Review Article Cleidocranial Dysplasia: Clinical and Molecular Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Cleidocranial Dysplasia: Clinical and Molecular Genetics J Med Genet 1999;36:177–182 177 Review article Cleidocranial dysplasia: clinical and molecular genetics Stefan Mundlos Abstract Chinese named Arnold, was probably de- Cleidocranial dysplasia (CCD) (MIM scribed by Jackson.6 He was able to trace 356 119600) is an autosomal dominant skeletal members of this family of whom 70 were dysplasia characterised by abnormal aVected with the “Arnold Head”. CCD was clavicles, patent sutures and fontanelles, originally thought to involve only bones of supernumerary teeth, short stature, and a membranous origin. More recent and detailed variety of other skeletal changes. The dis- clinical investigations have shown that CCD is ease gene has been mapped to chromo- a generalised skeletal dysplasia aVecting not some 6p21 within a region containing only the clavicles and the skull but the entire CBFA1, a member of the runt family of skeleton. CCD was therefore considered to be transcription factors. Mutations in the a dysplasia rather than a dysostosis.7 Skeletal CBFA1 gene that presumably lead to syn- abnormalities commonly found include cla- thesis of an inactive gene product were vicular aplasia/hypoplasia, bell shaped thorax, identified in patients with CCD. The func- enlarged calvaria with frontal bossing and open tion of CBFA1 during skeletal develop- fontanelles, Wormian bones, brachydactyly ment was further elucidated by the with hypoplastic distal phalanges, hypoplasia of generation of mutated mice in which the the pelvis with widened symphysis pubis, Cbfa1 gene locus was targeted. Loss of one severe dental anomalies, and short stature. The Cbfa1 allele (+/-) leads to a phenotype very changes suggest that the gene responsible is not similar to human CCD, featuring hypo- only active during early development, as plasia of the clavicles and patent fonta- implied by changes in the shape or number of nelles. Loss of both alleles (-/-) leads to a bones, but is also important during fetal and complete absence of bone owing to a lack postnatal growth. of osteoblast diVerentiation. These studies show that haploinsuYciency of CBFA1 causes the CCD phenotype. CBFA1 con- Clinical and radiological features The clinical and radiological features have trols diVerentiation of precursor cells into 8–12 osteoblasts and is thus essential for mem- been reviewed by several authors. Table 1 branous as well as endochondral bone for- summarises the clinical and radiological find- mation. ings. Typical clinical findings are shown in fig (J Med Genet 1999;36:177–182) 1. Craniofacial growth is aVected in many ways.13 14 Head circumference is usually at the Keywords: cleidocranial dysplasia; CBFA1 upper limit without being macrocephalic. There is a broad forehead with frontal bossing and some degree of hypertelorism. The mid- Heritable diseases of the skeleton are a diverse frontal area is poorly developed and shows a and complex group of genetic disorders. The frontal groove owing to incomplete ossification diVerent clinical manifestations reflect the of the metopic suture. Closure of the anterior basic mechanisms of skeletal development, fontanelle and sagittal and metopic sutures is patterning, bone and cartilage formation, delayed, often for life. In infants, a generalised growth, and homeostasis. The recent identifi- delay in ossification of the skull can be cation of the genetic basis for several skeletal observed and in extreme cases the parietal disorders has yielded significant insights into bones are not present at birth. With increasing these processes.12 Cleidocranial dysplasia age the unossified areas become smaller and (CCD) is a well defined skeletal disorder with true Wormian bones form, particularly around characteristic clinical findings and autosomal the lambdoid suture. Frontal and paranasal dominant inheritance. Reports of clavicular sinuses are frequently absent or reduced in size. defects appeared as early as 1765,3 but Other changes of the skull include small or Scheuthauer4 was probably the first to describe absent nasal bones, segmental calvarial thick- the syndrome accurately. Marie and Sainton5 in ening, underdevelopment of the maxilla, de- Universitätskinderklinik, Langenbeckstrasse 1, 1898 coined the name “dysostose cléido- layed union of the mandibular symphysis, and a 55101 Mainz, Germany crânienne héréditaire” for this condition. One small cranial base with reduced sagittal diam- S Mundlos of the most colourful families, descendants of a eter and a large foramen magnum. The skeletal 178 Mundlos Table 1 Clinical and radiological features of cleidocranial dysplasia As expected, there is often an associated deficiency of the musculature. Clinical Radiological The pelvis is invariably involved and shows Skull characteristic changes (fig 1C). The name Brachycephaly Multiple wormian bones “forme cleido cranio-pelvienne” was proposed Frontal and parietal bossing Segmental calvarial thickening 16 Open sutures and fontanelleles Unossified sutures and patent fontanelles for this deformity by Crouzon and Buttier. Delayed closure of fontanelleles Dysplastic changes in the basiocciput The widened symphysis pubis (distance be- Relative prognathism Hypoplasia of maxilla tween pubic bones) results from a delay in Soft skull in infancy Delayed mineralisation Depressed nasal bridge Calcification of nasal bone delayed or missing ossification during adulthood. Other changes Hypertelorism Hypoplastic sinuses (paranasal, frontal, mastoid) include hypoplasia and anterior rotation of the Thorax and shoulders iliac wings and wide sacroiliac joints. The Ability to bring shoulders together Hypoplastic, aplastic, or discontinuous clavicles Narrow, sloping shoulders Cone shaped thorax femoral epiphyses are large, the femoral necks Respiratory distress at early age Cervical ribs, missing ribs broad, and there is frequently coxa vara. The Increased mobility Hypoplastic scapulae Pelvis and hips dysplastic pelvis often necessitates caesarean Caesarean section Delayed ossification of pubic bone section in the pregnant female. Hypoplasia of iliac wings A relatively constant abnormality is the pres- Widening of sacroiliac joints Large femoral neck, large epiphyses ence of both proximal and distal epiphyses in Spine the second metacarpals and metatarsals lead- Scoliosis Hemivertebrae, posterior wedging ing to excessive growth and length (fig 1D).917 Kyphosis Spondylolysis and spondylolisthesis Spina bifida occulta All other bones of the hands and feet, especially Hands the distal phalanges and the middle phalanges Brachydactyly Short middle phalanges and metacarpals/tarsals III–V of the second and fifth fingers are unusually Tapering of fingers Hypoplastic distal phalanges Nail dysplasia/hypoplasia Accessory epiphyses especially of 2nd metacarpal short. Cone shaped epiphyses and premature Short, broad thumbs Long 2nd metacarpal closure of epiphyseal growth plates are fre- Clinodactyly of 5th finger Cone shaped epiphyses quently observed and lead to shortening of Dentition Normal deciduous dentition other bones. The poorly developed terminal Supernumerary teeth Impacted, supernumerary teeth phalanges give a tapered appearance to the Delayed eruption Crowding, malocclusion digit. The nails are sometimes hypoplastic/ dysplastic or may even be absent. Final height is significantly reduced in changes result in subtle but characteristic facial patients with CCD. Previous investigations features (fig 1A) that include a large, brachy- indicate that birth length is normal but that cephalic head with parietal and marked frontal height drops below or around the 2nd centile bosses separated by a metopic groove, a between the ages of 4 and 8.18 19 In a study by depressed nasal bridge, hypertelorism with Jensen,17 female patients were more aVected possible exophthalmos, and a small maxilla, than male patients. Patients usually have a which gives the face a small, flattened appear- mildly disproportionate short stature with ance with mandibular prognathism. short limbs compared to the trunk, more Many patients with hypoplastic or even apparent in the upper limbs than the lower. absent clavicles have gone through life, even The palate is often highly arched and clefts working as manual labourers, without disability involving the hard and soft palates have been resulting from this defect. Depending on the described. Dental changes occur frequently degree of clavicular hypoplasia, appearance can and are very characteristic of CCD (fig 1E).20 range from a dimple in the skin to sloping, Retention of the deciduous dentition with almost absent shoulders and the ability to vol- delayed eruption of the permanent teeth is a untarily bring the shoulders together. Accord- relatively constant finding. Dental disability ing to our observations and those of others,915 begins in late youth with the progressive a complete absence of the clavicle(s) is rare, morbidity and loss of the deciduous dentition. whereas hypoplasia of the acromial end is com- Many patients remember living “without mon. Other less common forms of clavicular teeth” for some years until the permanent teeth involvement include the occurrence of two eventually erupted. Permanent teeth show a separate fragments, or the absence of the ster- delay of root development and a lessened but nal end with the acromial end present. Bilater- not entirely absent eruptive potential. Surgical ality is the rule but not always the case. The procedures to promote eruption include the extraction of all deciduous teeth and the missing segment may be represented by fibrous removal of bone overlying the crypts of the pseudarthrosis
Recommended publications
  • A Novel Locus for Brachydactyly Type A1 on Chromosome 5P13.3-P13.2 C M Armour, M E Mccready, a Baig,Agwhunter, D E Bulman
    186 LETTERS TO JMG J Med Genet: first published as 10.1136/jmg.39.3.189 on 1 March 2002. Downloaded from A novel locus for brachydactyly type A1 on chromosome 5p13.3-p13.2 C M Armour, M E McCready, A Baig,AGWHunter, D E Bulman ............................................................................................................................. J Med Genet 2002;39:186–189 he brachydactylies are a group of inherited disorders METHODS characterised by shortened or malformed digits that are The linkage study comprised 34 members including 20 Tthought to be the result of abnormal growth of the affected subjects and was conducted after approval by the phalanges and/or metacarpals. First classified by Bell into Children’s Hospital of Eastern Ontario Ethics Review Com- types A, B, C, D, and E, they were reclassified by Temtamy and mittee. McKusick1 and Fitch.2 Brachydactyly type A1 (BDA1, MIM Peripheral blood samples were taken with informed 112500) is characterised by shortened or absent middle consent from all participating family members, and a stand- phalanges. Often the second and fifth digits, as well as the first ard protocol was used to isolate DNA. A genome wide scan proximal phalanx, are the most severely affected. In addition, was initiated using 36 primer sets from the MAPPAIRS™ all of the small tubular bones tend to be reduced in size and microsatellite markers (Research Genetics, Huntsville, Ala- the metacarpals may be shortened, particularly the fifth bama), encompassing markers from 16 chromosomes. metacarpal. Radial/ulnar clinodactyly, as well as malformed or Particular emphasis was placed on markers from chromo- 11 absent epiphyses, have also been reported.12 Complex some 5 and 17, based on the report by Fukushima et al syndromes have been described in which BDA1 is one of a describing a translocation between 5q11.2 and 17q23 in a girl number of manifestations.3 with Klippel-Feil anomaly and BDA1.
    [Show full text]
  • Anatomical Classification of Sutural Bones
    MOJ Anatomy & Physiology Mini Review Open Access Anatomical classification of sutural bones Abstract Volume 3 Issue 4 - 2017 Sutural bones are accessory bones which occur within the skull. They get a different name, Rafael Romero Reverón1,2 derivative from the suture or sutures they are in contact with or with the centre of ossification 1Department of Human Anatomy, Universidad Central de or fontanel where they originate. They are classified into true Sutural bones and false Sutural Venezuela, Venezuela bones. True Sutural bones derived from one or many points of ossification. False Sutural 2Medical doctor Specialist in Orthopedic Trauma Surgery at bones are ossification centers not connected to independent bones. Although Sutural bones Centro Médico Docente La Trinidad, Venezuela they are poorly reported while they are quiet frequent. Sutural bones are being of interest to human anatomy, neurosurgery, physical anthropology, forensic medicine, craniofacial Correspondence: Rafael Romero Reverón, Department of surgery, radiology among others. Human Anatomy, Universidad Central de Venezuela, Medical doctor Specialist in Orthopedic Trauma Surgery at Centro Keywords: sutural bones, true sutural bones, false sutural bones, wormian bones, Médico Docente La Trinidad, Venezuela, anatomical classification Email [email protected] Received: February 23, 2017 | Published: April 10, 2017 Introduction both sexes as well as in both sides of the skull. Approximately half of Sutural bones are located in the lambdoid suture and fontanel and the The human skull is composed of several bones that fuse together masto-occipital suture. The second most common site of incidence after birth additionally to the regular centre of ossification of the skull. (about 25%) is in the coronal suture.7,8 The rest occur in any remaining Sutural bones are sporadically found in the course of cranial sutures sutures and fontanels.9 Knowledge of this variation is very important and fontanels or isolated.
    [Show full text]
  • Type II Familial Synpolydactyly: Report on Two Families with an Emphasis on Variations of Expression
    European Journal of Human Genetics (2011) 19, 112–114 & 2011 Macmillan Publishers Limited All rights reserved 1018-4813/11 www.nature.com/ejhg SHORT REPORT Type II familial synpolydactyly: report on two families with an emphasis on variations of expression Mohammad M Al-Qattan*,1 Type II familial synpolydactyly is rare and is known to have variable expression. However, no previous papers have attempted to review these variations. The aim of this paper was to review these variations and show several of these variable expressions in two families. The classic features of type II familial synpolydactyly are bilateral synpolydactyly of the third web spaces of the hands and bilateral synpolydactyly of the fourth web spaces of the feet. Several members of the two families reported in this paper showed the following variations: the third web spaces of the hands showing syndactyly without the polydactyly, normal feet, concurrent polydactyly of the little finger, concurrent clinodactyly of the little finger and the ‘homozygous’ phenotype. It was concluded that variable expressions of type II familial synpolydactyly are common and awareness of such variations is important to clinicians. European Journal of Human Genetics (2011) 19, 112–114; doi:10.1038/ejhg.2010.127; published online 18 August 2010 Keywords: type II familial syndactyly; inherited synpolydactyly; variations of expression INTRODUCTION CASE REPORTS Type II familial synpolydactyly is rare and it has been reported in o30 The first family families.1–12 It is characterized by bilateral synpolydactyly of the third The family had a history of synpolydactyly type II for several web spaces of the hands and bilateral synpolydactyly of the fourth web generations on the mother’s side (Table 1).
    [Show full text]
  • Frontosphenoidal Synostosis: a Rare Cause of Unilateral Anterior Plagiocephaly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Childs Nerv Syst (2007) 23:1431–1438 DOI 10.1007/s00381-007-0469-4 ORIGINAL PAPER Frontosphenoidal synostosis: a rare cause of unilateral anterior plagiocephaly Sandrine de Ribaupierre & Alain Czorny & Brigitte Pittet & Bertrand Jacques & Benedict Rilliet Received: 30 March 2007 /Published online: 22 September 2007 # Springer-Verlag 2007 Abstract Conclusion Frontosphenoidal synostosis must be searched Introduction When a child walks in the clinic with a in the absence of a coronal synostosis in a child with unilateral frontal flattening, it is usually associated in our anterior unilateral plagiocephaly, and treated surgically. minds with unilateral coronal synostosis. While the latter might be the most common cause of anterior plagiocephaly, Keywords Craniosynostosis . Pediatric neurosurgery. it is not the only one. A patent coronal suture will force us Anterior plagiocephaly to consider other etiologies, such as deformational plagio- cephaly, or synostosis of another suture. To understand the mechanisms underlying this malformation, the development Introduction and growth of the skull base must be considered. Materials and methods There have been few reports in the Harmonious cranial growth is dependent on patent sutures, literature of isolated frontosphenoidal suture fusion, and and any craniosynostosis might lead to an asymmetrical we would like to report a series of five cases, as the shape of the skull. The anterior skull base is formed of recognition of this entity is important for its treatment. different bones, connected by sutures, fusing at different ages. The frontosphenoidal suture extends from the end of Presented at the Consensus Conference on Pediatric Neurosurgery, the frontoparietal suture, anteriorly and inferiorly in the Rome, 1–2 December 2006.
    [Show full text]
  • The Genetic Basis for Skeletal Diseases
    insight review articles The genetic basis for skeletal diseases Elazar Zelzer & Bjorn R. Olsen Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA (e-mail: [email protected]) We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: “nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path”. enetic studies of diseases that affect skeletal differentiation to cartilage cells (chondrocytes) or bone cells development and growth are providing (osteoblasts) within the condensations. Subsequent growth invaluable insights into the roles not only of during the organogenesis phase generates cartilage models individual genes, but also of entire (anlagen) of future bones (as in limb bones) or membranous developmental pathways. Different mutations bones (as in the cranial vault) (Fig. 1). The cartilage anlagen Gin the same gene may result in a range of abnormalities, are replaced by bone and marrow in a process called endo- and disease ‘families’ are frequently caused by mutations in chondral ossification. Finally, a process of growth and components of the same pathway.
    [Show full text]
  • Cleidocranial Dysplasia- a Case Report
    Case Report Cleidocranial Dysplasia- A Case Report Akhilanand Chaurasia Department of Oral Medicine & Radiology, Faculty of Dental Sciences, King George Medical University, Lucknow E-mail: [email protected] ABSTRACT Cleidocranial dysplasia is a rare congenital disease. It is characterized by autosomal dominant inheritance pattern which is caused due to mutations in the Cbfa1 gene (Runx2) located on chromosome 6p21. It primarily affects bones which are formedby intra-membranous ossification and have equal sex distribution. It is also known as Marie and Sainton disease, Mutational dysostosis and cleidocranialdysostosis. The skeletal deformities of cleidocranial dysplasia are characterized by partial or complete absence of clavicles, late closure of the fontanels, presence of open skull sutures and multiple wormian bones. This rare syndrome is of utmost importance in dentistry due to presence of multiple supernumerary teeth, facial bones deformities and deranged eruption patterns. We are reporting a classical case of cleidocranial dysplasia in 20 year old patient. Keywords: Cleidocranial dysplasia, Marie and Sainton disease, Mutational dysostosis, Cleidocranialdysostosis, Autosomal dominant Access this article online mandibular symphysis are less common findings of Quick Response cleidocranial dysostosis1,10,11. Code: Website: Dental findings in cleidocranialdysostosis are www.innovativepublication.com characterized by a decreased eruptive force of both primary and permanent dentition, prolonged retention of primary teeth12 and an increase in odontogenesis DOI: 10.5958/2395-6194.2015.00009.0 leading to an excessive number of supernumerary teeth13. The clinical findings of cleidocranialdysostosis although present at birth are often either missed or INTRODUCTION diagnosed at a much later time. Cleidocranialdysostosis Cleidocranialdysostosis is a rare congenital defect may be identified by family history, excessive mobility primarily affecting bones which undergo intra- of shoulders and radiographic pathognomonic findings membranous ossification i.e.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • RD-Action Matchmaker – Summary of Disease Expertise Recorded Under
    Summary of disease expertise recorded via RD-ACTION Matchmaker under each Thematic Grouping and EURORDIS Members’ Thematic Grouping Thematic Reported expertise of those completing the EURORDIS Member perspectives on Grouping matchmaker under each heading Grouping RD Thematically Rare Bone Achondroplasia/Hypochondroplasia Achondroplasia Amelia skeletal dysplasia’s including Achondroplasia/Growth hormone cleidocranial dysostosis, arthrogryposis deficiency/MPS/Turner Brachydactyly chondrodysplasia punctate Fibrous dysplasia of bone Collagenopathy and oncologic disease such as Fibrodysplasia ossificans progressive Li-Fraumeni syndrome Osteogenesis imperfecta Congenital hand and fore-foot conditions Sterno Costo Clavicular Hyperostosis Disorders of Sex Development Duchenne Muscular Dystrophy Ehlers –Danlos syndrome Fibrodysplasia Ossificans Progressiva Growth disorders Hypoparathyroidism Hypophosphatemic rickets & Nutritional Rickets Hypophosphatasia Jeune’s syndrome Limb reduction defects Madelung disease Metabolic Osteoporosis Multiple Hereditary Exostoses Osteogenesis imperfecta Osteoporosis Paediatric Osteoporosis Paget’s disease Phocomelia Pseudohypoparathyroidism Radial dysplasia Skeletal dysplasia Thanatophoric dwarfism Ulna dysplasia Rare Cancer and Adrenocortical tumours Acute monoblastic leukaemia Tumours Carcinoid tumours Brain tumour Craniopharyngioma Colon cancer, familial nonpolyposis Embryonal tumours of CNS Craniopharyngioma Ependymoma Desmoid disease Epithelial thymic tumours in
    [Show full text]
  • Study of Wormian Bones on Dry Human Skull and Its Sexual Dimorphism in the Region of Andhra Pradesh
    Original Research Article Study of Wormian Bones on Dry human skull and its sexual dimorphism in the region of Andhra Pradesh Shone Vasudeo Durge Assistant Professor, Dept. of Anatomy, Fathima Institute of Medical Sciences, Ramarajupalli, Andhra Pradesh Corresponding Author: E-mail: [email protected] Abstract This study was aimed at identifying the wormian bone and their overall incidence in respect to their number and location in the region of Andhra Pradesh. Overall incidence of wormian bones was more in female (47.72%) than in male skulls (41.66%). They occurred more frequently at lambdoid suture (38%). Wormian bones along the coronal suture, Bregma and Asterion were seen only in male skulls, while intra-orbital wormian bones and wormian bones at Pterion were seen only in female skulls. This study concludes by stating that, there exists a moderate degree of sexual dimorphism among the wormian bones with respect to overall incidence, number and location. Keywords- Skull, Sexual dimorphism, Wormian bones, Lambda, Asterion. Background knowledge of WBs is important in the diagnosis of Wormian bones, also known as intra-sutural bones, these disorders (Cremin, Goodman, Spranger et al., are extra bone pieces that occur within a suture in the 1982). It was reported that their incidence is well suited cranium. These are irregular isolated bones that appear for comparative studies as an anthropological marker or in addition to the usual centers of ossification of the an indicator of population distance (Gumusburun, cranium and, although unusual, are not rare. They occur Sevim, Katkici et al., 1997). Their knowledge is of most frequently in the course of the lambdoid suture, interest to the human anatomy, physical anthropology which is more tortuous than other sutures.
    [Show full text]
  • The Genetic Heterogeneity of Brachydactyly Type A1: Identifying the Molecular Pathways
    The genetic heterogeneity of brachydactyly type A1: Identifying the molecular pathways Lemuel Jean Racacho Thesis submitted to the Faculty of Graduate Studies and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Biochemistry Specialization in Human and Molecular Genetics Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Lemuel Jean Racacho, Ottawa, Canada, 2015 Abstract Brachydactyly type A1 (BDA1) is a rare autosomal dominant trait characterized by the shortening of the middle phalanges of digits 2-5 and of the proximal phalange of digit 1 in both hands and feet. Many of the brachymesophalangies including BDA1 have been associated with genetic perturbations along the BMP-SMAD signaling pathway. The goal of this thesis is to identify the molecular pathways that are associated with the BDA1 phenotype through the genetic assessment of BDA1-affected families. We identified four missense mutations that are clustered with other reported BDA1 mutations in the central region of the N-terminal signaling peptide of IHH. We also identified a missense mutation in GDF5 cosegregating with a semi-dominant form of BDA1. In two families we reported two novel BDA1-associated sequence variants in BMPR1B, the gene which codes for the receptor of GDF5. In 2002, we reported a BDA1 trait linked to chromosome 5p13.3 in a Canadian kindred (BDA1B; MIM %607004) but we did not discover a BDA1-causal variant in any of the protein coding genes within the 2.8 Mb critical region. To provide a higher sensitivity of detection, we performed a targeted enrichment of the BDA1B locus followed by high-throughput sequencing.
    [Show full text]
  • Pushing the Limits of Prenatal Ultrasound: a Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3Q Duplication
    reproductive medicine Case Report Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q Duplication Olivier Leroij 1, Lennart Van der Veeken 2,*, Bettina Blaumeiser 3 and Katrien Janssens 3 1 Faculty of Medicine, University of Antwerp, 2610 Wilrijk, Belgium; [email protected] 2 Department of Obstetrics and Gynaecology, University Hospital Antwerp, 2650 Edegem, Belgium 3 Department of Medical Genetics, University Hospital and University of Antwerp, 2650 Edegem, Belgium; [email protected] (B.B.); [email protected] (K.J.) * Correspondence: [email protected] Abstract: We present a case of a fetus with cranial abnormalities typical of open spina bifida but with an intact spine shown on both ultrasound and fetal MRI. Expert ultrasound examination revealed a very small tract between the spine and the skin, and a postmortem examination confirmed the diagnosis of a dorsal dermal sinus. Genetic analysis found a mosaic 3q23q27 duplication in the form of a marker chromosome. This case emphasizes that meticulous prenatal ultrasound examination has the potential to diagnose even closed subtypes of neural tube defects. Furthermore, with cerebral anomalies suggesting a spina bifida, other imaging techniques together with genetic tests and measurement of alpha-fetoprotein in the amniotic fluid should be performed. Citation: Leroij, O.; Van der Veeken, Keywords: dorsal dermal sinus; Arnold–Chiari anomaly; 3q23q27 duplication; mosaic; marker chro- L.; Blaumeiser, B.; Janssens, K. mosome Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q 1.
    [Show full text]
  • Morphological and Topographical Study of Wormian Bones in Cadaver Dry Skulls
    Original article Morphological and topographical study of Wormian bones in cadaver dry skulls Murlimanju, BV.*, Prabhu, LV., Ashraf, CM., Kumar, CG., Rai, R. and Maheshwari, C. Department of Anatomy, Manipal University, Centre for Basic Sciences, Kasturba Medical College, Mangalore, India *E-mail: [email protected] Abstract Introduction: The Wormian bones are formations associated with insufficient rate of suture closure and regarded as epigenetic and hypostotic traits. It was reported that there exists racial variability among the incidence of these bones. In the present study, the aims were to find the incidence of Wormian bones in Indian skulls and to analyze them topographically. Material and methods: The study included 78 human adult dry skulls of Indian population which were obtained from the neuroanatomy laboratory of our institution. They were macroscopically observed for the incidence and topographical distribution of the Wormian bones. Results: The Wormian bones were observed in 57 skulls (73.1%) of our series. Remaining 21 skulls (26.9%) didn’t show these variant bones. They were observed at the lambdoid suture in 56.4% cases (44 skulls; 14-bilateral; 18-right side; 12-left side), at the asterion in 17.9% (14 skulls; 3-bilateral; 2-right side; 9-left side), at the pterion in 11.5% (9 skulls; 4-right side; 5-left side), at the coronal suture in 1.3% (only one skull) and at the sagittal suture in 1.3% cases (only one skull). Conclusion: The current study observed Wormian bones in 73.1% of the cases from Indian population. This incidence rate is slightly higher compared to other reports and may be due to racial variations.
    [Show full text]