Presentation Embedding--Another Case of Stumbling Progress

Total Page:16

File Type:pdf, Size:1020Kb

Presentation Embedding--Another Case of Stumbling Progress EMBEDDING: ANOTHER CASE OF STUMBLING PROGRESS Jens Høyrup [email protected] http://ruc.dk/~jensh/ Contribution to the workshop Mathematics in the Renaissance Language, Methods, and Practices ETSEIB, Barcelona, 23 January 2015 1 Approaches to algebraic symbolism Georg Nesselmann, Algebra der Griechen (1842): a classification of algebra types into three groups: rhetorical, syncopated, and symbolic. In “rhetorical algebra”, everything in the calculation is explained in full words. “Syncopated algebra” uses standard abbreviations for certain recurrent concepts and operations, while “its exposition remains essentially rhetorical”. In “Symbolic algebra”, “all forms and operations that appear are represented in a fully developed language of signs that is completely independent of the oral exposition”. 2 Though characterized as “stages” (Stufen), clear from his examples that this division into chronological stages is at most meant locally, not as steps of universal history. The rhetorical stage is represented by Iamblichos, “all so far known Arabic and Persian algebraists”, and all Christian-European writers on algebra until Regiomontanus. 3 Diophantos,and the later Europeans until well into the 17th century are classified as syncopated, although already Viète has sown the seeds of modern algebra in his writings, which however only sprouted some time after him. In the following pages, Oughtred, Descartes, Harriot and Wallis are mentioned as founders of symbolic algebra. However, we Europeans since the 17th century are not the first to have attained [the symbolic] level; indeed, the Indian mathematicians anticipate us in this domain by many centuries. 4 The typology is still in common use by historians who refuse to see every use of algebraic abbreviations as a “symbolism”, For the sane reason, it is often criticized – obvious mistakes from the 1840s would have been forgotten long ago. (In the following, I shall formulate some supplementary objections) 5 However, the central observation about what characterizes the symbolic level has mostly been overlooked – namely that symbolization allows operations directly on the level of the symbols, without any recourse to thought through spoken or internalized language. In Nesselmann’s own words We may execute an algebraic calculation from the beginning to the end in fully intelligible way without using one written word, and at least in simpler calculations we only now and then insert a conjunction between the formulae so as to spare the reader the labour of searching and reading back by indicating the connection between the formula and what precedes and what follows. 6 That is what we do when we reduce an equation by additions, divisions, differentiations, etc. We can of course speak about the operations we perform, just as we may speak about the operations we perform when changing the tyre on a bicycle or preparing a sauce; but in all three cases the operations themselves are outside language. 7 As illustration, two instances of incipient symbolic operation – one from Diophantos, one from the Italian 14th century. In the Arithmetic, Diophantos uses abbreviations (spoken of as “signs” [σημειον]) for the unknown number (the arithmós) and its powers. The unknown arithmós itself is written ς; for the higher powers (dynamis = ς2, kybos = ς3, dynamodynamis = ς4, etc.), phonetic complements are added (ΔΥ, ΚΥ, etc.). Similarly, complements are added to the sign for the monad (“power zero”), and for numbers occurring as denominators in fractions, except in the compact writing of fractions where“ 5 ” means16 . 16 5 8 Addition is implied by juxtaposition, subtraction and subtractivity are denoted by the abbreviation (λειψις, “missing” etc.). Only one sign occasionally serves direct operation: the designation of the “part denominated by” n (better, since n is not always integer, the reciprocal of n); In III.xi a number which was posited to be ς× is stated immediately to be“41 ” (77 ) when ς itself turns out to be“77 ” . 77 41 41 This would hardly have been possible if Diophantos had not known at the level of symbols (and supposed his reader to recognize) that ς× × ς p × q ( ) = , and that “q ” =“p ” . This may be the only instance of genuine symbolic operation. 9 Next: a Tuscan Trattato dell’alcibra amuchabile, a compound in three parts from c. 1365. In the third part the request to divide 100 first by a “quantity” and then by the “quantity” plus five. The sum of the quotients is told to be 20. So, you should first divide 100 by a cosa (“a thing”), and next by “a cosa and 5”, and join the two quotients. Similar problems (though with subtraction) are found in al- Khwa¯rizmı¯’s and Abu¯Ka¯mil’s algebras and again in Fibonacci’s Liber abbaci. 10 Al-Khwa¯rizmı¯ gives a purely numerical (but sensible) prescription for the initial, difficult steps obviously, what he did went beyond his technical vocabulary. Abu¯Ka¯mil uses a geometric diagram; and Fibonacci applies proportions. 11 The fourteenth-century treatise, however, comes close to what we would do: Now I want to show you something similar so that you may well understand this addition, and I shall say thus: I want to join 24 divided by 4 to 24 divided by 6, and you see that it should make 10. Therefore 24 write 24 divided by 4 as a fractions, from which comes /4. And posit similarly 24 divided by 6 as a fractions. Now multiply in cross, that is, 6 times 24, it makes 144; and now multiply 4 times 24, which is above the 6, it makes 96, join it with 144, it makes 240. Now multiply that which is below the strokes, that is, 4 times 6, it makes 25. Now you should divide 240 by 240, from which 10 should result. [...] 12 Then follows the application: Now let us return to our problem. Let us take 100 divided by a cosa and 100 divided by a cosa and 5 more, and therefore posit these two divisions as if they were fractions, as you see hereby. And now multiply in cross as we did before, that is, 100 times a cosa, which makes 100 cose. And now multiply along the other diagonal, that is, 100 times a cosa and five, it makes 100 cose and 500 in number; join with 100 cose, you get 200 cose and 500 in number. Now multiply that which is below the strokes, one with the other, it makes a censo and 5 cose more. Now multiply the results, that is, 20 against a censo and 5 cose more, it makes 20 censi and 100 things more, which quantity equals 200 things and 500 in number. ... 13 This text, we see, is purely rhetorical – everything is written out in full words. On the other hand, the solution proceeds by means of formal operations, in a way we are accustomed to in symbolic algebra; rhetorically expressed polynomials are dealt with as if they were the numbers of normal fraction arithmetic. We may say that the lexicon of the text is rhetorical, but its syntax (in part) symbolic. 14 Characteristic for this syntax is the phenomenon of embedding: the insertion of something possibly complex in the place of something simpler. We know the phenomenon from ordinary language making use of subordinate clauses: Igonow→ I go when it pleases me. 15 In contemporary symbolic mathematics indefinitely nested embedding is possible – for instance, in continued fractions, or in the graphically simpler expression x x x x x 1+ /2 (1 + /3 (1 + /4 (1 + /5 (1 + /6 (...)))) . In ordinary language, the same possibility is present, restricted only by pragmatic considerations of comprehensibility “This is the man all tattered and torn / That kissed the maiden all forlorn / That milked the cow with the crumpled horn / That tossed the dog / That worried the cat / That chased the rat / That ate the cheese / That lay in the house that Jack built”. 16 We may now turn back to Nesselmann. He ascribed to the Indian mathematicians a symbolic algebra that precedes that of Europe by many centuries. 17 An example, borrowed from Bhaskara II (b. 1115) What we would express 5x+8y+7z+90=7x+9y+6z+62 is written by Bha¯skara as a scheme yâ 5 kâ 8 nî 7 rû 90 yâ 7 kâ 9 nî 6 rû 62 while our 8x3+4x2+10y2x =4x3+0x2+12y2x appears as yâ gha 8 yâ va 4 kâ va yâ.bhâ 10 yâ gha 4 yâ va 0 kâ va yâ.bha 12 18 Datta and Singh quote David Eugene Smith for the stance that this notation is “in one respect [...] the best that has ever been suggested”, namely because it “shows at a glance the similar terms one above the other, and permits of easy transposition”. However, the Indian schemes do not permit direct multiple embedding – for instance the replacement of yâ by a polynomial. Such an operation requires the same amount of thinking in the Indian notation as in a rhetorically expressed algebra. 19 Not impossible in either case: al-Khwa¯rizmı¯’s solution of the above-mentioned problem shows that he, or somebody who inspired him, could do something of the kind; but al-Khwa¯rizmı¯ did not have the words to explain what he was doing (as he is generally fond of), free formal operations were only made possible by the fully developed symbolism of an Euler. 20 Indian schemes allow direct operations, and in this sense they clearly constitute a symbolism, as claimed by Nesselmann. However, Smith is right that this notation is the best “in one respect” only – namely within the restricted framework of problems actually dealt with by Bha¯skara. It allows operations directly at the level of symbols, but only a limited, non-expandable set of operations.
Recommended publications
  • Statistics of Random Permutations and the Cryptanalysis of Periodic Block Ciphers
    c de Gruyter 2008 J. Math. Crypt. 2 (2008), 1–20 DOI 10.1515 / JMC.2008.xxx Statistics of Random Permutations and the Cryptanalysis Of Periodic Block Ciphers Nicolas T. Courtois, Gregory V. Bard, and Shaun V. Ault Communicated by xxx Abstract. A block cipher is intended to be computationally indistinguishable from a random permu- tation of appropriate domain and range. But what are the properties of a random permutation? By the aid of exponential and ordinary generating functions, we derive a series of collolaries of interest to the cryptographic community. These follow from the Strong Cycle Structure Theorem of permu- tations, and are useful in rendering rigorous two attacks on Keeloq, a block cipher in wide-spread use. These attacks formerly had heuristic approximations of their probability of success. Moreover, we delineate an attack against the (roughly) millionth-fold iteration of a random per- mutation. In particular, we create a distinguishing attack, whereby the iteration of a cipher a number of times equal to a particularly chosen highly-composite number is breakable, but merely one fewer round is considerably more secure. We then extend this to a key-recovery attack in a “Triple-DES” style construction, but using AES-256 and iterating the middle cipher (roughly) a million-fold. It is hoped that these results will showcase the utility of exponential and ordinary generating functions and will encourage their use in cryptanalytic research. Keywords. Generating Functions, EGF, OGF, Random Permutations, Cycle Structure, Cryptanaly- sis, Iterations of Permutations, Analytic Combinatorics, Keeloq. AMS classification. 05A15, 94A60, 20B35, 11T71. 1 Introduction The technique of using a function of a variable to count objects of various sizes, using the properties of multiplication and addition of series as an aid, is accredited to Pierre- Simon Laplace [12].
    [Show full text]
  • Enciclopedia Matematica a Claselor De Numere Întregi
    THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS vol. I. NUMBER THEORY Marius Coman INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt. We quote from the introduction to the Smarandache’work “On new functions in number theory”, Moldova State University, Kishinev, 1999: “The performances in current mathematics, as the future discoveries, have, of course, their beginning in the oldest and the closest of philosophy branch of nathematics, the number theory. Mathematicians of all times have been, they still are, and they will be drawn to the beaty and variety of specific problems of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as Gauss said, the number theory is shining with its light and attractions, fascinating and facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”.
    [Show full text]
  • 1.6 Exponents and the Order of Operations
    1.6 EXPONENTS AND THE ORDER OF OPERATIONS Writing Whole Numbers and Variables in Exponent Form Student Learning Objectives Recall that in the multiplication problem 3 # 3 # 3 # 3 # 3 = 243 the number 3 is called a factor. We can write the repeated multiplication 3 # 3 # 3 # 3 # 3 using a shorter nota- After studying this section, you will tion, 35, because there are five factors of 3 in the repeated multiplication. We say be able to: 5 5 that 3 is written in exponent form. 3 is read “three to the fifth power.” Write whole numbers and variables in exponent form. Evaluate numerical and EXPONENT FORM algebraic expressions in The small number 5 is called an exponent. Whole number exponents, except exponent form. zero, tell us how many factors are in the repeated multiplication. The number Use symbols and key words 3 is called the base. The base is the number that is multiplied. for expressing exponents. Follow the order of operations. 3 # 3 # 3 # 3 # 3 = 35 The exponent is 5. 3 appears as a factor 5 times. The base is 3. We do not multiply the base 3 by the exponent 5. The 5 just tells us how many 3’s are in the repeated multiplication. If a whole number or variable does not have an exponent visible, the exponent is understood to be 1. 9 = 91 and x = x1 EXAMPLE 1 Write in exponent form. (a)2 # 2 # 2 # 2 # 2 # 2 (b)4 # 4 # 4 # x # x (c) 7 (d) y # y # y # 3 # 3 # 3 # 3 Solution # # # # # = 6 # # # x # x = 3 # x2 3x2 (a)2 2 2 2 2 2 2 (b) 4 4 4 4 or 4 (c)7 = 71 (d) y # y # y # 3 # 3 # 3 # 3 = y3 # 34, or 34y3 Note, it is standard to write the number before the variable in a term.
    [Show full text]
  • Multiplicative Series, Modular Forms, and Mandelbrot Polynomials
    MULTIPLICATIVE SERIES, MODULAR FORMS, AND MANDELBROT POLYNOMIALS MICHAEL LARSEN n Abstract. We say a power series Pn∞=0 anq is multiplicative if the sequence 1,a2/a1,...,an/a1,... is so. In this paper, we consider mul- tiplicative power series f such that f 2 is also multiplicative. We find a number of examples for which f is a rational function or a theta series and prove that the complete set of solutions is the locus of a (proba- bly reducible) affine variety over C. The precise determination of this variety turns out to be a finite computational problem, but it seems to be beyond the reach of current computer algebra systems. The proof of the theorem depends on a bound on the logarithmic capacity of the Mandelbrot set. 1. Introduction Let rk(n) denote the number of representations of n as a sum of k squares. It is classical that r1(n)/2, r2(n)/4, r4(n)/8, and r8(n)/16 are multiplicative functions of n; the first trivially, the second thanks to Fermat, and the third and fourth thanks to Jacobi [Ja, 42,44]. From the standpoint of generating functions, this can be interpreted§§ as the statement that the theta series ϑZ(q) and its square, fourth power, and eighth power, all have multiplicative coefficients (after suitable normalization). As a starting point, we prove the converse: Theorem 1.1. If f(q) C[[q]], f(q)2, f(q)4, and f(q)8 are all multiplica- tive, then f(q)= cϑ ( q∈). Z ± This is an immediate consequence of the following more difficult result: arXiv:1908.09974v2 [math.NT] 29 Oct 2019 Theorem 1.2.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences
    Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences Editor’s Note This book arose out of a collection of papers written by Amarnath Murthy. The papers deal with mathematical ideas derived from the work of Florentin Smarandache, a man who seems to have no end of ideas. Most of the papers were published in Smarandache Notions Journal and there was a great deal of overlap. My intent in transforming the papers into a coherent book was to remove the duplications, organize the material based on topic and clean up some of the most obvious errors. However, I made no attempt to verify every statement, so the mathematical work is almost exclusively that of Murthy. I would also like to thank Tyler Brogla, who created the image that appears on the front cover. Charles Ashbacher Smarandache Repeatable Reciprocal Partition of Unity {2, 3, 10, 15} 1/2 + 1/3 + 1/10 + 1/15 = 1 Amarnath Murthy / Charles Ashbacher AMARNATH MURTHY S.E.(E&T) WELL LOGGING SERVICES OIL AND NATURAL GAS CORPORATION LTD CHANDKHEDA AHMEDABAD GUJARAT- 380005 INDIA CHARLES ASHBACHER MOUNT MERCY COLLEGE 1330 ELMHURST DRIVE NE CEDAR RAPIDS, IOWA 42402 USA GENERALIZED PARTITIONS AND SOME NEW IDEAS ON NUMBER THEORY AND SMARANDACHE SEQUENCES Hexis Phoenix 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/search/basic Peer Reviewers: 1) Eng.
    [Show full text]
  • Algebra Examples Powers and Logarithms
    An excerpt from Algebra Examples Powers and Logarithms ALGEBRA EXAMPLES POWERS AND LOGARITHMS Seong R. KIM An excerpt from Algebra Examples Powers and Logarithms An excerpt from Algebra Examples Powers and Logarithms Copyright © 2011 by Seong Ryeol Kim. All rights reserved. An excerpt from Algebra Examples Powers and Logarithms An excerpt from Algebra Examples Powers and Logarithms Dear students: Students need the best teacher, so you need examples, because examples are the best teacher. All the examples here are fully worked, and explain how the basic and essential tools in math are made, together with what they are, how they work, and how to work with them. Such tools include numbers, formulas, identities, equations, laws, etc. Examples here begin with easy ones, of course. Covering every meter and yard properly, we can cover thousands of miles and kilometers. And it is particularly the case in math. Of those examples therefore, some might even look too easy for you. It’s not that easy though, to come up with those examples. Anyways, the bigger and the taller the tree, the deeper and the stronger the root. Doing math, we work with ideas and run ideas, because every thing in math is an idea. A number is an idea, for instance, and the same is true for a line or circle, too. And putting ideas together, we build another, which becomes the base or an element of another, and each is connected. And that’s the way your math grows. So you get to build a circuit, and sometimes, need to fill the gap or repair the circuit so that you get the sense of it.
    [Show full text]
  • The Math Encyclopedia of Smarandache Type Notions [Vol. I
    Vol. I. NUMBER THEORY MARIUS COMAN THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS Vol. I. NUMBER THEORY Educational Publishing 2013 Copyright 2013 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599732527 ISBN: 978-1-59973-252-7 2 INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt.
    [Show full text]
  • Computer Science
    Computer Science Course for Computational Sciences and Engineering at D-MATH of ETH Zurich Felix Friedrich, Malte Schwerhoff AS 2018 1 Welcome to the Course Informatik for CSE at the MAVT departement of ETH Zürich. Place and time: Monday 08:15 - 10:00, CHN C 14. Pause 9:00 - 9:15, slight shift possible. Course web page http://lec.inf.ethz.ch/math/informatik_cse 2 Team chef assistant Francois Serre back office Lucca Hirschi assistants Manuel Kaufmann Robin Worreby Roger Barton Sebastian Balzer lecturers Dr. Felix Friedrich / Dr. Malte Schwerhoff 3 Procedure Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat V Ü V Ü Issuance Preliminary Discussion Submission Discussion Exercises availabe at lectures. Preliminary discussion in the following recitation session Solution of the exercise until the day before the next recitation session. Dicussion of the exercise in the next recitation session. 4 Exercises The solution of the weekly exercises is thus voluntary but stronly recommended. 5 No lacking resources! For the exercises we use an online development environment that requires only a browser, internet connection and your ETH login. If you do not have access to a computer: there are a a lot of computers publicly accessible at ETH. 6 Online Tutorial For a smooth course entry we provide an online C++ tutorial Goal: leveling of the different programming skills. Written mini test for your self assessment in the first recitation session. 7 Exams The exam (in examination period 2019) will cover Lectures content (lectures, handouts) Exercise content (exercise sessions, exercises). Written exam that most probably takes place at a computer (for the CSE students).
    [Show full text]
  • Math Is Cool” Masters – 2019-20 #Sponsor #Date High School Mental Math Contest
    Use global search and replace to change the following variables. --- Done by Test Writer --- Year: #year → 2019-20 Grade: #grade → 9th-10th Check to make sure it has the proper grade or ‘High School’ as appropriate Champs: #champs → Championships or Masters For the individual test, delete the test and answer sheet not being used. --- Done by Site Coordinator --- Date: #date → October 20, 2019 “Official” date may be done by Test Writer Sponsor: #sponsor → Sponsor SoSoBank or to blank “Math is Cool” Masters – 2019-20 #sponsor #date High School Mental Math Contest Follow along as your proctor reads these instructions to you. Your Mental Math score sheet is on the back. GENERAL INSTRUCTIONS applying to all tests: . Good sportsmanship is expected throughout the competition by all involved, both competitors and observers. Display of poor sportsmanship may result in disqualification. Calculators or any other aids may not be used on any portion of this contest. Unless stated otherwise, all rational, non-integer answers need to be expressed as reduced common fractions except in case of problems dealing with money. In the case of problems requiring dollar answers, answer as a decimal rounded to the nearest hundredth (ie, to the nearest cent). All radicals must be simplified and all denominators must be rationalized. Units are not necessary as part of your answer unless it is a problem that deals with time and in that case, a.m. or p.m. is required. However, if you choose to use units, they must be correct. Leave all answers in terms of π where applicable. Do not round any answers unless stated otherwise.
    [Show full text]
  • The Higher Arithmetic: an Introduction to the Theory of Numbers, Eighth
    This page intentionally left blank Now into its eighth edition and with additional material on primality testing, written by J. H. Davenport, The Higher Arithmetic introduces concepts and theorems in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. A companion website (www.cambridge.org/davenport) provides more details of the latest advances and sample code for important algorithms. Reviews of earlier editions: ‘...the well-known and charming introduction to number theory ... can be recommended both for independent study and as a reference text for a general mathematical audience.’ European Maths Society Journal ‘Although this book is not written as a textbook but rather as a work for the general reader, it could certainly be used as a textbook for an undergraduate course in number theory and, in the reviewer’s opinion, is far superior for this purpose to any other book in English.’ Bulletin of the American Mathematical Society THE HIGHER ARITHMETIC AN INTRODUCTION TO THE THEORY OF NUMBERS Eighth edition H. Davenport M.A., SC.D., F.R.S. late Rouse Ball Professor of Mathematics in the University of Cambridge and Fellow of Trinity College Editing and additional material by James H. Davenport CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521722360 © The estate of H.
    [Show full text]
  • Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences
    Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences Editor’s Note This book arose out of a collection of papers written by Amarnath Murthy. The papers deal with mathematical ideas derived from the work of Florentin Smarandache, a man who seems to have no end of ideas. Most of the papers were published in Smarandache Notions Journal and there was a great deal of overlap. My intent in transforming the papers into a coherent book was to remove the duplications, organize the material based on topic and clean up some of the most obvious errors. However, I made no attempt to verify every statement, so the mathematical work is almost exclusively that of Murthy. I would also like to thank Tyler Brogla, who created the image that appears on the front cover. Charles Ashbacher Smarandache Repeatable Reciprocal Partition of Unity {2, 3, 10, 15} 1/2 + 1/3 + 1/10 + 1/15 = 1 Amarnath Murthy / Charles Ashbacher AMARNATH MURTHY S.E.(E&T) WELL LOGGING SERVICES OIL AND NATURAL GAS CORPORATION LTD CHANDKHEDA AHMEDABAD GUJARAT- 380005 INDIA CHARLES ASHBACHER MOUNT MERCY COLLEGE 1330 ELMHURST DRIVE NE CEDAR RAPIDS, IOWA 42402 USA GENERALIZED PARTITIONS AND SOME NEW IDEAS ON NUMBER THEORY AND SMARANDACHE SEQUENCES Hexis Phoenix 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/search/basic Peer Reviewers: 1) Eng.
    [Show full text]