Biotic Interaction 4
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
Antibiosis of Tomato, Solanum Lycopersicum (Solanaceae) Plants to the Asopinae Predator Supputius Cincticeps (Heteroptera: Pentatomidae)
ISJ 12: 179-187, 2015 ISSN 1824-307X RESEARCH REPORT Antibiosis of tomato, Solanum lycopersicum (Solanaceae) plants to the Asopinae predator Supputius cincticeps (Heteroptera: Pentatomidae) AA de Castro1, W de S Tavares2, J Collatz3, AI de A Pereira4, JE Serrão5, JC Zanuncio6 1Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 2Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 3 Agroscope Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, 8046 Zürich, Switzerland 4Instituto Federal Goiano, Campus Urutaí, 75790-000, Urutaí, Goiás State, Brazil 5Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 6Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil Accepted July 6, 2015 Abstract Plant feeding can improve development and reproduction of the stink bug Supputius cincticeps (Heteroptera: Pentatomidae), an important biological control agent in South American agro-forestry ecosystems. However, defensive compounds of plants may negatively impact this predator. The development, reproduction and survival of S. cincticeps fed on mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae) pupae with bean (Fabaceae), cotton (Malvaceae), eucalyptus (Myrtaceae), soybean (Fabaceae), or tomato (Solanaceae) leaves were evaluated. Females and males were heavier and the number of nymphs produced per female, the oviposition period and the longevity of females of this predator were higher when fed on eucalyptus, soybean, bean, and cotton than with tomato leaves. Leaves of those plants improved biological parameters of S. cincticeps, while tomato leaves showed antibiosis with lower reproduction and survival of S. cincticeps, probably due to toxic compounds. -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. -
The Ecology of Mutualism
Annual Reviews www.annualreviews.org/aronline AngRev. Ecol. Syst. 1982.13:315--47 Copyright©1982 by Annual Reviews lnc. All rightsreserved THE ECOLOGY OF MUTUALISM Douglas 1t. Boucher Departementdes sciences biologiques, Universit~ du Quebec~ Montreal, C. P. 8888, Suet. A, Montreal, Quebec, CanadaH3C 3P8 Sam James Departmentof Ecologyand Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA48109 Kathleen H. Keeler School of Life Sciences, University of Nebraska,Lincoln, Nebraska,USA 68588 INTRODUCTION Elementaryecology texts tell us that organismsinteract in three fundamen- tal ways, generally given the namescompetition, predation, and mutualism. The third memberhas gotten short shrift (264), and even its nameis not generally agreed on. Terms that may be considered synonyms,in whole or part, are symbiosis, commensalism,cooperation, protocooperation, mutual aid, facilitation, reciprocal altruism, and entraide. Weuse the term mutual- by University of Kanas-Lawrence & Edwards on 09/26/05. For personal use only. ism, defined as "an interaction betweenspecies that is beneficial to both," Annu. Rev. Ecol. Syst. 1982.13:315-347. Downloaded from arjournals.annualreviews.org since it has both historical priority (311) and general currency. Symbiosis is "the living together of two organismsin close association," and modifiers are used to specify dependenceon the interaction (facultative or obligate) and the range of species that can take part (oligophilic or polyphilic). We make the normal apologies concerning forcing continuous variation and diverse interactions into simple dichotomousclassifications, for these and all subsequentdefinitions. Thus mutualism can be defined, in brief, as a -b/q- interaction, while competition, predation, and eommensalismare respectively -/-, -/q-, and -t-/0. There remains, however,the question of howto define "benefit to the 315 0066-4162/82/1120-0315 $02.00 Annual Reviews www.annualreviews.org/aronline 316 BOUCHER, JAMES & KEELER species" without evoking group selection. -
Microbial Interactions Lecture 2
Environmental Microbiology CLS 416 Lecture 2 Microbial interactions Sarah Alharbi Clinical laboratory department Collage of applied medical sciences King Saud University Outline • Important terms (Symbiosis,ectosymbiont.Endosymbiont, ecto/endosymbiosis • Positive interactions (mutualism, protocooperation, commensalism) • Negative interactions(predation, parasitism, amensalism,and competition) • Nutrient Cycling Interactions • The importance of understanding the principle of microbial interactions (Examples from the literature) Microbial interactions Symbiosis An association of two or more different species Ectosymbisis One organism can be located on the surface of another, as an ectosymbiont. In this case, the ectosymbiont usually is a smaller organism located on the surface of a larger organism. Endosymbiosis one organism can be located within another organism as an endosymbiont Ecto/ endosymbiosis. microorganisms live on both the inside and the outside of another organism - Examples (Ecto/ endosymbiosis) 1- Thiothrix species, a sulfur-using bacterium, which is at- ached to the surface of a mayfly larva and which itself contains a parasitic bacterium. 2- Fungi associated with plant roots (mycorrhizal fungi) often contain endosymbiotic bacteria, as well as having bacteria living on their surfaces • Symbiotic relationships can be intermittent and cyclic or permanent • Symbiotic interactions do not occur independently. Each time a microorganism interacts with other organisms and their environments, a series of feedback responses occurs in the larger biotic community that will impact other parts of ecosystems. Microbial interactions Positive interactions •Mutualism •Protocooperation •Commensalism Negative interactions • Predation • Parasitism • Amensalism • Competition Mutualism Mutualism [Latin mutuus, borrowed or reciprocal] defines the relationship in which some reciprocal benefit accrues to both partners. • Relationship with some degree of obligation • partners cannot live separately • Mutualist and host are dependent on each other 6 Examples of Mutalism 1. -
Unsettling Antibiosis: How Might Interdisciplinary Researchers Generate a Feeling for the Microbiome and to What Effect?
ARTICLE DOI: 10.1057/s41599-018-0196-3 OPEN Unsettling antibiosis: how might interdisciplinary researchers generate a feeling for the microbiome and to what effect? Beth Greenhough1, Andrew Dwyer1, Richard Grenyer1, Timothy Hodgetts2, Carmen McLeod3 & Jamie Lorimer1 ABSTRACT Decades of active public health messaging about the dangers of pathogenic microbes has led to a Western society dominated by an antibiotic worldview; however recent 1234567890():,; scientific and social interest in the microbiome suggests an emerging counter-current of more probiotic sentiments. Such stirrings are supported by cultural curiosity around the ‘hygiene hypothesis’, or the idea it is possible to be ‘too clean’ and a certain amount of microbial exposure is essential for health. These trends resonate with the ways in which scientists too have adopted a more ‘ecological’ perspective on the microbiome. Advances in sequencing technologies and decreasing costs have allowed researchers to more rapidly explore the abundance and diversity of microbial life. This paper seeks to expand on such probiotic tendencies by proposing an interdisciplinary methodology researchers might use to generate more-than-antibiotic relations between lay participants and their domestic micro- biome. The paper draws on findings from an ESRC-funded study, Good Germs, Bad Germs: Mapping microbial life in the kitchen (grant number ES/N006968/1), which sought to: (i) explore human-microbe relations in the domestic kitchen; and (ii) make scientific techniques for visualising the domestic microbiome available to non-expert publics through a form of ‘participatory metagenomics’. We examine how scientific knowledge and techniques are enroled into lay practices of making microbes sensible; how these intersect with, reinforce or disrupt previous feelings for microorganisms; and how new ways of relating with microbial others emerge. -
Plant Ecology and Biostatistics
BSCBO- 203 B.Sc. II YEAR Plant Ecology and Biostatistics DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 BSCBO-203 PLANT ECOLOGY AND BIOSTATISTICS SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Late Prof. S. C. Tewari Prof. Uma Palni Department of Botany Department of Botany HNB Garhwal University, Retired, DSB Campus, Srinagar Kumoun University, Nainital Dr. R.S. Rawal Dr. H.C. Joshi Scientist, GB Pant National Institute of Department of Environmental Science Himalayan Environment & Sustainable School of Sciences Development, Almora Uttarakhand Open University, Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Unit Written By: Unit No. 1-Dr. Pooja Juyal 1, 4 & 5 Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital 2-Dr. Harsh Bodh Paliwal 2 & 3 Asst Prof. (Senior Grade) School of Forestry & Environment SHIATS Deemed University, Naini, Allahabad 3-Dr. -
Screening of Vineyard Ecosystem Fungi for Antimicrobial Activity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 2 Antibiosis of vineyard ecosystem fungi against food-borne microorganisms 3 4 Carolina Cuevaa, M.Victoria Moreno-Arribasa*, Begoña Bartoloméa, Óscar Salazarb, 5 M.Francisca Vicentec, Gerald F. Billsc 6 7 8 a Instituto de Investigación Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás 9 Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain 10 b Genómica S.A.U (Zeltia), Alcarria 7, 28823 Madrid, Spain 11 c Fundación MEDINA, Parque Tecnológico de Ciencias de Salud, Armilla 18100, 12 Granada, Spain 13 14 15 [email protected] 16 [email protected] “*Correspondence and reprints” 17 [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 22 23 2 1 Abstract 2 Fermentation extracts from fungi isolated from vineyard ecosystems were tested for 3 antimicrobial activities against a set of test microorganisms, including five food-borne 4 pathogens (Staphylococcus aureus EP167, Acinetobacter baumannii (clinical isolated), 5 Pseudomonas aeruginosa PAO1, Escherichia coli O157:H7 (CECT 5947) and Candida 6 albicans MY1055) and two probiotic bacteria (Lactobacillus plantarum LCH17 and 7 Lactobacillus brevis LCH23). A total of 182 fungi were grown in eight different media, 8 and the fermentation extracts were screened for antimicrobial activity. A total of 71 fungi 9 produced extracts active against at least one pathogenic microorganism, but not against 10 any probiotic bacteria. The Gram-positive bacterium, Staphylococcus aureus EP167, was 11 more susceptible to antimicrobial fungi broths extracts than Gram-negative bacteria and 12 pathogenic fungi. -
Transgenerational Effects Alter Plant Defence and Resistance in Nature
doi: 10.1111/jeb.13042 Transgenerational effects alter plant defence and resistance in nature J. COLICCHIO Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA Keywords: Abstract herbivory; Trichomes, or leaf hairs, are epidermal extensions that take a variety of Mimulus; forms and perform many functions in plants, including herbivore defence. phenotypic plasticity; In this study, I document genetically determined variation, within-genera- transgenerational plasticity; tion plasticity, and a direct role of trichomes in herbivore defence for Mimu- trichomes. lus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome den- sity and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant–herbivore interac- tions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring tri- chome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. Following the hypotheses regarding within-genera- Introduction tion plasticity, if current environmental conditions are By exposing plants to a variety of environments, Clau- a good predictor of the conditions experienced by the sen, Keck and Heisey developed the common garden next generation (positive intergenerational autocorrela- experimental design to distinguish between genetically tion), then the transmission of altered developmental determined, environmentally dictated, and genetic 9 en- trajectories between generations (transgenerational vironmental effects on growth and fitness (Clausen et al., phenotypic plasticity, TPP, Fig. -
Ecology Second Edition
Ecology Second Edition N.S. Subrahmanyam A.V.S.S. Sambamurty Alpha Science International Ltd. Oxford, U.K. Contents Preface to the Second Edition vii Preface to the First Edition " ix 1. Ecology and Environment 1.1-1.20 1.1 Introduction 1.1 Branches of Ecology 1.2 Importancy of Ecology 1.2 1.2 History 1.2 1.3 Ecological Principles 1.3 Indian Ecology 1.4 1.4 Structural Concepts (Descriptive Ecology) 1.4 1.5 Functional Concepts 1.5' 1.6 Evolutionary Concepts 1.5 ° 1.7 Environmental Biotechnology 1.6 1.8 Atmosphere 1.12 2. Ecological Factors: Light and Temperature 2.1-2.28 2.1 Light 2.1 Quality of Light 2.1- Ultraviolet Light 2.2 Light in Aquatic Habitat 2.2 Effects of Light on the Plants 2.3 2.2 Transpiration 2.5 Light Absorption by Chlorophyll 2.5 Stomatal Movement 2.6 Photomorphogenesis 2.6 Phytochrome System 2.6 2.3 Phototropism 2.7 2.4 Photoperiodism 2.8 2.5 Vernalization 2.9 2.6 Bunning Hypothesis 2.10 Germination of Seeds 2.10 2.7 Measurement of Light Intensity 2.10 2.8 Light and Animals 2.11 Photoperiodism in Insects 2.11 Diapause 2.12 Seasonal Development 2.12 xii Contents 2.9 Circadian Rhythms 2.13 Behaviour Responses in Animals 2.13 2.10 Diurnation 2.14 2.11 Bioluminiscence 2.15 Types of Bioluminiscence 2.16 2.12 Temperature and Plants 2.17 2.13 Effects of Altitude 2.20 Temperature and Seed Germination 2.21 Temperature and Plant Reproduction 2.23 2.14 Thermal Constant 2.23 Thermal Stratification in Aquatic Ecosystems 2.24 2.15 Chemical Stratification 2.24 Temperature and Animals 2.25 Effect of Higher and Lower Temperatures 2.25 2.16 Temperature and Metabolism 2.25 2.17 Temperature and Reproduction 2.26 2.18 Temperature and Animal Behaviour 2.27 3. -
A Textbook of Ecology
A Textbook Of Ecology Dr. Md. Abdul Ahad Professor, Dept. Of Entomology Hajee Mohammad Danesh Science & Technology University,Dinajpur A.S.M Anas Ferdous Student, Department Of Biomedical Engineering Bangladesh Univeristy Of Engineering & Technology Edition- First Edition-November 2019 Copyright- All Rights Reserved By Writer Publisher- Himachal Publication Bishal Book Complex Banglabazar, Dhaka Price-180 Tk Dedicated To Father Of The Nation Sheikh Mujibur Rahman CONTENTS Page no. 4-9 Introduction To Ecology 9-27 Causes of success of insect Ecosystem and agro-ecosystem 6-8 Differences between agro-ecosystems and natural ecosystems 8-9 Environmental factors influencing living organisms 10-27 Effect of Temperature on insect 11 Effect of Humidity on insect 13 Effect of Light on insect 15 Effect of air or wind on insect 16 Effect of water on insect 17 Effect of air pollutants 17 Influence of biotic factors on living organisms 17-27 Interspecific interaction 19-27 Growth form 28-33 S-growth form 28-30 Differences between population oscillation and population 30 fluctuation J-shaped growth form 30-32 Differences between J-shaped and S. Shaped (sigmoid) growth 33 form. Factor affecting on populations fluctuations 35 Population change 35 Variable affecting population size 35-36 Limits on population growth Forecasting insect pests Forecasting of insect population 36 Observations on the field population 36-37 Economic threshold (ET) 38-39 Threshold levels of cotton pests 38 Threshold levels of rice pests 39 Differences between economic threshold