013) "Climate Change, Consequentialism, and the Road Ahead," Chicago Journal of International Law: Vol. 13: No. 2, Article 8. Available at: https://chicagounbound.uchicago.edu/cjil/vol13/iss2/8 This Article is brought to you for free and open access by Chicago Unbound. It has been accepted for inclusion in Chicago Journal of International Law by an authorized editor of Chicago Unbound. For more information, please contact [email protected]. Climate Change, Consequentialism, and the Road Ahead Dale Jamieson* Abstract In this paperI tell the stoy of the evolution of the climate change regime, locating its origins in "the dream of Rio," which supposed that the nations of the world would join in addressing the interlocking crises of environment and development. I describe the failure at Copenhagen and then go on to discuss the "reboot" of the climate negoiations advocated by Eric A. Posner and David Weisbach. I bring out some ambiguides in their notion of InternationalPareianism, which is supposed to effectively limit the influence of moral ideals in internationalaffairs, and pose a dilemma. I go on to discuss the foundations of their views regarding climate justice, arguing that the most reasonable understandings of their favored theoretical views would not lead to some of their conclusions. Finaly, I return to the climate regime, and make some observations about the road ahead, concluding thatfor theforeseeable future the most important climate change action will be within countries rather than among them.
    [Show full text]
  • 1 Equitably Ending the Fossil Fuel Era: Climate Justice, Capital, & The
    Equitably Ending the Fossil Fuel Era: Climate Justice, Capital, & the Carbon Budget Georges Alexandre Lenferna A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Stephen Gardiner, Chair Carina Fourie Aseem Prakash Michael Blake Program Authorized to Offer Degree: Department of Philosophy 1 ©Copyright 2019 Georges Alexandre Lenferna 2 University of Washington Abstract Equitably Ending the Fossil Fuel Era: Climate Justice, Capital, & the Carbon Budget Georges Alexandre Lenferna Chair of the Supervisory Committee: Stephen Gardiner Department of Philosophy This dissertation makes the moral case for equitably transitioning away from fossil fuels in line with keeping global warming as close as possible to the Paris Climate Agreement’s more stringent target of keeping global warming to 1.5°C above pre-industrial levels. It argues that we should do so while relying as little as possible on risky and uncertain negative emissions and geoengineering technologies, as doing so might prolong the fossil fuel era and pose grave potential costs both to the present and future generations. The dissertation addresses a central objection to the moral imperative to transition away from fossil fuels, namely that it will detrimentally impact the poor and vulnerable. It argues in response that protecting the interests of the poor and vulnerable is best achieved through a rapid yet just transition away from fossil fuels. Based on the moral case to transition away from fossil fuels in line with 1.5°C the dissertation also explores what personal moral responsibility individuals have to take action to reduce fossil fuel usage and act on climate change.
    [Show full text]
  • Reforestation in a High-CO2 World—Higher Mitigation Potential Than
    Geophysical Research Letters RESEARCH LETTER Reforestation in a high-CO2 world—Higher mitigation 10.1002/2016GL068824 potential than expected, lower adaptation Key Points: potential than hoped for • We isolate effects of land use changes and fossil-fuel emissions in RCPs 1 1 1 1 •ClimateandCO2 feedbacks strongly Sebastian Sonntag , Julia Pongratz , Christian H. Reick , and Hauke Schmidt affect mitigation potential of reforestation 1Max Planck Institute for Meteorology, Hamburg, Germany • Adaptation to mean temperature changes is still needed, but extremes might be reduced Abstract We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Supporting Information: Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario • Supporting Information S1 Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those Correspondence to: of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the S. Sonntag, reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is [email protected] higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in Citation: 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in Sonntag, S., J.
    [Show full text]
  • Climate Litigation and Atmospheric Ethics: a Case Study of Juliana V
    CLIMATE LITIGATION AND ATMOSPHERIC ETHICS: A CASE STUDY OF JULIANA V. UNITED STATES Mark Ortiz A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Geography. Chapel Hill 2017 Approved By: Elizabeth Olson Elizabeth Havice Scott Kirsch ©2017 Mark Ortiz ALL RIGHTS RESERVED ii ABSTRACT Mark Ortiz: Climate Litigation and Atmospheric Ethics: A Case Study of Juliana v. United States (Under the Direction of: Drs. Elizabeth Olson and Elizabeth Havice) This thesis offers an account of climate change lawsuits as ethical experiments which endeavor to develop legal and ethical norms and principles suited to a world remolded by cumulative human actions. It offers a theorization of the ‘what’ and the ‘why’ of the growing, global wave of climate litigation by situating it within the dynamic landscape of contemporary climate politics. Through a case study of Juliana v. United States, a first-of-its-kind constitutional climate lawsuit against the United States federal government, this thesis examines how legal narrative is mobilized to give ethical shape and significance to the problem of climate change and to conceptualize responsibility across vast sweeps of space and time. Interweaving insights from climate ethics, environmental humanities, legal geography and science and technology studies, this research offers a set of meditations on atmospheric ethics iii TABLE OF CONTENTS CHAPTER 1: INTRODUCTION: CLIMATE LITIGATION AS ETHICAL EXPERIMENTATION ................................................................................................. 1 1.1 Introduction ................................................................................................................... 1 1.2 Methods, Approach and Plan of the Present Work ....................................................... 5 1.3 Climate Ethics: Sculpting the Climatic Citizen ...........................................................
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • The Potential for Climate Engineering with Stratospheric Sulfate Aerosol Injections to Reduce Climate Injustice
    Journal of Global Ethics ISSN: 1744-9626 (Print) 1744-9634 (Online) Journal homepage: https://www.tandfonline.com/loi/rjge20 The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice Toby Svoboda, Peter J. Irvine, Daniel Callies & Masahiro Sugiyama To cite this article: Toby Svoboda, Peter J. Irvine, Daniel Callies & Masahiro Sugiyama (2019): The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice, Journal of Global Ethics, DOI: 10.1080/17449626.2018.1552180 To link to this article: https://doi.org/10.1080/17449626.2018.1552180 Published online: 07 Feb 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rjge20 JOURNAL OF GLOBAL ETHICS https://doi.org/10.1080/17449626.2018.1552180 The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice Toby Svobodaa, Peter J. Irvineb, Daniel Calliesc and Masahiro Sugiyamad aDepartment of Philosophy, Fairfield University College of Arts and Sciences, Fairfield, USA; bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, USA; cChair of International Political Theory, Goethe University Frankfurt, Frankfurt am Main, Germany; dPolicy Alternatives Research Institute, The University of Tokyo, Tokyo, Japan ABSTRACT ARTICLE HISTORY Climate engineering with stratospheric sulfate aerosol injections Received 5 February 2018 (SSAI) has the potential to reduce risks of injustice related to Accepted 26 September 2018 anthropogenic emissions of greenhouse gases. Relying on KEYWORDS evidence from modeling studies, this paper makes the case that Climate change; justice; SSAI could have the potential to reduce many of the key physical climate engineering; risk risks of climate change identified by the Intergovernmental Panel on Climate Change.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • A Brief Discussion from the Epistemological, Religious and Societal Dimension
    International Journal of Astrobioethics: a brief discussion from Astrobiology the epistemological, religious and cambridge.org/ija societal dimension Octavio A. Chon-Torres1 Research Article Programa de Estudios Generales, Universidad de Lima, Lima, Peru Cite this article: Chon-Torres OA (2019). Astrobioethics: a brief discussion from Abstract the epistemological, religious and As astrobiology progresses in its quest to discover life on other planets or to put ourselves in societal dimension. International Journal of another one, so does its moral problematic. Astrobiology is not only part of natural sciences, Astrobiology 1–7. https://doi.org/10.1017/ S147355041900017X but also deals with direct aspects of humanities. For this reason, this paper aims to briefly examine astrobioethics from the epistemological, religious and societal dimension. It also Received: 31 January 2019 deals with different researches in this regard, in order to better understand the state of the Revised: 24 June 2019 art on this topic and that astrobioethics can help us not only on how we should relate with Accepted: 25 June 2019 extraterrestrial lifeforms, but even with terrestrials. Key words: Astrobiocentrism; astrobioethics; astrobiology; transdisciplinarity Astrobioethics is the discipline inside astrobiology that studies not only the morality of all activities related to the presence of life on other worlds, but also studies our attitude towards Author for correspondence: the expansion of terrestrial life in the Universe. The discipline that focuses on moral problems Octavio A. Chon-Torres, E-mail: ochon@ulima. edu.pe is ethics; however, as ethics is not an exact science but rather a branch of philosophy, its prob- lematic nature makes its content always updated according to the social context in which it operates.
    [Show full text]
  • C2G Evidence Brief: Carbon Dioxide Removal and Its Governance
    Carnegie Climate EVIDENCE BRIEF Governance Initiative Carbon Dioxide Removal An initiative of and its Governance 2 March 2021 Summary This briefing summarises the latest evidence relating to Carbon Dioxide Removal (CDR) techniques and their governance. It describes a range of techniques currently under consideration, exploring their technical readiness, current research, applicable governance frameworks, and other socio-political considerations in section I. It also provides an overview of some generic CDR governance issues and the key instruments relevant for the governance of CDR in section II. About C2G The Carnegie Climate Governance Initiative (C2G) seeks to catalyse the creation of effective governance for climate-altering approaches, in particular for solar radiation modification (SRM) and large-scale carbon dioxide removal (CDR). In 2018, the Intergovernmental Panel on Climate Change (IPCC) reaffirmed that large-scale CDR is required in all pathways to limit global warming to 1.5°C with limited or no overshoot. Some scientists say SRM may also be needed to avoid that overshoot. C2G is impartial regarding the potential use of specific approaches, but not on the need for their governance - which includes multiple, diverse processes of learning, discussion and decision-making, involving all sectors of society. It is not C2G’s role to influence the outcome of these processes, but to raise awareness of the critical governance questions that underpin CDR and SRM. C2G’s mission will have been achieved once their governance is taken on board by governments and intergovernmental bodies, including awareness raising, knowledge generation, and facilitating collaboration. C2G has prepared several other briefs exploring various CDR and SRM technologies and associated issues.
    [Show full text]