Reading the Data Visualization 2003 2003 All Data from Wikipedia

Total Page:16

File Type:pdf, Size:1020Kb

Reading the Data Visualization 2003 2003 All Data from Wikipedia 1610, Galileo Galilei gazed up through his telescope 12 more moons locked in slow rotation with the largest This data visualization displays every currently As of 2018, five IN of the moons are in the direction of Jupiter. In that moment he likely planet in our solar system. These newly found satellites known moon of Jupiter, each featuring the year of considered lost became the first person to see a moon other than our own, form part of a diverse family, many of which share little discovery, discoverer and a representation of scale. It’s thought that several of the Moons discovered as of 2018 The Voyager probes, launched larger moons could feature as light that had left the vicinity of the gas giant around commonality other than their gravitational anchor. Their Additionally, on the right are some additional in 1977, discovered three of subsurface oceans, leading to half an hour earlier crashed into his pupils and revealed orbital shapes range from near perfect circles to highly insights about the moons. Finally, while all Jupiter’s large inner moons some exciting possibilities One of the newly discovered Ganymede, A German astronomer called The number of about the existence of life there! four dotted silhouettes. These Galilean moons, one of eccentric and inclined. Their scales vary hugely, from the information is correct as of 2018, scientists are moons has an odd prograde Jupiter’s largest Simon Marius independently moons that are orbit which sees its path cross moon, is actually discovered the four Galilean which is even larger than the planet Mercury, became the size of planets to just a kilometer across. Some may have finding new wonders in our solar system every day; so prograde several other retrograde moons. 8% larger than the moons at the same time as opening entries into a collection that is still increasing been asteroids captured by Jupiter's powerful gravitational who knows how many new Jovian moons are out there The number of This means a collision is very planet Mercury, The most moons Galileo. While he didn’t receive The approx. % of the total mass likely, although scientists making it the 9th have been found the title of discoverer, he is today. In fact in 2018, 407 years after the Italian polymath pull, while others were likely a by-product of the very right now, held in endless revolutions, just waiting moons that are retrograde in orbit around Jupiter that comes predict it could take another largest object in by a team led by responsible for their names, made his discovery, scientists confirmed the existence of formation of the planet itself. for eyes to meet them for the first time? from the four Galilean moons billion years to actually happen our solar system Scott Sheppard which are still used today 2001 2002 Reading the data visualization 2003 2003 All data from Wikipedia. KALYKE PASITHEE S . 2002 KALLICHORE h l S/2003 J 5 2003 * Unconfirmed member of Representing each moon Regular satellites Orbital direction e a S p p e t S . h l . a r d S . h l a h l the group e a e p t e a p t p a r d e p t 0 1 2003 Discovery year Amalthea group Prograde KALE p a r d e p a r d e S/2003 J 9 20 3 S/2017 J 6 is a fringe member S . S . of Pasiphae 2001 h l h l 2003 Galilean moons e a e a Retrograde p t p t 2 S/2003 J 3 Moon name p a r d e p a r d e CARPO Themisto was first discovered S S . in 1975, but was then lost and h l Irregular satellites h l e a ISONOE S/2003 J 10 e a p t p p e t p a r d e Discoverer a r d rediscovered by Sheppard et al. S . 001 S . h l 2 2003 h l Himalia group e a e a 016 in 2000 p p e t 2003 p p e t 2 2003 a r d a r d 2003 Pasiphae group S/2003 J 3 2002 PRAXIDIKE S/2003 J 12* 2003 S/2016 J 2 Created by James Round. HERSE S . S/2003 J 19 h l Ananke group S jamesrounddesign.com e a S . p t . h l G p e h l G . a r d e a . e a l l p l l p t a a ORTHOSIE S p e t S/2003 J 16 a a p a e Carme group d t h l . a r d d t r d m a n e e a m a n e 0 S p t 0 20 3 . p a r d e G . 20 3 h l l 975 e a l a 1 2003 p t d a 2010 Not part of a p a r d e m a n e t known family MNEME S/2003 J 18 EUKELADE S/2010 J 1 2 G . G . THEMISTO 2001 l l 1908 l l S a a a a J 1 - 4 km . d t d t . h l m a n e m a n e 2010 a l e a c a p t 2003 o b t 5 - 10 km p a r d e s o n e K 001 o r 2 w e a e m 11 - 50 km IOCASTE 2003 S/2010 J 2 l & R o 51 - 100 km 2001 PASIPHAE S/2003 J 2* 2011 S . 101 - 1000 km h l S . MEGACLITE e a S/2003 J 4 Ve e t h l p t i l l e p a 2003 p a e 2003 ERINOME p e t r d S S/2011 J 1 a r d . N 2002 h l 2016 S e a S O . p t . h l S . M e te p a e h l T e a h l l ot r d e a p t e p a p t p a r d e KORE p a r d e t S/2003 J 15 p a r d e P HERMIPPE S/2016 J 1 A R S . S . h l h l S T S . e a e a . h l 003 p t p t 004 h l e a 2 p a r d e p a r d e 2 e a O p t 974 p t p a e 1 p a e F 001 r d r d 017 2 2 G R HEGEMONE S/2003 J 23 O 1 2003 0 20 7 U CHALDENE S . 19 4 S . S/2017 J 2 h l h l P a 938 a e 1 e S . p t LEDA p t S . h l p a r d e p a r d e h l e a e a p p t HELIKE S/2017 J 3 p p t a r d e 2002 2011 a r d e S S . h l h l e a e a p t p t p a r d e HIMALIA LYSITHEA p a r d e 1938 EURYDOME Ko w al S/2011 J 2 S . S . h l h l 2017 e a e a p t p t p a r d e p a r d e 2001 2017 N i n CARME c h o ls o S/2017 J 5 Perrin e 1610 1610 003 017 2 2 S . HARPALYKE S/2017 J 7 h l e a 905 p t 1 S p e S . a r d h l h l e a CYLLENE S/2017 J 1 e a N p p e t 017 p p e t i c h o ls o n a r d 2 a r d S . S . h l h l e a e a p p e t EUROPA GANYMEDE p p e t a r d ELARA S/2017 J 4 a r d 2002 2017 S . h l 2002 e a 2017 000 p t 2 p a r d e ARCHE 2017 S/2017 J 8 P EUPORIE e rri n e S/2017 J 9 S . S . h l h l a Galilei Galilei a e 1 S e p t S . p t p a r d e h l CALLIRRHOE S/2017 J 6 h l p a r d e e a 1892 e a p p t t S p p a d e . a r d e r 1979 h l 1610 1610 e a p t p e S i a r d p a t t h r, S c o 2001 1914 2002 AMALTHEA METIS 2002 2003 2002 CALLISTO IO AITNE 2001 2018 TAYGETE EUANTHE THELXINOE S . AUTONOE Sy tt SINOPE h l n n o S e a S . 1979 . p t h l B a rd h l p e a S rna e a S a r d e . DIA 1979 S/2018 J 1 h l . p p e t h l p p e t a a r d e a a r d e p t S p a e p t . S . r d p a r d e h l h l e a e a p p e t p p e t a r d Galilei Galilei a r d N i c h o ls o n 1951 ADRASTEA THEBE 2002 2003 2002 ANANKE Jew it t THYONE AOEDE Sy n no tt SPONDE S .
Recommended publications
  • Lab 7: Gravity and Jupiter's Moons
    Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets.
    [Show full text]
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
    Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured.
    [Show full text]
  • The Effect of Jupiter\'S Mass Growth on Satellite Capture
    A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet.
    [Show full text]
  • CALCEPH - Fortran 77/90/95 Language Release 3.5.0
    CALCEPH - Fortran 77/90/95 language Release 3.5.0 M. Gastineau, J. Laskar, A. Fienga, H. Manche Aug 19, 2021 CONTENTS 1 Introduction 3 2 Installation 5 2.1 Unix-like system (Linux, Mac OS X, BSD, Cygwin, ...)........................5 2.1.1 Quick instructions........................................5 2.1.2 Detailed instructions......................................5 2.2 Windows system.............................................7 2.2.1 Using the Microsoft Visual C++ compiler...........................7 2.2.2 Using the MinGW.......................................9 3 Library interface 11 3.1 A simple example program........................................ 11 3.2 Headers and Libraries.......................................... 11 3.2.1 Compilation on a Unix-like system............................... 12 3.2.2 Compilation on a Windows system............................... 12 3.3 Types................................................... 12 3.4 Constants................................................. 12 4 Multiple file access functions 15 4.1 Thread notes............................................... 15 4.2 Usage................................................... 15 4.3 Functions................................................. 15 4.3.1 calceph_open.......................................... 15 4.3.2 f90calceph_open_array..................................... 16 4.3.3 f90calceph_prefetch....................................... 17 4.3.4 f90calceph_isthreadsafe..................................... 17 4.3.5 f90calceph_compute.....................................
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Pausanias' Description of Greece
    BONN'S CLASSICAL LIBRARY. PAUSANIAS' DESCRIPTION OF GREECE. PAUSANIAS' TRANSLATED INTO ENGLISH \VITTI NOTES AXD IXDEX BY ARTHUR RICHARD SHILLETO, M.A., Soiiii'tinie Scholar of Trinity L'olltge, Cambridge. VOLUME IT. " ni <le Fnusnnias cst un homme (jui ne mnnquo ni de bon sens inoins a st-s tlioux." hnniie t'oi. inais i}iii rn>it ou au voudrait croire ( 'HAMTAiiNT. : ftEOROE BELL AND SONS. YOUK STIIKKT. COVKNT (iAKDKX. 188t). CHISWICK PRESS \ C. WHITTINGHAM AND CO., TOOKS COURT, CHANCEKV LANE. fA LC >. iV \Q V.2- CONTEXTS. PAGE Book VII. ACHAIA 1 VIII. ARCADIA .61 IX. BtEOTIA 151 -'19 X. PHOCIS . ERRATA. " " " Volume I. Page 8, line 37, for Atte read Attes." As vii. 17. 2<i. (Catullus' Aft is.) ' " Page 150, line '22, for Auxesias" read Anxesia." A.-> ii. 32. " " Page 165, lines 12, 17, 24, for Philhammon read " Philanimon.'' " " '' Page 191, line 4, for Tamagra read Tanagra." " " Pa ire 215, linu 35, for Ye now enter" read Enter ye now." ' " li I'aijf -J27, line 5, for the Little Iliad read The Little Iliad.'- " " " Page ^S9, line 18, for the Babylonians read Babylon.'' " 7 ' Volume II. Page 61, last line, for earth' read Earth." " Page 1)5, line 9, tor "Can-lira'" read Camirus." ' ; " " v 1'age 1 69, line 1 , for and read for. line 2, for "other kinds of flutes "read "other thites.'' ;< " " Page 201, line 9. for Lacenian read Laeonian." " " " line 10, for Chilon read Cliilo." As iii. 1H. Pago 264, " " ' Page 2G8, Note, for I iad read Iliad." PAUSANIAS. BOOK VII. ACIIAIA.
    [Show full text]
  • Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D
    47th Lunar and Planetary Science Conference (2016) 2676.pdf Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D. Nesvorny3, 1Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia [email protected], 2SETI Institute, Mountain View, California, USA, 3Southwest Research Institute, Department of Space Studies, Boulder, CO. USA. Introduction: Surrounding Jupiter there are multi- Results: ple satellites, 67 known to-date. The most recent classi- fication system [1,2], based on orbital characteristics, uses the largest member of the group as the name and example. The closest group to Jupiter is the prograde Amalthea group, 4 small satellites embedded in a ring system. Moving outwards there are the famous Galilean moons, Io, Europa, Ganymede and Callisto, whose mass is similar to terrestrial planets. The final and largest group, is that of the outer Irregular satel- lites. Those irregulars that show a prograde orbit are closest to Jupiter and have previously been classified into three families [2], the Themisto, Carpo and Hi- malia groups. The remainder of the irregular satellites show a retrograde orbit, counter to Jupiter's rotation. Based on similarities in semi-major axis (a), inclination (i) and eccentricity (e) these satellites have been grouped into families [1,2]. In order outward from Jupiter they are: Ananke family (a 2.13x107 km ; i 148.9o; e 0.24); Carme family (a 2.34x107 km ; i 164.9o; e 0.25) and the Pasiphae family (a 2:36x107 km ; i 151.4o; e 0.41). There are some irregular satellites, recently discovered in 2003 [3], 2010 [4] and 2011[5], that have yet to be named or officially classified.
    [Show full text]
  • Eclipses of the Inner Satellites of Jupiter Observed in 2015? E
    A&A 591, A42 (2016) Astronomy DOI: 10.1051/0004-6361/201628246 & c ESO 2016 Astrophysics Eclipses of the inner satellites of Jupiter observed in 2015? E. Saquet1; 2, N. Emelyanov3; 2, F. Colas2, J.-E. Arlot2, V. Robert1; 2, B. Christophe4, and O. Dechambre4 1 Institut Polytechnique des Sciences Avancées IPSA, 11–15 rue Maurice Grandcoing, 94200 Ivry-sur-Seine, France e-mail: [email protected], [email protected] 2 IMCCE, Observatoire de Paris, PSL Research University, CNRS-UMR 8028, Sorbonne Universités, UPMC, Univ. Lille 1, 77 Av. Denfert-Rochereau, 75014 Paris, France 3 M. V. Lomonosov Moscow State University – Sternberg astronomical institute, 13 Universitetskij prospect, 119992 Moscow, Russia 4 Saint-Sulpice Observatory, Club Eclipse, Thierry Midavaine, 102 rue de Vaugirard, 75006 Paris, France Received 3 February 2016 / Accepted 18 April 2016 ABSTRACT Aims. During the 2014–2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. Methods. We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites.
    [Show full text]
  • PDS4 Context List
    Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto
    [Show full text]
  • CALCEPH - Octave/Matlab Language Release 3.5.0
    CALCEPH - Octave/Matlab language Release 3.5.0 M. Gastineau, J. Laskar, A. Fienga, H. Manche Aug 19, 2021 CONTENTS 1 Introduction 3 2 Installation 5 2.1 Unix-like system (Linux, Mac OS X, BSD, Cygwin, ...)........................5 2.2 Windows system.............................................6 2.2.1 Using the Microsoft Visual C++ compiler...........................6 2.2.2 Using the MinGW.......................................7 3 Library interface 9 3.1 A simple example program........................................9 3.2 Package..................................................9 3.3 Types................................................... 10 3.4 Constants................................................. 10 4 Multiple file access functions 13 4.1 Thread notes............................................... 13 4.2 Usage................................................... 13 4.3 Functions................................................. 13 4.3.1 CalcephBin.open........................................ 13 4.3.2 CalcephBin.open........................................ 14 4.3.3 CalcephBin.prefetch...................................... 15 4.3.4 CalcephBin.isthreadsafe.................................... 15 4.3.5 CalcephBin.compute...................................... 15 4.3.6 CalcephBin.compute_unit................................... 17 4.3.7 CalcephBin.orient_unit..................................... 18 4.3.8 CalcephBin.rotangmom_unit.................................. 20 4.3.9 CalcephBin.compute_order................................... 21 4.3.10
    [Show full text]