More About ... Neurosurgery

Total Page:16

File Type:pdf, Size:1020Kb

More About ... Neurosurgery More about ... Neurosurgery Recognising congenital anomalies of the nervous system E Wegoye, MB ChB (MUST) Registrar, Division of Neurosurgery, University of Cape Town and Groote Schuur Hospital, Cape Town L Padayachy, MB ChB, FCS (Neurosurg) (SA), MMed Consultant, Division of Neurosurgery, University of Cape Town, and Institute for Child Health, Red Cross War Memorial Children’s Hospital, Cape Town Correspondence to: L Padayachy (L.Padayachy@ Fig. 1. Fronto-nasal encephalocele. uct.ac.za) Fig. 3. Lumbo-sacral myelomeningocele. A wide array of neurological abnor- malities occur in childhood, with a nutrition and periconceptional vitamin significant proportion of these attributable supplementation, particularly folate. The to congenital causes. The classic congenital simple primary prevention strategy of folate neurosurgical condition is open spina supplementation has been shown to reduce bifida or myelomeningocele, but this is the incidence by 80%. There is mandatory just one example of a wide spectrum of food fortification in South Africa, but conditions commonly referred to as neural clinical experience has suggested that this tube defects or, more correctly in clinical is insufficient and anyone who may become practice, as dysraphism. pregnant must consume supplemental folate before conception! Dysraphism This is a broad term used to describe a range Clinically, myelomeningocele presents as of conditions that arise owing to errors a fluid-filled sac of varying size, which in the early development of the nervous Fig. 2. Occipital encephalocele. usually occurs in the lumbo-sacral system, either during closure of the neural region, but can occur anywhere along the tube (also called primary neurulation, The depth of extension is variable, with most midline spinal axis (Fig. 3). It contains from conception to day 28) or subsequent lesions located occipitally, close to the union. neural tissue with a delicate meningeal embryological development (or secondary These abnormalities should be borne in layer. neurulation). mind when children present with recurrent meningitis, remembering that they may be There is invariably some form of Cranial dysraphism found anywhere along the midline from the neurological deficit in the lower limbs, Encephalocele tip of the nose to the gluteal cleft. ranging from paraplegia to mild weakness, This group of malformations is characterised depending on the level and size of the lesion. by defects of the skull resulting in herniation Spinal dysraphism (or spina bifida) These are often accompanied by spinal and of the brain. They are classified according to Myelomeningocele lower limb deformities. Hydrocephalus is their anatomical location, with the majority Myelomeningocele is caused by defective seldom present at birth, but occurs in 75 - occurring either occipitally or frontally (Figs closure of the neural tube, a process that 85% of cases. 1 and 2). Clinical presentation depends on is completed within 28 days of conception. the location, but features include a skin- The incidence of myelomeningocele in Once diagnosed, the infant with a covered sac, which may increase in size on live births is 1 - 2/1 000 (0.1 - 0.2%), myelomeningocele must be referred to a Valsalva. Surgical closure is the mainstay of with marked regional variation. Prenatal specialist centre for closure within 24 hours. treatment. Often, patients are not referred diagnosis is possible with maternal serum Surgical treatment involves prompt closure until very late owing to a mistaken belief alfa-fetoprotein, confirmed by ultrasound of the lesion, usually followed by insertion that the condition will be fatal. and amniocentesis. of a ventriculoperitoneal shunt. Cranial dermal sinus Recently, a significant decline has been Occult spinal dysraphism (OSD) Congenital cranial dermal sinuses are noted in many parts of the world, This is a group of disorders resulting from midline tracts lined by squamous epithelium. largely as a result of improved maternal malformation of the spinal cord during 107 CME March 2013 Vol. 31 No. 3 More about... secondary neurulation. This group comprises Sagittal synostosis many different, but individually rare, This is the most common type of variants, but the key feature is that almost all craniosynostosis. The skull is typically have obvious cutaneous stigmata including elongated with a palpable bony ridge, subcutaneous lipoma, hypertrichosis (a usually with frontal and occipital bossing hairy patch), caudal appendage, capillary (Fig. 5). The cranial base, orbits and face are haemangioma or dermal sinus (Fig. 4). usually spared. Infants with scaphocephaly It is important to differentiate the rare should be referred to a specialist centre dermal sinus, which always needs further before the age of 6 months. investigation, from the much more common sacral pit or dimple (Table 1). Unilateral coronal synostosis Premature fusion of the coronal suture may Patients may be asymptomatic or have occur unilaterally (anterior plagiocephaly) or lower limb weakness, sphincter problems bilaterally (brachycephaly). Unilateral fusion and/or skeletal deformities due to is usually non-syndromic. Coronal suture Fig. 5. Sagittal synostosis. myelodysplasia, neural compression or synostosis is accompanied by flattening spinal cord tethering, neural compression of the ipsilateral forehead, compensatory facial scoliosis due to ipsilateral involvement and myelodysplasia. contralateral bossing, shortening and of the nasal bone, zygoma and maxilla. upwards displacement of the greater sphenoid Surgical indications are patient specific wing with a flattened vertically elongated Children diagnosed with anterior plagio- and depend on the natural history of the orbit (harlequin eye) (Fig. 6). There is also a cephaly should be referred early, as surgery disease, but usually involve untethering of the spinal cord. Table 1. Differentiating dermal sinuses from sacral dimples Craniosynostosis Dermal sinus Sacral dimple Craniosynostosis occurs in 1 in 2 100 Location Anywhere from tip of the nose to Usually in the natal cleft, children. The condition involves premature coccyx, slightly off the midline directed caudally towards tip closure of the cranial sutures, either single of coccyx or multiple, and may be simple or part of a Appearance Punctuate, may be almost Much larger, almost crater-like syndrome (Table 2). The most commonly invisible encountered single suture synostoses are Associated features Often skin discoloration or tuft Nil the sagittal suture (scaphocephaly) and the of hair coronal suture (plagiocephaly). Complications Meningitis (often recurrent), Mainly cosmetic dermoid tumour Investigation MRI mandatory Seldom necessary Table 2. Classification of craniosynostosis Non-syndromic Suture involved Simple Scaphocephaly Sagittal Anterior plagiocephaly Unilateral coronal Posterior plagiocephaly Unilateral lambdoid Trigonocephaly Metopic Compound Variable More than 1 suture Brachycephaly Bilateral lambdoid Turribrachycephaly Bilateral coronal Syndromic Crouzon’s syndrome Typically bilateral coronal Apert’s syndrome Usually coronal, often lambdoid Fig. 4. Typical punctate dermal sinus Pfeiffer syndrome Multiple suture involvement surrounded by hyperpigmentation just above Other, e.g. Saethre-Chotzen, Jackson-Weiss, the natal cleft (yellow arrow), with more Carpenter’s, cloverleaf skull rostral punched-out cutaneous lesion. 108 CME March 2013 Vol. 31 No. 3 More about... Table 3. Diagnostic criteria for NFI and NFII Neurofibromatosis I (NFI) Neurofibromatosis II (NFII) The diagnostic criteria are met if a patient has 2 or more of the The diagnostic criteria are met if a person has either of the following: following: 1. Six or more café au lait macules that have a maximum diameter 1. Bilateral 8th nerve masses seen with appropriate imaging of >5 mm in prepubertal patients and >15 mm in postpubertal techniques, such as MRI or CT patients 2. A first-degree relative with NF II and unilateral 8th nerve mass or 2 2. Two or more neurofibromas of any type , or one plexiform of the following: neurofibroma Neurofibroma, meningioma, glioma, neurilemoma or juvenile 3. Freckling in the axillary or inguinal regions posterior subcapsular cataract 4. Optic glioma 5. Two or more Lisch nodules (iris hamartomas) 6. A characteristic osseus lesion, such as sphenoid wing dysplasia or thinning of the long bone cortex, with or without pseudoarthrosis 7. A first-degree relative (i.e. parent, sibling, or child) with NFI by the above criteria neurofibromatosis, tuberous sclerosis and Sturge-Weber syndrome. Neurofibromatosis (NF) NF remains the most common and surgically important of the neurocutaneous disorders. NF can be divided into two distinct types – NFI, which accounts for around 90% of cases, and NFII. The diagnosis is made on clinical grounds Fig. 8. Increased head circumference in (Fig. 7), using the diagnostic criteria listed hydrocephalus. in Table 3. Conclusion Tuberous sclerosis (TS) While neuro-imaging is extremely helpful Fig. 6. Left anterior coronal synostosis. TS is characterised by hamartomatous lesions in planning the management of the involving multiple organs. In the brain they usually abovementioned conditions, virtually all manifest as cortical tubers and/or subependymal can be diagnosed on clinical grounds at the giant cell astrocytomas. The most common primary care level, enabling prompt referral clinical features include intractable seizures, for definitive management. developmental delay, behavioural impairment and raised intracranial
Recommended publications
  • Pushing the Limits of Prenatal Ultrasound: a Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3Q Duplication
    reproductive medicine Case Report Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q Duplication Olivier Leroij 1, Lennart Van der Veeken 2,*, Bettina Blaumeiser 3 and Katrien Janssens 3 1 Faculty of Medicine, University of Antwerp, 2610 Wilrijk, Belgium; [email protected] 2 Department of Obstetrics and Gynaecology, University Hospital Antwerp, 2650 Edegem, Belgium 3 Department of Medical Genetics, University Hospital and University of Antwerp, 2650 Edegem, Belgium; [email protected] (B.B.); [email protected] (K.J.) * Correspondence: [email protected] Abstract: We present a case of a fetus with cranial abnormalities typical of open spina bifida but with an intact spine shown on both ultrasound and fetal MRI. Expert ultrasound examination revealed a very small tract between the spine and the skin, and a postmortem examination confirmed the diagnosis of a dorsal dermal sinus. Genetic analysis found a mosaic 3q23q27 duplication in the form of a marker chromosome. This case emphasizes that meticulous prenatal ultrasound examination has the potential to diagnose even closed subtypes of neural tube defects. Furthermore, with cerebral anomalies suggesting a spina bifida, other imaging techniques together with genetic tests and measurement of alpha-fetoprotein in the amniotic fluid should be performed. Citation: Leroij, O.; Van der Veeken, Keywords: dorsal dermal sinus; Arnold–Chiari anomaly; 3q23q27 duplication; mosaic; marker chro- L.; Blaumeiser, B.; Janssens, K. mosome Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q 1.
    [Show full text]
  • Autosomal Recessive Klippel-Feil Syndrome
    J Med Genet: first published as 10.1136/jmg.19.2.130 on 1 April 1982. Downloaded from Journal ofMedical Genetics, 1982, 19, 130-134 Autosomal recessive Klippel-Feil syndrome ELIAS OLIVEIRA DA SILVA From the Departamento de Biologia Geral, SecCdo de Genetica, Universidade Federal de Pernambuco, and Instituto Materno-Infantil de Pernambuco (IMIP), Recife, Brazil SUMMARY An inbred kindred with 12 cases of Klippel-Feil syndrome (seven females and five males) is reported. Inheritance is undoubtedly autosomal recessive. The main characteristic of the syndrome is fusion of cervical vertebrae. In 1912, Klippel and Feill reported the first clinical Methods details and necropsy findings of a syndrome char- acterised by the triad short or absent neck, severe A total of 59 members of the family, including all limitation of head movement, and low posterior living affected persons (11), were clinically examined hairline. An Egyptian mummy (from 500 BC) is the and radiological studies were performed in eight oldest subject in whom Klippel-Feil syndrome has patients. The other three refused to submit to been seen.2 Another interesting observation is the x-ray examination. The patients ranged in age from similarity between the figure of an old man depicted 9 to 59 years. by the English painter William Blake (1757-1827) The genealogical data was collected with the co- and the appearance of persons with Klippel-Feil operation of people in four generations and, in case syndrome.3 The incidence of the syndrome is of doubtful information, it was checked with estimated at about 1 in 42 000 births.4 Some authors different members of the family.
    [Show full text]
  • Cleidocranial Dysplasia with Spina Bifida: Case Report [I] Displasia Cleido-Craniana Com Espinha Bífida: Relato De Caso
    ISSN 1807-5274 Rev. Clín. Pesq. Odontol., Curitiba, v. 6, n. 2, p. 179-184, maio/ago. 2010 Licenciado sob uma Licença Creative Commons [T] CleidoCranial dysplasia with spina bifida: case report [I] Displasia cleido-craniana com espinha bífida: relato de caso [A] Mubeen Khan[a], rai puja[b] [a] Professor and head of Department of Oral Medicine and Radiology Government Dental College and Research Institute, Bangalore - India. [b] Postgraduate student, Department of Oral Medicine and Radiology, Government Dental College and Research Institute, Bangalore - India, e-mail: [email protected] [R] abstract oBJeCtiVe: To present and discuss a case of a rare disease in a 35 year old otherwise healthy male Indian in origin reported to the Department of Oral Medicine and Radiology of the Dental College and Research Institute, Bangalore, India. disCUssion: The cleidocranial dysplasia is a rare disease which can occur either spontaneously (40%) or by an autosomal dominant inheritance. The dentists are, most of the times, the first professionals who patients look for to solve their problem, since there is a delay in the eruption and /or absence of permanent teeth. In the present case multiple missing teeth was the reason for patient’s visit to odontologist. ConClUsion: An early diagnosis allows proper orientation for the treatment, offering a better life quality for the patient. [P] Keywords: Cleidocranial dysplasia. Aplastic clavicles. Delayed eruption. Supernumerary teeth. Spina bifida. [B] Resumo OBJETIVO: Apresentar e discutir um caso de doença rara em paciente masculino, de 35 anos de idade, sadio, de modo geral, de origem indiana, que foi encaminhado ao Departamento de Medicina Bucal e Radiologia da Escola de Odontologia e Instituto de Pesquisa, Bangalore, Índia.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Spina Bifida
    A Guide for School Personnel Working With Students With Spina Bifida Developed by The Specialized Health Needs Interagency Collaboration Patty Porter, M.S. Barbara Obst, R.N. Andrew Zabel, Ph.D. In partnership between Kennedy Krieger Institute and the Maryland State Department of Education Division of Special Education/Early Intervention Services December 2009 A Guide for School Personnel Working With Students With Spina Bifida Developed by the Kennedy Krieger Institute in partnership with the Maryland State Department of Education, Division of Special Education/Early Intervention Services December 2009 This document was produced by the Maryland State Department of Education, Division of Special Education/Early Intervention Services through IDEA Part B Grant #H027A0900035A, U.S. Department of Education, Office of Special Education and Rehabilitative Services. The views expressed herein do not necessarily reflect the views of the U.S. Department of Education or any other federal agency and should not be regarded as such. The Division of Special Education/Early Intervention Services receives funding from the Office of Special Education Program, Office of Special Education and Rehabilitative Services, U.S. Department of Education. This document is copyright free. Readers are encouraged to share; however, please credit the MSDE Division of Special Education/Early Intervention Services and Kennedy Krieger Institute. The Maryland State Department of Education does not discriminate on the basis of race, color, sex, age, national origin, religion, disability, or sexual orientation in matters affecting employment or in providing access to programs. For inquiries related to Department policy, contact the Equity Assurance and Compliance Branch, Office of the Deputy State Superintendent for Administration, Maryland State Department of Education, 200 West Baltimore Street, 6th Floor, Baltimore, MD 21201-2595, 410-767-0433, Fax 410-767-0431, TTY/TDD 410-333-6442.
    [Show full text]
  • Prenatal Ultrasonography of Craniofacial Abnormalities
    Prenatal ultrasonography of craniofacial abnormalities Annisa Shui Lam Mak, Kwok Yin Leung Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Hong Kong SAR, China REVIEW ARTICLE https://doi.org/10.14366/usg.18031 pISSN: 2288-5919 • eISSN: 2288-5943 Ultrasonography 2019;38:13-24 Craniofacial abnormalities are common. It is important to examine the fetal face and skull during prenatal ultrasound examinations because abnormalities of these structures may indicate the presence of other, more subtle anomalies, syndromes, chromosomal abnormalities, or even rarer conditions, such as infections or metabolic disorders. The prenatal diagnosis of craniofacial abnormalities remains difficult, especially in the first trimester. A systematic approach to the fetal Received: May 29, 2018 skull and face can increase the detection rate. When an abnormality is found, it is important Revised: June 30, 2018 to perform a detailed scan to determine its severity and search for additional abnormalities. Accepted: July 3, 2018 Correspondence to: The use of 3-/4-dimensional ultrasound may be useful in the assessment of cleft palate and Kwok Yin Leung, MBBS, MD, FRCOG, craniosynostosis. Fetal magnetic resonance imaging can facilitate the evaluation of the palate, Cert HKCOG (MFM), Department of micrognathia, cranial sutures, brain, and other fetal structures. Invasive prenatal diagnostic Obstetrics and Gynaecology, Queen Elizabeth Hospital, Gascoigne Road, techniques are indicated to exclude chromosomal abnormalities. Molecular analysis for some Kowloon, Hong Kong SAR, China syndromes is feasible if the family history is suggestive. Tel. +852-3506 6398 Fax. +852-2384 5834 E-mail: [email protected] Keywords: Craniofacial; Prenatal; Ultrasound; Three-dimensional ultrasonography; Fetal structural abnormalities This is an Open Access article distributed under the Introduction terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non- Craniofacial abnormalities are common.
    [Show full text]
  • MR Imaging of Fetal Head and Neck Anomalies
    Neuroimag Clin N Am 14 (2004) 273–291 MR imaging of fetal head and neck anomalies Caroline D. Robson, MB, ChBa,b,*, Carol E. Barnewolt, MDa,c aDepartment of Radiology, Children’s Hospital Boston, 300 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA bMagnetic Resonance Imaging, Advanced Fetal Care Center, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA cFetal Imaging, Advanced Fetal Care Center, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA Fetal dysmorphism can occur as a result of var- primarily used for fetal MR imaging. When the fetal ious processes that include malformation (anoma- face is imaged, the sagittal view permits assessment lous formation of tissue), deformation (unusual of the frontal and nasal bones, hard palate, tongue, forces on normal tissue), disruption (breakdown of and mandible. Abnormalities include abnormal promi- normal tissue), and dysplasia (abnormal organiza- nence of the frontal bone (frontal bossing) and lack of tion of tissue). the usual frontal prominence. Abnormal nasal mor- An approach to fetal diagnosis and counseling of phology includes variations in the size and shape of the parents incorporates a detailed assessment of fam- the nose. Macroglossia and micrognathia are also best ily history, maternal health, and serum screening, re- diagnosed on sagittal images. sults of amniotic fluid analysis for karyotype and Coronal images are useful for evaluating the in- other parameters, and thorough imaging of the fetus tegrity of the fetal lips and palate and provide as- with sonography and sometimes fetal MR imaging. sessment of the eyes, nose, and ears.
    [Show full text]
  • Cell Lines Or Lymphocytes Collected from Blood Via Trizol HDAC4 in Each of These Cases Revealed De Novo Mutations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems Stephen R. Williams,1 Micheala A. Aldred,3 Vazken M. Der Kaloustian,4,6 Fahed Halal,5 Gordon Gowans,7 D. Ross McLeod,8 Sara Zondag,9 Helga V. Toriello,9 R. Ellen Magenis,10 and Sarah H. Elsea1,2,* Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candi- date genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, À/À neurological, and cardiac development. Reportedly, Hdac4 mice have severe bone malformations resulting from premature ossifica- tion of developing bones.
    [Show full text]
  • Beyond Crayons
    THE JEFFRAS’ PROGRAM THAT PROMOTES A HEALTHY SCHOOL ENVIRONMENT FOR STUDENTS WITH SPINA BIFIDA SECTION 504 PLAN Background Plan Objectives & Goals Spina Bifida is the most common permanently Successful integration of a child with Spina Bifida disabling birth defect in the United States. Spina into school sometimes requires changes in school Bifida occurs when the spine of the baby fails to equipment or the curriculum. In adapting the school close. This creates an opening, or lesion, on the setting for the child with Spina Bifida, architectural spinal column. This takes place during the first factors should be considered. Section 504 of the month of pregnancy when the spinal column and Rehabilitation Act of 1973 requires programs that brain, or neural tube, is formed. This happens before receive federal funding to make their facilities most women even know they are pregnant. Because accessible. This can occur through structural of the opening on the spinal column, the nerves in changes (for example, adding elevators or ramps) or the spinal column may be damaged and not work through schedule and location changes (for properly. This results in some degree of paralysis. example, offering a course on the ground floor). The higher the lesion is on the spinal column, the greater the paralysis. Surgery to close the spine is The Student has a recognized disability, Spina Bifida, generally done within hours after birth. Surgery helps that requires the accommodations and modifications to reduce the risk of infection and to protect the set out in this plan to ensure that the student has the spinal cord from greater damage.
    [Show full text]
  • Identifying the Misshapen Head: Craniosynostosis and Related Disorders Mark S
    CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care Identifying the Misshapen Head: Craniosynostosis and Related Disorders Mark S. Dias, MD, FAAP, FAANS,a Thomas Samson, MD, FAAP,b Elias B. Rizk, MD, FAAP, FAANS,a Lance S. Governale, MD, FAAP, FAANS,c Joan T. Richtsmeier, PhD,d SECTION ON NEUROLOGIC SURGERY, SECTION ON PLASTIC AND RECONSTRUCTIVE SURGERY Pediatric care providers, pediatricians, pediatric subspecialty physicians, and abstract other health care providers should be able to recognize children with abnormal head shapes that occur as a result of both synostotic and aSection of Pediatric Neurosurgery, Department of Neurosurgery and deformational processes. The purpose of this clinical report is to review the bDivision of Plastic Surgery, Department of Surgery, College of characteristic head shape changes, as well as secondary craniofacial Medicine and dDepartment of Anthropology, College of the Liberal Arts characteristics, that occur in the setting of the various primary and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania; and cLillian S. Wells Department of craniosynostoses and deformations. As an introduction, the physiology and Neurosurgery, College of Medicine, University of Florida, Gainesville, genetics of skull growth as well as the pathophysiology underlying Florida craniosynostosis are reviewed. This is followed by a description of each type of Clinical reports from the American Academy of Pediatrics benefit from primary craniosynostosis (metopic, unicoronal, bicoronal, sagittal, lambdoid, expertise and resources of liaisons and internal (AAP) and external reviewers. However, clinical reports from the American Academy of and frontosphenoidal) and their resultant head shape changes, with an Pediatrics may not reflect the views of the liaisons or the emphasis on differentiating conditions that require surgical correction from organizations or government agencies that they represent.
    [Show full text]
  • Lumbar Spondylolysis in Adolescent Athletes Joseph P
    ■ BRIEF REPORT Lumbar Spondylolysis in Adolescent Athletes Joseph P. Garry, MD, and John McShane, MD Greenville, North Carolina Lumbar spondylolysis is a common cause of low back pain in adolescent athletes. The early diagnosis and treat­ ment of this condition will result in decreased morbidity and an earlier return to full activity for most patients. We report a case of lumbar spondylolysis in an adolescent athlete and review current diagnosis and management of this condition. KEY WORDS. Spondylolysis; adolescent; back pain; athlete. (J Fam Pract 1998; 46:145-149) he national explosion of competitive athletics onset of the low back pain was insidious, without a his­ has led to increasing participation of adoles­ tory of trauma. At presentation, the pain was described cents in organized team sports. Up to one half as a sharp, right-sided, lower lumbar and buttock pain of boys and one fourth of girls between the brought on during soccer practice while running and ages of 14 and 17 participate in some form of kicking, and was relieved with rest. No radicular symp­ organizedT team sport.1 The increase in the number of toms were described. The patient denied any previous adolescent athletes has resulted in more adolescent low back pain. Past medical history was unremarkable. complaints of low back pain.2 The lifetime prevalence of Physical examination revealed painful palpation of low back pain among 11- to 17-year-olds in the United the lower right lumbar spine with bilateral paraspinal States is reported to be 30.4%.3 Often, many young ath­ muscle spasm.
    [Show full text]
  • The Genetics of Canine Skull Shape Variation
    PERSPECTIVES The Genetics of Canine Skull Shape Variation Jeffrey J. Schoenebeck and Elaine A. Ostrander1 Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 ABSTRACT A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. OMETIME during the Paleolithic, a remarkable transfor- Variation in Skull Shape and Dog Domestication mation occurred. Small numbers of gray wolves adopted S Molecular clock estimates from mitochondrial DNA suggest a new pack master—humans. Through the process of do- domestication started as early as 135,000 years ago (Vilà mestication, the modern dog emerged. Today most dogs et al. 1997). More conservative estimates are based on ar- share little resemblance to their lupine ancestors. As a result chaeological records, which indicate that dog domestication of artificial selection, dogs radiated to fill niches in our lives, began somewhere between 15,000 and 36,000 years ago becoming our herders, guardians, hunters, rescuers, and com- (see summary by Larson et al. 2012). Current archaeologi- panions (Wilcox and Walkowicz 1995). The range of sizes cal estimates depend on carbon dating of bones, whose among dogs extends beyond that of wolves, giving dogs the morphologies appear distinct from that of contemporary distinction of being the most morphologically diverse terres- wolves.
    [Show full text]