Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences Editor’s Note This book arose out of a collection of papers written by Amarnath Murthy. The papers deal with mathematical ideas derived from the work of Florentin Smarandache, a man who seems to have no end of ideas. Most of the papers were published in Smarandache Notions Journal and there was a great deal of overlap. My intent in transforming the papers into a coherent book was to remove the duplications, organize the material based on topic and clean up some of the most obvious errors. However, I made no attempt to verify every statement, so the mathematical work is almost exclusively that of Murthy. I would also like to thank Tyler Brogla, who created the image that appears on the front cover. Charles Ashbacher Smarandache Repeatable Reciprocal Partition of Unity {2, 3, 10, 15} 1/2 + 1/3 + 1/10 + 1/15 = 1 Amarnath Murthy / Charles Ashbacher AMARNATH MURTHY S.E.(E&T) WELL LOGGING SERVICES OIL AND NATURAL GAS CORPORATION LTD CHANDKHEDA AHMEDABAD GUJARAT- 380005 INDIA CHARLES ASHBACHER MOUNT MERCY COLLEGE 1330 ELMHURST DRIVE NE CEDAR RAPIDS, IOWA 42402 USA GENERALIZED PARTITIONS AND SOME NEW IDEAS ON NUMBER THEORY AND SMARANDACHE SEQUENCES Hexis Phoenix 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/search/basic Peer Reviewers: 1) Eng. Marian Popescu, Str. Spaniei, Bl. O8, Sc. 1, Ap. 14, Craiova, Jud. Dolj, Romania. 2) Dr. Sukanto Bhattacharya, Department of Business Administration, Alaska Pacific University, U.S.A. 3) Dr. M. Khoshnevisan, School of Accounting and Finance, Griffith University, Gold Coast, Queensland 9726, Australia. Copyright 2005 by Hexis., Amarnath Murthy and Charles Ashbacher Many books can be downloaded from the following E-Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm Front cover image © Tyler Brogla and Charles Ashbacher ISBN: 1-931233-34-9 Standard Address Number: 297-5092 Printed in the United States of America 2 Editor’s Note This book arose out of a collection of papers written by Amarnath Murthy. The papers deal with mathematical ideas derived from the work of Florentin Smarandache, a man who seems to have no end of ideas. Most of the papers were published in Smarandache Notions Journal and there was a great deal of overlap. My intent in transforming the papers into a coherent book was to remove the duplications, organize the material based on topic and clean up some of the most obvious errors. However, I made no attempt to verify every statement, so the mathematical work is almost exclusively that of Murthy. I would also like to thank Tyler Brogla, who created the image that appears on the front cover. Charles Ashbacher 3 Table of Contents Editor’s Note ………………….. …………………… 3 Table of Contents …………………. …………………… 4 Chapter 1 Smarandache ………………. 11 Partition Functions 1.1 Smarandache ………………. 11 Partition Sets, Sequences and Functions 1.2 A Program to ………………. 16 Determine the Number of Smarandache Distinct Reciprocal Partitions of Unity of a Given Length 1.3 A Note On Maohua ………………. 18 Le’s Proof of Murthy’s Conjecture On Reciprocal Partition Theory 1.4 Generalization of ………………. 19 Partition Functions, Introduction of the Smarandache Partition Function 1.5 Open Problems and ………………. 28 Conjectures On the Factor/Reciprocal Partition Theory 1.6 A General Result on ………………. 30 the Smarandache Star Function 1.7 More Results and ………………. 40 Applications of the Generalized Smarandache Star Function 1.8 Properties of the ……………….. 47 Smarandache Star Triangle 1.9 Smarandache Factor ……………….. 50 4 Partitions Of A Typical Canonical Form 1.10 Length/Extent of ……………….. 55 Smarandache Factor Partitions 1.11 More Ideas On ………………… 58 Smarandache Factor Partitions 1.12 A Note On the ………………… 61 Smarandache Divisor Sequences 1.13 An Algorithm for ………………… 62 Listing the Smarandache Factor Partitions 1.14 A Program For ………………… 64 Determining the Number of SFPs 1.15 Chapter References ………………… 70 Chapter 2 Smarandache ………………… 72 Sequences 2.1 On the Largest Balu ………………… 72 Number and Some SFP Equations 2.2 Smarandache Pascal ………………… 75 Derived Sequences 2.3 Depascalization of ………………… 81 Smarandache Pascal Derived Sequences and Backward Extended Fibonacci Sequence 2.4 Proof the the ………………… 83 Depascalization Theorem 2.5 Smarandache ………………… 86 Friendly Numbers and A Few More Sequences 2.6 Some New ………………… 89 Smarandache Sequences, Functions and Partitions 5 2.7 Smarandache ………………… 94 Reverse Auto Correlated Sequences and Some Fibonacci Derived Smarandache Sequences 2.8 Smarandache Star ………………… 98 (Stirling) Derived Sequences 2.9 Smarandache ………………… 100 Strictly Staircase Sequence 2.10 The Sum of the ………………… 101 Reciprocals of the Smarandache Multiplicative Sequence 2.11 Decomposition of ………………… 103 the Divisors of A Natural Number Into Pairwise Co- Prime Sets 2.12 On the Divisors of ………………… 106 the Smarandache Unary Sequence 2.13 Smarandache Dual ………………… 108 Symmetric Functions and Corresponding Numbers of the Type of Stirling Numbers of the First Kind 2.14 On the Infinitude of ………………… 110 the Smarandache Additive Square Sequence 2.15 On the Infinitude of ………………… 111 the Smarandache Multiplicative Square Sequence 2.16 Another ………………… 113 Classification of the Ocean of 6 Smarandache Sequences 2.17 Pouring a Few ………………… 114 Drops in the Ocean of Smarandache Sequences and Series 2.18 Smarandache …………………. 118 Pythagoras Additive Square Sequence 2.19 The Number of …………………. 120 Elements the Smarandache Multiplicative Square Sequence and the Smarandache Additive Square Sequence Have in Common 2.20 Smarandache ………………… 121 Patterned Perfect Cube Sequences 2.21 The Smarandache ………………… 122 Additive Cube Sequence is Infinite 2.22 More Examples and ………………… 123 Results On the Infinitude of Certain Smarandache Sequences 2.23 Smarandache ………………… 124 Symmetric (Palindromic) Perfect Power Sequences 2.24 Some Propositions ………………… 126 On the Smarandache n2n Sequence 2.25 The Smarandache ………………… 128 Fermat Additive Cube Sequence 2.26 The Smarandache ………………… 130 nn2 Sequence Contains No Perfect 7 Squares 2.27 Primes in the ………………… 132 Smarandache nnm Sequence 2.28 Some Ideas On the ………………….. 133 Smarandache nkn Sequence 2.29 Some Notions On ………………….. 134 Least Common Multiples 2.30 An Application of ………………….. 137 the Smarandache LCM Sequence and the Largest Number Divisible by All the Integers Not Exceeding Its rth Root 2.31 The Number of ………………….. 138 Primes In the Smarandache Multiple Sequence 2.32 More On the ………………….. 139 Smarandache Square and Higher Power Bases 2.33 Smarandache Fourth ………………….. 140 and Higher Patterned/Additive Perfect Power Sequences 2.34 The Smarandache ………………….. 142 Multiplicative Cubic Sequence and More Ideas on Digit Sums 2.35 Smarandache Prime ………………….. 143 Generator Sequence 2.36 Chapter References 145 Chapter 3 Miscellaneous …………………. 147 Topics 3.1 Exploring Some …………………. 147 New Ideas On Smarandache Type Sets, Functions and Sequences 8 3.2 Fabricating Perfect ………………….. 155 Squares With a Given Valid Digit Sum 3.3 Fabricating Perfect …………………… 157 Cubes With a Given Valid Digit Sum 3.4 Smarandache …………………… 161 Perfect Powers With Given Valid Digit Sum 3.5 Numbers That Are a …………………… 164 Multiple of the Product of Their Digits and Related Ideas 3.6 The Largest and ………………….. 166 Smallest mth Power Whose Digit Sum/Product Is It’s mth Root 3.7 A Conjecture on …………………. 168 d(N), the Divisor Function Itself As A Divisor With Required Justification 3.8 Smarandache …………………. 171 Fitorial and Supplementary Fitorial Functions 3.9 Some More …………………. 174 Conjectures On Primes and Divisors 3.10 Smarandache 176 Reciprocal Function and An Elementary Inequality 3.11 Smarandache …………………. 178 Maximum Reciprocal Representation Function 3.12 Smarandache …………………. 179 Determinant Sequence 9 3.13 Expansion of xn in …………………. 182 Smarandache Terms of Permutations 3.14 Miscellaneous …………………. 187 Results and Theorems on Smarandache Terms and Factor Partitions 3.15 Smarandache- ………………… 192 Murthy’s Figures of Periodic Symmetry of Rotation Specific to an Angle 3.16 Smarandache Route …………………. 198 Sequences 3.17 Smarandache …………………. 200 Geometrical Partitions and Sequences 3.18 Smarandache Lucky …………………. 207 Methods in Algebra, Trigonometry and Calculus 3.19 Chapter References …………………. 210 Index 212 10 Chapter 1 Smarandache Partition Functions Section 1 Smarandache Partition Sets, Sequences and Functions Unit fractions are fractions where the numerator is 1 and the denominator is a natural number. Our first point of interest is in determining all sets of unit fractions of a certain size where the sum of the elements in the set is 1. Definition: For n > 0, the Smarandache Repeatable Reciprocal partition of unity for n (SRRPS(n)) is the set of all sets of n natural numbers such that the sum of the reciprocals is 1. More formally, n SRRPS(n) = { x | x =(a1, a2, . ,an) where Σ 1/ar = 1 }. r=1 fRP(n) = order of the set SRRPS(n). For example, SRRPS(1) = { (1) }, fRP(1) = 1. SRRPS(2) = { (2,2)}, fRP(2) = 1. (1/2 + 1/2 = 1). SRRPS(3) = { (3,3,3), (2,3,6), (2,4,4)}, fRP(3) = 3. SRRPS(4) = { (4,4,4,4), (2,4,6,12),(2,3,7,42),(2,4,5,20),(2,6,6,6),(2,4,8,8), (2,3,12,12),(4,4,3,6),(3,3,6,6),(2,3,10,15),(2,3,9,18)}, fRP(4) = 14. Definition: The Smarandache Repeatable Reciprocal Partition of Unity Sequence is the sequence of numbers SRRPS(1), SRRPS(2), SRRPS(3), SRRPS(4), SRRPS(5), . Definition: For n > 0, the Smarandache Distinct Reciprocal Partition of Unity Set (SDRPS(n)) is SRRPS(n) where the elements of each set of size n must be unique. More formally, n SRRPS(n) = { x | x =(a1, a2, . ,an) where Σ 1/ar = 1 and ai = aj <=> i = j }.
Recommended publications
  • 9N1.5 Determine the Square Root of Positive Rational Numbers That Are Perfect Squares
    9N1.5 Determine the square root of positive rational numbers that are perfect squares. Square Roots and Perfect Squares The square root of a given number is a value that when multiplied by itself results in the given number. For ​ ​ example, the square root of 9 is 3 because 3 × 3 = 9 . Example Use a diagram to determine the square root of 121. Solution Step 1 Draw a square with an area of 121 units. Step 2 Count the number of units along one side of the square. √121 = 11 units √121 = 11 units The square root of 121 is 11. This can also be written as √121 = 11. A number that has a whole number as its square root is called a perfect square. Perfect squares have the ​ ​ unique characteristic of having an odd number of factors. Example Given the numbers 81, 24, 102, 144, identify the perfect squares by ordering their factors from smallest to largest. Solution The square root of each perfect square is bolded. Factors of 81: 1, 3, 9, 27, 81 ​ ​ Since there are an odd number of factors, 81 is a perfect square. Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24 Since there are an even number of factors, 24 is not a perfect square. Factors of 102: 1, 2, 3, 6, 17, 34, 51, 102 Since there are an even number of factors, 102 is not a perfect square. Factors of 144: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 ​ ​ Since there are an odd number of factors, 144 is a perfect square.
    [Show full text]
  • Grade 7/8 Math Circles the Scale of Numbers Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • On Sufficient Conditions for the Existence of Twin Values in Sieves
    On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius .
    [Show full text]
  • Representing Square Numbers Copyright © 2009 Nelson Education Ltd
    Representing Square 1.1 Numbers Student book page 4 You will need Use materials to represent square numbers. • counters A. Calculate the number of counters in this square array. ϭ • a calculator number of number of number of counters counters in counters in in a row a column the array 25 is called a square number because you can arrange 25 counters into a 5-by-5 square. B. Use counters and the grid below to make square arrays. Complete the table. Number of counters in: Each row or column Square array 525 4 9 4 1 Is the number of counters in each square array a square number? How do you know? 8 Lesson 1.1: Representing Square Numbers Copyright © 2009 Nelson Education Ltd. NNEL-MATANSWER-08-0702-001-L01.inddEL-MATANSWER-08-0702-001-L01.indd 8 99/15/08/15/08 55:06:27:06:27 PPMM C. What is the area of the shaded square on the grid? Area ϭ s ϫ s s units ϫ units square units s When you multiply a whole number by itself, the result is a square number. Is 6 a whole number? So, is 36 a square number? D. Determine whether 49 is a square number. Sketch a square with a side length of 7 units. Area ϭ units ϫ units square units Is 49 the product of a whole number multiplied by itself? So, is 49 a square number? The “square” of a number is that number times itself. For example, the square of 8 is 8 ϫ 8 ϭ .
    [Show full text]
  • What Can Be Said About the Number 13 Beyond the Fact That It Is a Prime Number? *
    CROATICA CHEMICA ACTA CCACAA 77 (3) 447¿456 (2004) ISSN-0011-1643 CCA-2946 Essay What Can Be Said about the Number 13 beyond the Fact that It Is a Prime Number? * Lionello Pogliani,a Milan Randi},b and Nenad Trinajsti}c,** aDipartimento di Chimica, Universitá della Calabria, 879030 Rende (CS), Italy bDepartment of Mathematics and Computer Science, Drake University, Des Moines, Iowa 50311, USA cThe Rugjer Bo{kovi} Institute, P.O. Box 180, HR-10002 Zagreb, Croatia RECEIVED DECEMBER 2, 2003; REVISED MARCH 8, 2004; ACCEPTED MARCH 9, 2004 Key words The story of the number 13 that goes back to ancient Egypt is told. The mathematical signifi- art cance of 13 is briefly reviewed and 13 is discussed in various contexts, with special reference chemistry to the belief of many that this number is a rather unlucky number. Contrary examples are also history presented. Regarding everything, the number 13 appears to be a number that leaves no one in- literature different. number theory poetry science INTRODUCTION – religious [3 in the Christian faith, 5 in Islam]; – dramatic [3 and 9 by William Shakespeare (1564– »Numero pondere et mensura Deus omnia condidit.« 1616) in Macbeth]; Isaac Newton in 1722 [ 1 – literary 3 and 10 by Graham Greene (1904–1991) (Rozsondai and Rozsondai) in the titles of his successful short novels The The concept of number is one of the oldest and most Third Man and The Tenth Man; 5 and 9 by Dorothy useful concepts in the history of human race.2–5 People Leigh Sayers (1893–1957) in the titles of her nov- have been aware of the number concept from the very els The Five Red Herrings and The Nine Taylors.
    [Show full text]
  • Figurate Numbers
    Figurate Numbers by George Jelliss June 2008 with additions November 2008 Visualisation of Numbers The visual representation of the number of elements in a set by an array of small counters or other standard tally marks is still seen in the symbols on dominoes or playing cards, and in Roman numerals. The word "calculus" originally meant a small pebble used to calculate. Bear with me while we begin with a few elementary observations. Any number, n greater than 1, can be represented by a linear arrangement of n counters. The cases of 1 or 0 counters can be regarded as trivial or degenerate linear arrangements. The counters that make up a number m can alternatively be grouped in pairs instead of ones, and we find there are two cases, m = 2.n or 2.n + 1 (where the dot denotes multiplication). Numbers of these two forms are of course known as even and odd respectively. An even number is the sum of two equal numbers, n+n = 2.n. An odd number is the sum of two successive numbers 2.n + 1 = n + (n+1). The even and odd numbers alternate. Figure 1. Representation of numbers by rows of counters, and of even and odd numbers by various, mainly symmetric, formations. The right-angled (L-shaped) formation of the odd numbers is known as a gnomon. These do not of course exhaust the possibilities. 1 2 3 4 5 6 7 8 9 n 2 4 6 8 10 12 14 2.n 1 3 5 7 9 11 13 15 2.n + 1 Triples, Quadruples and Other Forms Generalising the divison into even and odd numbers, the counters making up a number can of course also be grouped in threes or fours or indeed any nonzero number k.
    [Show full text]
  • Collection of Problems on Smarandache Notions", by Charles Ashbacher
    Y ---~ y (p + 1,5(p + 1)) p p + 1 = Ex-b:u.s "1:T::n.i."'I7ex-lI!d.~ Pre._ •Va.:U. ~996 Collect;io:n. of Problern..s O:n. Srn..a.ra:n.dache N"o"i;io:n.s Charles Ashbacher Decisio:n.rn..a.rk 200 2:n.d A:v-e. SE Cedar Rapids, IA. 52401 U"SA Erhu.s U":n.i"V"ersity Press Vall 1996 © Cha.rles Ashbacher & Erhu.s U":n.i"V"ersity Press The graph on the first cover belongs to: M. Popescu, P. Popescu, V. Seleacu, "About the behaviour of some new functions in the number theory" (to appear this year) . "Collection of Problems on Smarandache Notions", by Charles Ashbacher Copyright 1996 by Charles Ashbacher and Erhus University Press ISBN 1-879585-50-2 Standard Address Number 297-5092 Printed in the United States of America Preface The previous volume in this series, An Introduction to the Smarandache Function, also by Erhus Cniversity Press, dealt almost exclusively with some "basic" consequences of the Smarandache function. In this one, the universe of discourse has been expanded to include a great many other things A Smarandache notion is an element of an ill-defined set, sometimes being almost an accident oflabeling. However, that takes nothing away from the interest and excitement that can be generated by exploring the consequences of such a problem It is a well-known cliche among writers that the best novels are those where the author does not know what is going to happen until that point in the story is actually reached.
    [Show full text]
  • Statistics of Random Permutations and the Cryptanalysis of Periodic Block Ciphers
    c de Gruyter 2008 J. Math. Crypt. 2 (2008), 1–20 DOI 10.1515 / JMC.2008.xxx Statistics of Random Permutations and the Cryptanalysis Of Periodic Block Ciphers Nicolas T. Courtois, Gregory V. Bard, and Shaun V. Ault Communicated by xxx Abstract. A block cipher is intended to be computationally indistinguishable from a random permu- tation of appropriate domain and range. But what are the properties of a random permutation? By the aid of exponential and ordinary generating functions, we derive a series of collolaries of interest to the cryptographic community. These follow from the Strong Cycle Structure Theorem of permu- tations, and are useful in rendering rigorous two attacks on Keeloq, a block cipher in wide-spread use. These attacks formerly had heuristic approximations of their probability of success. Moreover, we delineate an attack against the (roughly) millionth-fold iteration of a random per- mutation. In particular, we create a distinguishing attack, whereby the iteration of a cipher a number of times equal to a particularly chosen highly-composite number is breakable, but merely one fewer round is considerably more secure. We then extend this to a key-recovery attack in a “Triple-DES” style construction, but using AES-256 and iterating the middle cipher (roughly) a million-fold. It is hoped that these results will showcase the utility of exponential and ordinary generating functions and will encourage their use in cryptanalytic research. Keywords. Generating Functions, EGF, OGF, Random Permutations, Cycle Structure, Cryptanaly- sis, Iterations of Permutations, Analytic Combinatorics, Keeloq. AMS classification. 05A15, 94A60, 20B35, 11T71. 1 Introduction The technique of using a function of a variable to count objects of various sizes, using the properties of multiplication and addition of series as an aid, is accredited to Pierre- Simon Laplace [12].
    [Show full text]
  • Enciclopedia Matematica a Claselor De Numere Întregi
    THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS vol. I. NUMBER THEORY Marius Coman INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt. We quote from the introduction to the Smarandache’work “On new functions in number theory”, Moldova State University, Kishinev, 1999: “The performances in current mathematics, as the future discoveries, have, of course, their beginning in the oldest and the closest of philosophy branch of nathematics, the number theory. Mathematicians of all times have been, they still are, and they will be drawn to the beaty and variety of specific problems of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as Gauss said, the number theory is shining with its light and attractions, fascinating and facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”.
    [Show full text]
  • POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti
    POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs.
    [Show full text]
  • A Set of Sequences in Number Theory
    A SET OF SEQUENCES IN NUMBER THEORY by Florentin Smarandache University of New Mexico Gallup, NM 87301, USA Abstract: New sequences are introduced in number theory, and for each one a general question: how many primes each sequence has. Keywords: sequence, symmetry, consecutive, prime, representation of numbers. 1991 MSC: 11A67 Introduction. 74 new integer sequences are defined below, followed by references and some open questions. 1. Consecutive sequence: 1,12,123,1234,12345,123456,1234567,12345678,123456789, 12345678910,1234567891011,123456789101112, 12345678910111213,... How many primes are there among these numbers? In a general form, the Consecutive Sequence is considered in an arbitrary numeration base B. Reference: a) Student Conference, University of Craiova, Department of Mathematics, April 1979, "Some problems in number theory" by Florentin Smarandache. 2. Circular sequence: 1,12,21,123,231,312,1234,2341,3412,4123,12345,23451,34512,45123,51234, | | | | | | | | | --- --------- ----------------- --------------------------- 1 2 3 4 5 123456,234561,345612,456123,561234,612345,1234567,2345671,3456712,... | | | --------------------------------------- ---------------------- ... 6 7 How many primes are there among these numbers? 3. Symmetric sequence: 1,11,121,1221,12321,123321,1234321,12344321,123454321, 1234554321,12345654321,123456654321,1234567654321, 12345677654321,123456787654321,1234567887654321, 12345678987654321,123456789987654321,12345678910987654321, 1234567891010987654321,123456789101110987654321, 12345678910111110987654321,... How many primes are there among these numbers? In a general form, the Symmetric Sequence is considered in an arbitrary numeration base B. References: a) Arizona State University, Hayden Library, "The Florentin Smarandache papers" special collection, Tempe, AZ 85287- 1006, USA. b) Student Conference, University of Craiova, Department of Mathematics, April 1979, "Some problems in number theory" by Florentin Smarandache. 4. Deconstructive sequence: 1,23,456,7891,23456,789123,4567891,23456789,123456789,1234567891, ..
    [Show full text]