Taurine: a Critical Nutrient for Future Fish Feeds

Total Page:16

File Type:pdf, Size:1020Kb

Taurine: a Critical Nutrient for Future Fish Feeds ÔØ ÅÒÙ×Ö ÔØ Taurine: A critical nutrient for future fish feeds Guillaume P. Salze, D. Allen Davis PII: S0044-8486(14)00629-2 DOI: doi: 10.1016/j.aquaculture.2014.12.006 Reference: AQUA 631469 To appear in: Aquaculture Received date: 22 August 2014 Revised date: 3 December 2014 Accepted date: 4 December 2014 Please cite this article as: Salze, Guillaume P., Davis, D. Allen, Taurine: A critical nutrient for future fish feeds, Aquaculture (2014), doi: 10.1016/j.aquaculture.2014.12.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Taurine: A critical nutrient for future fish feeds Guillaume P. Salze and D. Allen Davis School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849-5419, USA Abstract Taurine is a sulfonic acid found in high concentrations in animal tissues. In recent years, a number of studies have demonstrated the essentiality of dietary taurine for many commercially relevant species, especially marine teleosts. Consequently, the removal of taurine-rich dietary ingredients such as fishmeal may create a deficiency, of which symptoms include reduced growth and survival, increased susceptibility to diseases, and impaired larval development. These symptoms emphasize the systemic role of taurine in the animal’s physiology and provide few clues as to the underlying mechanisms of taurine function. In fact, a myriad of roles have been attributed to taurine in mammals, ranging from bile salt conjugation to membrane stabilization, osmoregulation, anti-oxidation, immunomodulation, calcium-signaling, and neuroprotection. This review describes the current knowledge of taurine physiology and metabolism in fish and requirement levels in relevant species, and highlights possible parallels with mammalian taurine metabolism. In addition, the effects of ingredient processing and feed ACCEPTED MANUSCRIPT manufacturing on taurine bioavailability are discussed. Finally, regulatory aspects are brought to the forefront: although the supplementation of taurine will be necessary to further reduce the use of ingredients such as fishmeal, taurine is not currently approved by the FDA in the USA for fish feeds. Obtaining approval in the United States to utilize taurine in fish feeds can improve the environmental and economic sustainability of fish feeds nation-wide. Keywords: Fishmeal replacement; taurine; regulations; requirement; biosynthetic pathway 1 ACCEPTED MANUSCRIPT 1 Introduction Taurine (2-aminoethanesulfonic acid, CAS 107-35-7) is an organic acid which was first described from ox bile (Tiedemann and Gmelin, 1827). Taurine is a simple molecule, containing an acidic sulfonate group, a basic amino group, and two carbons in between. It is therefore an amino acid, albeit a β-amino acid: the amino group is bound to the carbon adjacent to the one holding the acidic group (i.e., the second carbon, β). This is in contrast to α-amino acids where the amino group is bound to the same carbon holding the acidic group (i.e., first carbon, α). There is also no tRNA encoding for taurine and its sulfonate group replaces the carboxyl group necessary for the formation of a peptide bond. Consequently, taurine cannot be part of translated peptide chains, although there are naturally occurring, taurine-containing peptides (Bittner et al., 2005; Lähdesmäki, 1987). The amine group allows for quantitation by using the same methodology used for other amino acids (typically High Performance Liquid Chromatography, HPCL) and analysis results are often reported together. Taurine exists naturally in animals including mammals, birds, fish, and aquatic invertebrates such as oysters and mussels. Although plants contain less than 1% of the taurine levels found in animals, the most taurine-rich plants are algae, followed by fungi and other terrestrial plants (Kataoka and Ohnishi, 1986). High taurine levels naturally occur in seafood and meat, and many vertebrates can synthesize taurine. On the other hand, certain animals, includingACCEPTED species containing high MANUSCRIPTlevels of taurine, cannot metabolically synthesize taurine and require dietary sources for physiological processes. Taurine is the most abundant free amino acid in animal tissues, accounting for 25% of the free amino acid pool in liver, 50% in kidney, 53% in muscle and 19% in brain (Brosnan and Brosnan, 2006). In mammals, taurine is involved in a particularly wide variety of functions including constituent of bile, osmoregulation, cell membrane stabilization, anti- oxidation, and calcium signaling required in vertebrates for normal cardiac, skeletal muscle, nervous, and retinal function (Bouckenooghe et al., 2006; Huxtable, 1992). 2 ACCEPTED MANUSCRIPT Approximately 5,000-6,000 tons of taurine (synthetic and purified from natural sources) were produced in the world in 1993, and were divided at 50% for pet food manufacturing, and 50% for pharmaceutical applications (Tully, 2000). An updated global production is difficult to estimate and would require a full market analysis. Three Chinese manufacturers each advertise a production of 15- 96,000 metric tons per year (source: Alibaba.com), although these numbers cannot be verified. However, there is no doubt that today’s production is considerably higher than it was in 1993. Currently, global taurine production is destined to three main uses: cat food, infant formulas and the beverage industry for “energy” drinks. According to manufacturers, taurine products are crystalline powders more than 98.5% pure and conform to standards of the United States, Japan, and Europe. To our knowledge, all products are based on the 98.5% purity level, hence there is no food or feed grade taurine. Taurine can be produced either by extraction and purification from taurine-rich sources (Takahashi, 1986) or by chemical synthesis. The majority of taurine is produced by chemical synthesis because extraction is less efficient, more costly, and initial materials (e.g., bovine or ovine bile) are not available in sufficient amounts to meet the global market demand (Chen, 2014). To our knowledge, taurine can be chemically synthesized by five chemical processes: 1) amination of the isethionic acid resulting from the reaction of ethylene oxide and sodium bisulfite, 2) combination of aziridine and sulfurous acid, 3) reaction of methionine, vitamin E,ACCEPTED and cysteine, 4) formation MANUSCRIPTof salt from monoethanolamine and sulfuric acid, followed by reduction with sodium sulfite or sodium carbonate or 5) sulfonation of ethylene chloride by sodium bisulfite prior to reaction with anhydrous ammonia or ammonium cabonate. The fourth method (monoethanolamine-based) results in 98.5% pure taurine, thus matching the purity level of commercially available taurine. This suggests that this method may be the most used for taurine production, although this is difficult to ascertain without a global survey of the industry. 3 ACCEPTED MANUSCRIPT Novel methods also include the genetic modification of prokaryote or eukaryote cells to increase taurine biosynthesis (Turano et al., 2012). However taurine produced by such method is not currently available commercially. 2 Regulation and policies Regulations of taurine use in people, pet, or animal feeds varies widely depending on the country under consideration. In the European Union the Observed Safe Level (OSL) is estimated to be 100 mg taurine per kg body weight per day for people, and synthetic taurine is considered efficacious in cats, dogs, and carnivorous fish diets (EFSA, 2012). In China taurine is authorized for fish feed in all species, and listed as a nutrition enhancer for children (GB-2760-2011 Food Safety National Standards for the Usage of Food Additives) and maximum permissible values are given for some human food items such as jelly, milk, and energy drinks (GB14880-2012 Food Safety National Standards for the Usage of Nutrition Enrichment). In Japan taurine is listed among “substances designated as having no potential to cause damage to human health” (Japanese Ministry of Health, Labor and Welfare). It is also designated as a feed additive which can be used in fish and other livestock, although quantities are not regulated (Japanese Ministry of Agriculture,ACCEPTED Forestry and Fisheries, MANUSCRIPT Food and Agricultural Materials Inspection Center). Finally, in Australia, feed supplements whose purpose is to ingredients supplying a nutrient required by the livestock do not require registration (Australian Pesticide and Veterinary Medicines Authority, APVMA). As such, the use of the use of taurine is allowed without registration, for as long as the dose is limited to meeting the nutritional requirement. If included beyond this point, it is considered a veterinary chemical and thus requires registration to the APVMA. In the USA however, taurine is not listed by the Food and Drug Administration (FDA) as a food substance generally recognized as safe for human consumption and is considered a drug or additive (Code for Federal Regulations: 21 CFR 104.2, 4 ACCEPTED MANUSCRIPT 21 CFR 184, and 21 CFR 186). Taurine use is permitted as a nutritional supplement in chicken
Recommended publications
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • The Effect of High-Dose Thiotepa, Alone Or in Combination with Other
    Bone Marrow Transplantation (2007) 40, 891–896 & 2007 Nature Publishing Group All rights reserved 0268-3369/07 $30.00 www.nature.com/bmt ORIGINAL ARTICLE The effect of high-dose thiotepa, alone or in combination with other chemotherapeutic agents, on a murine B-cell leukemia model simulating autologous stem cell transplantation A Abdul-Hai, L Weiss, D Ergas, IB Resnick, S Slavin and MY Shapira Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah–Hebrew University Medical Center, Jerusalem, Israel The use of thiotepa (TH) is increasing, especially in stem Introduction cell transplantation, mainly due to its safety and blood– brain barrier penetration. We evaluated the use of TH in a Thiotepa (TH, triethylene thiophosphoramide), an ethylene murine model simulating autologous stem cell transplan- amide, developed by Lederle Laboratories in 1952, tation, with or without additional agents. Between 1 and possesses mechlorethamine-like alkylating activity and 11 days following inoculation of BALB/c mice with 105– has been used clinically for over 35 years.1 It is of particular 108 B-cell leukemia (BCL1) cells (simulating pre-trans- use in breast cancer, mainly as second-line treatment.2 plant leukemia loads), each group received an ‘induction- TH has been given intrathecally for carcinomatous like’ irradiation and/or cytotoxic regimen. Animals were meningitis, and intravesically for bladder carcinoma.3,4 either followed without treatment, or an adoptive transfer Mild-to-moderate activity was observed in several solid (AT) was performed to untreated BALB/c mice. Admi- tumors and hematological malignancies.1,5 There has nistered alone without AT, high-dose TH did not change been, however, a sustained interest in defining clinical roles the time to appearance of leukemia.
    [Show full text]
  • SUMMARY of PARTICULARLY HAZARDOUS SUBSTANCES (By
    SUMMARY OF PARTICULARLY HAZARDOUS SUBSTANCES (by alpha) Key: SC -- Select Carcinogens RT -- Reproductive Toxins AT -- Acute Toxins SA -- Readily Absorbed Through the Skin DHS -- Chemicals of Interest Revised: 11/2012 ________________________________________________________ ___________ _ _ _ _ _ _ _ _ _ _ _ ||| | | | CHEMICAL NAME CAS # |SC|RT| AT | SA |DHS| ________________________________________________________ ___________ | _ | _ | _ | _ | __ | | | | | | | 2,4,5-T 000093-76-5 | | x | | x | | ABRIN 001393-62-0 | | | x | | | ACETALDEHYDE 000075-07-0 | x | | | | | ACETAMIDE 000060-35-5 | x | | | | | ACETOHYDROXAMIC ACID 000546-88-3 ||x| | x | | ACETONE CYANOHYDRIN, STABILIZED 000075-86-5 | | | x | | x | ACETYLAMINOFLUORENE,2- 000053-96-3 | x | | | | | ACID MIST, STRONG INORGANIC 000000-00-0 | x | | | | | ACROLEIN 000107-02-8 | | x | x | x | | ACRYLAMIDE 000079-06-1 | x | x | | x | | ACRYLONITRILE 000107-13-1 | x | x | x | x | | ACTINOMYCIN D 000050-76-0 ||x| | x | | ADIPONITRILE 000111-69-3 | | | x | | | ADRIAMYCIN 023214-92-8 | x | | | | | AFLATOXIN B1 001162-65-8 | x | | | | | AFLATOXIN M1 006795-23-9 | x | | | | | AFLATOXINS 001402-68-2 | x | | x | | | ALL-TRANS RETINOIC ACID 000302-79-4 | | x | | x | | ALPRAZOMAN 028981-97-7 | | x | | x | | ALUMINUM PHOSPHIDE 020859-73-8 | | | x | | x | AMANTADINE HYDROCHLORIDE 000665-66-7 | | x | | x | | AMINO-2,4-DIBROMOANTHRAQUINONE 000081-49-2 | x | | | | | AMINO-2-METHYLANTHRAQUINONE, 1- 000082-28-0 | x | | | | | AMINO-3,4-DIMETHYL-3h-IMIDAZO(4,5f)QUINOLINE,2- 077094-11-2 | x | | | | | AMINO-3,8-DIMETHYL-3H-IMIDAZO(4,5-f)QUINOXALINE,
    [Show full text]
  • Homeland Security List
    List Sorted Alphabetically ACG = Any Commercial Grade. If you have any questions, please contact EHS @ 898-5126. Minimum Concentration Chemical Of Interest Synonym CAS (percent) Amount on Hand (pounds) 1- Pentene 109-67-1 1 1,1-Dimethylhydrazine [Hydrazine, 1, 1-dimethyl-] 57-14-7 1 1,3-Bis(2-chloroethylthio)-n-propane 63905-10-2 any quantity 1,3-Butadiene 106-99-0 1 1,3-Pentadiene 504-60-9 1 1,4-Bis(2-chloroethylthio)-n-butane 142868-93-7 any quantity 1,5-Bis(2-chloroethylthio)-n-pentane 142868-94-8 any quantity 1-Butene 106-98-9 1 1-Chloropropylene [1-Propene, 1-chloro-] 590-21-6 1 1H-Tetrazole 288-94-8 ACG 2,2-Dimethylpropane [Propane, 2,2-dimethyl-] 463-82-1 1 2-Butene 107-01-7 1 2-Butene-cis 590-18-1 1 2-Butene-trans [2-Butene, (E)] 624-64-6 1 2-Chloroethylchloro-methylsulfide 2625-76-5 any quantity 2-Chloropropylene [1-Propene, 2-chloro-] 557-98-2 1 2-Methyl-1-butene 563-46-2 1 2-Methylpropene [1-Propene, 2-methyl-] 115-11-7 1 2-Pentene, (E)- 646-04-8 1 2-Pentene, (Z)- 627-20-3 1 3-Methyl-1-butene 563-45-1 1 5-Nitrobenzotriazol 2338-12-7 ACG Acetaldehyde 75-07-0 1 Acetylene [Ethyne] 74-86-2 1 Acrolein [2-Propenal] or Acrylaldehyde 107-02-8 1 Acrylonitrile [2-Propenenitrile] 107-13-1 1 Acrylyl chloride [2-Propenoyl chloride] 814-68-6 1 Allyl alcohol [2-Propen-1-ol] 107-18-6 1 Allylamine [2-Propen-1-amine] 107-11-9 1 Aluminum (powder) 7429-90-5 ACG Ammonia (anhydrous) 7664-41-7 1 Ammonia (conc.
    [Show full text]
  • Synthetic Approaches to Heterocyclic Bicyclo[2.1.0]Pentanes
    SYNTHETIC APPROACHES TO HETEROCYCLIC BICYCLO[2.1.0]PENTANES Rabah N. Alsulami A THESIS Submitted to the Graduate College of Bowling Green State University in partial fulfillment of The requirements for the degree of MASTER OF SCIENCE August 2011 Committee: Thomas H. Kinstle (Advisor) Marshall Wilson Alexander N. Tarnovsky ABSTRACT Thomas H. Kinstle, Advisor Bicyclic systems such as bicyclo[2.1.0]pentanes and 5-oxabicyclo[2.1.0]pentanes are known to display a variety of unique chemical properties associated with their high strain energy. To the best of our knowledge, there were no reports regarding synthesis and investigation of 5- azabicyclo[2.1.0]pentanes. Therefore, the initial goal of this research was synthesis of 5-azabicyclo[2.1.0]pentane and investigation of its chemical properties. The cycloaddition reaction of azides (58, 59, 61) to olefins (54, 55) with further elimination of nitrogen was chosen as a synthetic method in order to obtain the compounds of interest. Starting olefins (3,3-dimethyl-1-cyclobutene-1-carboxylic acid (54) and methyl 3,3-dimethyl-1-cyclobutene-1-carboxylate (55) and azides phenyl azide (58), p- toluenesulfonyl azide (59), and picryl azide (61) were successfully synthesized and characterized by NMR spectroscopy and GCMS spectrometry. The addition reaction between azides and olefins was performed under various conditions, such as different solvents and temperature; however, according to NMR spectroscopy and GCMS spectrometry, olefins (54, 55) do not undergo cycloaddition reaction with azides (58, 59, 61). In order to investigate that behavior, cycloaddition reactions of more reactive olefins (66, 68) with azides (58, 59, 61) were performed under a variety of conditions.
    [Show full text]
  • Compendium Method TO-15
    EPA/625/R-96/010b Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS) Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 January 1999 Method TO-15 Acknowledgements This Method was prepared for publication in the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), which was prepared under Contract No. 68-C3-0315, WA No. 3-10, by Midwest Research Institute (MRI), as a subcontractor to Eastern Research Group, Inc. (ERG), and under the sponsorship of the U.S. Environmental Protection Agency (EPA). Justice A. Manning, John O. Burckle, and Scott Hedges, Center for Environmental Research Information (CERI), and Frank F. McElroy, National Exposure Research Laboratory (NERL), all in the EPA Office of Research and Development, were responsible for overseeing the preparation of this method. Additional support was provided by other members of the Compendia Workgroup, which include: • John O. Burckle, EPA, ORD, Cincinnati, OH • James L. Cheney, Corps of Engineers, Omaha, NB • Michael Davis, U.S. EPA, Region 7, KC, KS • Joseph B. Elkins Jr., U.S. EPA, OAQPS, RTP, NC • Robert G. Lewis, U.S. EPA, NERL, RTP, NC • Justice A. Manning, U.S. EPA, ORD, Cincinnati, OH • William A. McClenny, U.S. EPA, NERL, RTP, NC • Frank F. McElroy, U.S. EPA, NERL, RTP, NC • Heidi Schultz, ERG, Lexington, MA • William T.
    [Show full text]
  • Anionic Polymerisation of Aziridines
    MAX-PLANCK-INSTITUT FÜR POLYMERFORSCHUNG JOHANNES GUTENBERG‐UNIVERSITÄT MAINZ Anionic Polymerisation of Aziridines Diplomarbeit zur Erlangung des Grades eines Diplom‐Chemikers am Institut für Organische Chemie des Fachbereiches Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz vorgelegt von Laura Thomi geboren in Frankfurt am Main Mainz 2013 Diese Arbeit wurde in der Zeit von November 2012 bis Juli 2013 am Institut für Organische Chemie der Johannes Gutenberg‐Universität Mainz und am Max-Planck-Institut für Polymerforschung in Mainz unter der Betreuung von Herrn Prof. Dr. Holger Frey und Frau Prof. Dr. Katharina Landfester durchgeführt. für meine Eltern “We live on an island surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance.” - John Archibald Wheeler Danksagung Mein Dank gilt Herrn Prof. Dr. Holger Frey und Frau Prof. Dr. Katharina Landfester für die Bereitstellung des Themas und die ausgezeichneten Arbeitsbedingungen. Zudem danke ich Herrn Dr. Frederik Wurm für die freundliche Aufnahme in seine Gruppe und die hervorragende Betreuung der Arbeit. Bei allen Mitgliedern der Arbeitsgruppe Frey bedanke ich mich für die wunderbare Arbeitsatmosphäre und die Unterstützung bei dieser Arbeit. Herrn Christian Moers und Herrn Jan Seiwert danke ich, dass sie mir die anionische Polymerisation von Styrol und Ethylenoxid näher gebracht haben. Bei Frau Anna Hesse und Herrn Christian Moers bedanke ich mich für das Korrekturlesen dieser Arbeit. Frau Katja Weber danke ich für die Bereitstellung des 2-Methyl-N-tosylaziridins. Für die GPC Messungen danke ich Frau Christine Rosenauer und insbesondere Frau Monika Schmelzer. Bei Frau Dr. Elena Berger-Nicoletti möchte ich mich für zahlreiche MALDI Messungen bedanken.
    [Show full text]
  • Synthesis and Biological Activity of N-Acyl Aziridines a Dissertation
    Synthesis and Biological Activity of N-Acyl Aziridines A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Greggory M. Wells April 2016 © 2016 Greggory M. Wells. All Rights Reserved. 2 This dissertation titled Synthesis and Biological Activity of N-Acyl Aziridines by GREGGORY M. WELLS has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by Stephen C. Bergmeier Professor of Chemistry and Biochemistry Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT WELLS, GREGGORY M., Ph.D., April 2016, Chemistry Synthesis and Biological Activity of N-Acyl Aziridines Director of Dissertation: Stephen C. Bergmeier The development of new antimicrobial drugs is essential as the human population continues to build resistance to current treatments. Peptidomimetic compounds, those synthesized to mimic the behavior of naturally occurring biological proteins, have demonstrated promise in this area. Using bicyclic aziridine ring opening reactions, a library of N-acyl aziridinyl peptide isosteres has been synthesized and submitted to biological assays for cysteine protease inhibition, a common pathway to suppression of bacteria. Most of the compounds tested showed good activity against cathepsin B. This research required a novel synthetic approach to selectively generating oxazolidinones and aziridinyl ureas from fused bicyclic aziridines, which was accomplished with solvent selection, nucleophilic amine stoichiometry, and aziridine substitution. To extend the peptidic nature of these compounds, some success was achieved with acylation and amide coupling reactions. A practical approach to generating enantiomerically pure bicyclic aziridines was investigated, however the best enantioselective conditions provided only a 3 : 1 ratio.
    [Show full text]
  • Safe and Efficient Process for the Preparation of Carmustine
    (19) TZZ¥ _Z T (11) EP 3 214 075 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.09.2017 Bulletin 2017/36 C07D 233/61 (2006.01) C07C 291/00 (2006.01) (21) Application number: 17158359.4 (22) Date of filing: 28.02.2017 (84) Designated Contracting States: (71) Applicant: NerPharMa Srl AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 20014 Nerviano (MI) (IT) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventors: Designated Extension States: • TOMASI, Attilio BA ME 20147 Milan (IT) Designated Validation States: • CANDIANI, Ilaria MA MD 21052 Busto Arsizio (IT) • CORCELLA, Francesco (30) Priority: 02.03.2016 IT UB20161230 20020 Busto Garolfo (IT) • CALDARELLI, Francesco Saverio 20149 Milan (IT) (54) SAFE AND EFFICIENT PROCESS FOR THE PREPARATION OF CARMUSTINE (57) The present invention relates to a safe and effi- yield and a high purity. For these reasons, such new proc- cient process for the preparation of carmustine (1) and ess is also suitable for plant scale production. Starting to useful intermediate compounds of such process and materials comprise 2-chloroethylamine hydrochloride (5) their preparation. Such process employs safe and readily and 1,1’-carbonyldiimidazole (4) to afford 1,3-bis(2-chlo- available starting materials under mild reaction condi- roethyl)-1-urea (2), which then undergoes nitrosation to tions and allows for recovery of the product in a good give the final product. EP 3 214 075 A2 Printed by Jouve, 75001 PARIS (FR) EP 3 214 075 A2 Description [0001] The present invention relates to a process for the preparation of carmustine.
    [Show full text]
  • The Chemistry of Heterocycles Structure, Reactions, Syntheses
    The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Mohammad Jafarzadeh Faculty of Chemistry, Razi University The Chemistry of Heterocycles, (Second Edition). By Theophil Eicher and Siegfried Hauptmann, Wiley-VCH Veriag GmbH, 2003 1 24 3 Three-Membered Heterocycles 3.2 Thiirane 24 3 Three-Membered Heterocycles 3.2 Thiirane Thiiranes are also known as episulfides. As a result of the greater atomic radius of the S-atom, the three atoms form an acute-angled triangle (see Fig. 3.2). [A] Thiiranes are also known as episulfides. As a result of the greater atomic radius of the S-atom, the 3.2 Thiirane three atoms form an acute-angled triangle. Fig. 3.2 Structure of thiirane (bond lengths in pm, bond angles in degrees) The thermochemically determined strainThenthalpye thermochemicallof thiiraney determineof 83 kJd molstrai-1n isenthalplessythan of thiiranthateof ofoxirane 83 kJ mo. H is less than that of oxirane. The ionization potential amounts to 9.05TheV,e ionizatiothe dipolen potentiamomentl amountto 1.66s toD 9.0. Both5 eVvalues, the dipolaree belowmomenthoset to 1.66 D. Both values are below Thiiranes are also known aofsoxirane episulfides. The chemical. Ashiftss a resulin the NMRt thosofspectrae thof oxiranee greateare. �ThH e= chemica2r. 27atomi, �l Cshift= 18sc i .n1radiu .the NMRs spectrof ath are S ^S-atom = 2.27, Sc ,=18.1. the three atoms form an acute-angled triangle (see Fig. 3.2)Th.e properties of the thiiranes are primarily due to ring strain. In spite of the smaller strain en- [B] The properties of the thiiranes are primarilythalpydue, tothiiranringestrain is thermall.
    [Show full text]
  • Unlocking the Synthetic Potential of Aziridine and Cyclopropane-Fused Quinolin-2-Ones by Regioselective Fragmentation of Its Three-Membered Rings
    Arabian Journal of Chemistry (2020) 13, 2702–2714 King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Unlocking the synthetic potential of aziridine and cyclopropane-fused quinolin-2-ones by regioselective fragmentation of its three-membered rings Javier Diaz a, Daniel Rodenas a, Francisco-Jose Ballester a, Mateo Alajarin a, Raul-Angel Orenes b, Pilar Sanchez-Andrada a,*, Angel Vidal a,* a Departamento de Quı´mica Orga´nica, Universidad de Murcia, Facultad de Quı´mica, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain b Servicio Universitario de Instrumentacio´n Cientı´fica, Universidad de Murcia, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain Received 26 March 2018; accepted 2 July 2018 Available online 11 July 2018 KEYWORDS Abstract The cyclization of cis-2-(2-azidophenyl)-1-benzyl-3-ethoxycarbonylaziridines and trans- Aziridino[2,3-c]quinolin- 2-(2-azidophenyl)-3-nitrocyclopropane-1,1-dicarboxylates yielded the respective aziridino[2,3-c] 2-ones; quinolin-2-ones and cyclopropa[c]quinolin-2-ones. Ring-opening of the aziridine-fused species Cyclopropa[c]quinolin- under silica gel catalysis provided 3-aminoquinolin-2-ones whereas the ring-expansion of the 2-ones; cyclopropane-fused derivatives by the action of sodium hydride gave 1-benzazepin-2-ones, in both 3-aminoquinolin-2-ones; cases in a regioselective manner. A computational study using DFT methods revealed that the Benzazepin-2-ones; mechanism for the transformation of cyclopropa[c]quinolin-2-ones into 1-benzazepin-2-ones p 6 -electrocyclic ring opening; involves the initial deprotonation step of its amide function followed by two pericyclic events: a [1,5]-H shift 6p-electrocyclic ring opening and a subsequent [1,5]-H shift.
    [Show full text]
  • Recent Synthesis of Thietanes
    Recent synthesis of thietanes Jiaxi Xu Review Open Access Address: Beilstein J. Org. Chem. 2020, 16, 1357–1410. State Key Laboratory of Chemical Resource Engineering, Department doi:10.3762/bjoc.16.116 of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China Received: 29 March 2020 Accepted: 26 May 2020 Email: Published: 22 June 2020 Jiaxi Xu - [email protected] Associate Editor: B. Nay Keywords: © 2020 Xu; licensee Beilstein-Institut. cycloaddition; cyclization; ring contraction; ring expansion; thietane; License and terms: see end of document. thiotherification Abstract Thietanes are important aliphatic four-membered thiaheterocycles that are found in the pharmaceutical core and structural motifs of some biological compounds. They are also useful intermediates in organic synthesis. Various synthetic methods of thietanes have been developed, including inter- and intramolecular nucleophilic thioetherifications, photochemical [2 + 2] cycloadditions, ring expansions and contractions, nucleophilic cyclizations, and some miscellaneous methods. The recently developed methods provide some new strategies for the efficient preparation of thietanes and their derivatives. This review focuses on the synthetic methods to construct thietane backbones developed during 1966 to 2019. Review 1. Introduction Thietanes are a class of important aliphatic four-membered thia- acyclic and heterocyclic compounds [10,11]. Several synthetic heterocycles. Some simple alkyl and dialkyl thietanes
    [Show full text]