Download Against the Tide

Total Page:16

File Type:pdf, Size:1020Kb

Download Against the Tide AGAINST THE TIDE A Critical Review by Scientists of How Physics and Astronomy Get Done Martín López Corredoira & Carlos Castro Perelman (Eds.) Against the Tide Against the Tide. A Critical Review by Scientists of How Physics and Astronomy Get Done Copyright © 2008 Martín López Corredoira Free distribution of the electronic copy of this book is allowed. Paperback copy of the Universal Publ. version (with an extra chapter) at www.universal-publishers.com 2 López Corredoira & Castro Perelman (Eds.) CONTENTS FOREWORD, BY M. LÓPEZ CORREDOIRA AND C. CASTRO PERELMAN ....................................................5 CHALLENGING DOMINANT PHYSICS PARADIGMS, BY J. M. CAMPANARIO AND B. MARTIN.............9 UNDERSTANDING CHALLENGES .................................................................................................................................... 11 INVESTIGATING DISSENT IN PHYSICS ............................................................................................................................. 15 HOW TO MOUNT A CHALLENGE ..................................................................................................................................... 17 FUNDING ....................................................................................................................................................................... 17 PUBLISHING .................................................................................................................................................................. 18 SURVIVING ATTACK ...................................................................................................................................................... 20 CONCLUSION ................................................................................................................................................................ 21 THE GOLD EFFECT: ODYSSEY OF SCIENTIFIC RESEARCH, BY W. KUNDT............................................. 27 BECOMING A MEMBER OF THE SCIENTIFIC COMMUNITY ................................................................................................ 27 IDEAL WORKING CONDITIONS ....................................................................................................................................... 29 CONFLICTING OPINIONS , OR THE NIH EFFECT ............................................................................................................... 30 MY LIFE -LONG DIRECTORSHIP AT ERICE , WHICH LASTED TWO YEARS .......................................................................... 33 MISSING QUOTATIONS , OMITTED INVITATIONS , AND REJECTIONS BY ANONYMOUS REFEREES ...................................... 35 RELIABILITY OF FRONT -LINE PHYSICS , OR MY GROWING LIST OF ALTERNATIVES ......................................................... 36 UPS AND DOWNS ON INTERNATIONAL STAGES .............................................................................................................. 40 MY STRUGGLE WITH GINSPARG (ARXIV.ORG) AND THE ROAD TO CYBERIA: A SCIENTIFIC- GULAG IN CYBERSPACE, BY C. CASTRO PERELMAN .................................................................................... 43 THE TROUBLES BEGAN WITH THE NUCLEAR PHYSICS B JOURNAL . ............................................................................... 43 THE INSULTS , MULTILAYERED LIES AND THREATS FROM GINSPARG ............................................................................. 45 THE ANALYSIS OF THE MULTILAYERED LIES AND THREATS FROM GINSPARG ............................................................... 46 THE RESPONSE OF THE CTSPS TO GINSPARG 'S INSULTS , OFFENSES AND THREATS ....................................................... 47 I AM FULLY BLACKLISTED SINCE THE BEGINNINGS OF 2003.......................................................................................... 49 How I avoided Ginsparg's radar for a period of Time............................................................................................. 49 THE TRAPPINGS BEHIND THE BLACKMAIL OFFER FROM THE ARXIV .ORG ....................................................................... 50 LETTERS FROM THE CO -DIRECTOR OF CTSPS IN ATLANTA TO THE AR XIV .ORG ........................................................... 51 CONCLUSIONS : A CATCH -22 SITUATION WHEN CERN (G ENEVE , SWITZERLAND ) TERMINATES THEIR EXTERNAL PREPRINT SERVER FOR BLACKLISTED SCIENTISTS ......................................................................................................... 52 THE DIRE CONSEQUENCES OF BEING BLACKLISTED BY THE ARXIV .ORG AT CORNELL ..................................................53 UPDATES ...................................................................................................................................................................... 55 BASIC CAUSE OF CURRENT CORRUPTION IN AMERICAN SCIENCE, BY J. MARVIN HERNDON ...... 57 RECOMMENDATIONS FOR SYSTEMIC CHANGES IN FEDERAL GOVERNMENT PEER REVIEW : A CONTRAST TO CURRENT PROCEDURES SET FORTH IN THE OFFICE OF MANAGEMENT AND BUDGET ...................................................................... 59 Introduction............................................................................................................................................................. 59 Critique of Bulletin ................................................................................................................................................. 60 Recommendations for systemic changes in the administration of peer review....................................................... 61 Appendix................................................................................................................................................................. 62 THE STATE OF THE SCIENTIFIC RESEARCH IN ROMANIA, ITS CAUSES AND MEASURES TO BE ENFORCED TO REDRESS IT, BY M. APOSTOL ................................................................................................... 63 THE STATE .................................................................................................................................................................... 63 THE CAUSES .................................................................................................................................................................. 70 Research-production confusion............................................................................................................................... 70 Technological transfer............................................................................................................................................. 71 Motivation............................................................................................................................................................... 72 The illegitimate status ............................................................................................................................................. 79 MEASURES .................................................................................................................................................................... 81 SCIENTIFIC AND POLITICAL ELITES IN WESTERN DEMOCRACIES, BY H. C. ARP............................... 85 EVOLUTION OF AN ELITE INTO AN OLIGARCHY ............................................................................................................. 85 EXAMPLES OF INTRINSIC REDSHIFTS AND NON BIG BANG COSMOLOGY ........................................................................ 86 CAN ACADEMIA REFORM ?............................................................................................................................................ 90 3 Against the Tide THE MEDIA ................................................................................................................................................................... 90 DEMOCRACY AND THE MEDIA ....................................................................................................................................... 91 PROBLEMS WITH DIRECTORS , CHAIRPERSONS AND CEO' S ............................................................................................ 92 THE BELIEFS OF SOCIETY .............................................................................................................................................. 93 PEER PRESSURE AND PARADIGMS, BY T. VAN FLANDERN.......................................................................... 95 A NOTE ABOUT SCIENTIFIC PEER PRESSURE .................................................................................................................. 95 PARADIGM CHANGE ...................................................................................................................................................... 97 THE VALUE OF EXTRAORDINARY HYPOTHESES ............................................................................................................. 98 CATASTROPHE THEORY .............................................................................................................................................. 100 SCIENTIFIC ARROGANCE ............................................................................................................................................. 101 THE INTRINSIC VALUE OF DEDUCTIVE THEORIES ......................................................................................................... 102 WHAT DO ASTROPHYSICS AND
Recommended publications
  • Helium-Star Mass Loss and Its Implications for Black-Hole
    Helium-Star Mass Loss and its Implications for Black-Hole Formation and Supernova Progenitors Onno R. Pols1,2 and Jasinta D.M. Dewi3,4 1 Department of Mathematics, PO Box 28M, Monash University, Vic 3800, Australia 2 Astronomical Institute, Postbus 80000, 3508 TA Utrecht, The Netherlands [email protected] 3 Astronomical Institute, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands [email protected] 4 Bosscha Observatory and Department of Astronomy, Lembang 40391, Bandung, Indonesia Abstract Recently the observationally derived stellar-wind mass-loss rates for Wolf- Rayet stars, or massive naked helium stars, have been revised downwards by a substantial amount. We present evolutionary calculations of helium stars incor- porating such revised mass-loss rates, as well as mass transfer to a close compact binary companion. Our models reach final masses well in excess of 10 M⊙, con- sistent with the observed masses of black holes in X-ray binaries. This resolves the discrepancy found with previously assumed high mass-loss rates between the final masses of stars which spend most of their helium-burning lifetime as Wolf- Rayet stars (∼ 3 M⊙) and the minimum observed black hole masses (6 M⊙). Our arXiv:astro-ph/0203308v1 19 Mar 2002 calculations also suggest that there are two distinct classes of progenitors for Type Ic supernovae: one with very large initial masses (∼> 35 M⊙), which are still massive when they explode and leave black hole remnants, and one with moderate initial masses (∼ 12 − 20 M⊙) undergoing binary interaction, which end up with small pre-explosion masses and leave neutron star remnants.
    [Show full text]
  • Changing Diets, Changing Minds: How Food Affects Mental Well Being and Behaviour Acknowledgements
    Changing Diets, Changing Minds: how food affects mental well being and behaviour Acknowledgements This report was written by Courtney Van de Weyer, and edited by Jeanette Longfield from Sustain, Iain Ryrie and Deborah Cornah from the Mental Health Foundation* and Kath Dalmeny from the Food Commission. We would like to thank the following for their assistance throughout the production of this report, from its conception to its review: Matthew Adams (Good Gardeners Association), Nigel Baker (National Union of Teachers), Michelle Berridale-Johnson (Foods Matter), Sally Bunday (Hyperactive Children's Support Group), Martin Caraher (Centre for Food Policy, City University), Michael Crawford (Institute of Brain Chemistry and Human Nutrition, London Metropolitan University), Helen Crawley (Caroline Walker Trust), Amanda Geary (Food and Mood), Bernard Gesch (Natural Justice), Maddy Halliday (formerly of the Mental Health Foundation), Joseph Hibbeln (National Institutes of Health, USA), Malcolm Hooper (Autism Research Unit, University of Sunderland), Tim Lang (Centre for Food Policy, City University), Tracey Maher (Young Minds Magazine), Erik Millstone (Social Policy Research Unit, University of Sussex), Kate Neil (Centre for Nutrition Education), Malcolm Peet (Consultant Psychiatrist, Doncaster and South Humber Healthcare NHS Trust), Alex Richardson (University of Oxford, Food and Behaviour Research), Linda Seymour (Mentality), Andrew Whitley (The Village Bakery) and Kate Williams (Chief Dietician, South London and Maudsley NHS Trust). We would also like to thank the Mental Health Foundation and the Tudor Trust for providing funding for the production of this report. The views expressed in this publication are not necessarily the views of those acknowledged or of Sustain's membership, individually or collectively.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • Wie Es Zur Gründung Des Instituts Für Hochenergiephysik Kam
    HEPHY-PUB-997 24 Nov. 2016 (rev. 19 Sep. 2017) Wie es zur Gründung des Instituts für Hochenergiephysik kam Winfried A. Mitaroff Institut für Hochenergiephysik der ÖAW, Wien ∗ Zusammenfassung Nach dem Beitritt Österreichs zur Europäischen Organisation für Kernforschung (CERN) im Jahr 1959 und bescheidenen Anfängen an der Universität Wien wurde 1966 mit der Gründung des Instituts für Hochenergiephysik (HEPHY) durch die Österreichische Akademie der Wissenschaften (ÖAW) der Grundlagenforschung auf dem Gebiet der experimentellen Teilchenphysik in unserem Land eine solide Entwicklungsmöglichkeit eröffnet. In den seither vergangenen 50 Jahren war das Institut im Rahmen internationaler Kollaborationen an einer Vielzahl von Experimenten an Großforschungsanlagen (vorwiegend, aber nicht ausschließlich, bei CERN) beteiligt – darunter auch an so bedeutenden, welche später zu Physik-Nobelpreisen geführt haben. Hierzu hat es wichtige Beiträge geleistet, insbesondere in den Bereichen Detektorentwicklung, Datenanalyse und Phänomenologie. Die vorliegende Studie zielt auf die Vorgeschichte, welche schließlich zur Institutsgründung führte. Als Quellen dienten Sitzungsprotokolle und Tätigkeitsberichte, Institutsbroschüren, Autobiografien, sowie persönliche Erinnerungen. Dieser Artikel stellt den ersten Teil eines Beitrags zur Monografie “175 Jahre Österreichische Akademie der Wissenschaften” (Wien 2022) dar, welcher die wissenschaftliche Institutsgeschichte bis zur Gegenwart beschreiben wird. 1 Einleitung Die Hochenergiephysik als selbständige Wissenschaftsdisziplin
    [Show full text]
  • Willibald Jentschke –
    European organization for nuclear research Willibald Jentschke – Willibald Jentschke founder of DESY and former Director"General of CERN passed away on March + on 18 December 1959. Jentschke became its first director and remained in this position until 1970. Jentschke served as Director-General of CERN Laboratory I – the original Meyrin site – from 1971–75. During the same period, John Adams was Director-General of the neighbouring Laboratory II, where the new SPS pro- ton synchrotron was being construct- ed. Having two Directors-General was an unusual and delicate situation, but to their eternal credit Jentschke and Adams handled it well. Jentschke oversaw the exploitation of important new investments, including an ambi- tious research programme for neutri- no physics. In 1973, this effort enabled physicists to discover the neutral cur- rents of the weak interaction. Faced with a major discovery, CERN was nervous. However, Jentschke ensured that the result went on record as one Born in Vienna, Willibald Jentschke of the Laboratory’s great achieve- obtained his Ph.D. in nuclear physics ments. at the age of 24. He continued working in this field in Vienna for many years. As Director-General of CERN In 1951, he became director of the Jentschke wrote in 1975: "I believe cyclotron laboratory at the University that we must base our future plans on of Illinois. When the University of international collaboration, certainly Hamburg offered him the chair for within Europe, or perhaps, if condi- experimental physics in 1955 he tions eventually permit, within a wider requested funds to create a modern context." This vision is now becoming research facility in Germany.
    [Show full text]
  • The Tale of the Hagedorn Temperature
    Chapter 6 The Tale of the Hagedorn Temperature Johann Rafelski and Torleif Ericson Please note the Erratum to this chapter at the end of the book Abstract We recall the context and impact of Rolf Hagedorn’s discovery of limiting temperature, in effect a melting point of hadrons, and its influence on the physics of strong interactions. 6.1 Particle Production Collisions of particles at very high energies generally result in the production of many secondary particles. When first observed in cosmic-ray interactions, this effect was unexpected for almost everyone,1 but it led to the idea of applying the wide body of knowledge of statistical thermodynamics to multiparticle production processes. Prominent physicists such as Enrico Fermi, Lev Landau, and Isaak Pomeranchuk made pioneering contributions to this approach, but because difficulties soon arose this work did not initially become the mainstream for the study of particle production. However, it was natural for Rolf Hagedorn to turn to the problem. Hagedorn had an unusually diverse educational and research background, which included thermal, solid-state, particle, and nuclear physics. His initial work on statistical particle production led to his prediction, in the 1960s, of particle yields at the highest accelerator energies at the time at CERN’s proton synchrotron. Though there were few clues on how to proceed, he began by making the most of the ‘fireball’ concept, which was then supported by cosmic-ray studies. In this approach, all the energy of the collision was regarded as being contained within a small space- time volume from which particles radiated, as in a burning fireball.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • David Horrobin
    A CEO LOOKS AT PSYCHOPHARMACOLOGY David Horrobin I usually ask medical people why they went into medicine, but in your case it’s more appropriate to ask why you left it? Mainly because I was interested in too many things. I didn’t want to get railroaded down a particular speciality. I felt that from a position in clinical physiology, I could do lots and lots of clinical projects. So I stayed in basic science but have primarily spent my life doing clinically oriented work. Physiology in Oxford involved what? I did a year working with Geoffrey Harris. He was the person who first demonstrated the pituitary is controlled by the hypothalamus. And that really I suppose in many ways shaped what I was interested in from then on – how does the brain control the hormonal system? I did clinical medicine but I’d worked as a flying doctor when I was a medical student in Kenya, and was so fascinated by Kenya that I wanted to go back. So when a new medical school there was looking for a clinical physiologist to start their physiology programme, I went out and worked for four years in the medical school. The odd event that really shaped the future, and that directed me down a psychiatric as opposed to other routes happened there. A physiologist called Howard Burn from Berkeley, California, a real superstar in the field of prolactin research, came out, funded by the US embassy, to give a lecture. The way these things used to work – the US Embassy had no idea who he was supposed to be lecturing to or anything, it was a sort of cultural thing, so I got a call from the US Ambassador saying “I’ve got this hotshot from the University of California can you find an audience for him?” It was the middle of the vacation so the only people around were a zoology professor called Mohamed ?? and myself.
    [Show full text]
  • Pulsar Physics Without Magnetars
    Chin. J. Astron. Astrophys. Vol.8 (2008), Supplement, 213–218 Chinese Journal of (http://www.chjaa.org) Astronomy and Astrophysics Pulsar Physics without Magnetars Wolfgang Kundt Argelander-Institut f¨ur Astronomie der Universit¨at, Auf dem H¨ugel 71, D-53121 Bonn, Germany Abstract Magnetars, as defined some 15 yr ago, are inconsistent both with fundamental physics, and with the (by now) two observed upward jumps of the period derivatives (of two of them). Instead, the class of peculiar X-ray sources commonly interpreted as magnetars can be understood as the class of throttled pulsars, i.e. of pulsars strongly interacting with their CSM. This class is even expected to harbour the sources of the Cosmic Rays, and of all the (extraterrestrial) Gamma-Ray Bursts. Key words: magnetars — throttled pulsars — dying pulsars — cavity — low-mass disk 1 DEFINITION AND PROPERTIES OF THE MAGNETARS Magnetars have been defined by Duncan and Thompson some 15 years ago, as spinning, compact X-ray sources - probably neutron stars - which are powered by the slow decay of their strong magnetic field, of strength 1015 G near the surface, cf. (Duncan & Thompson 1992; Thompson & Duncan 1996). They are now thought to comprise the anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), recurrent radio transients (RRATs), or ‘stammerers’, or ‘burpers’, and the ‘dim isolated neutron stars’ (DINSs), i.e. a large, fairly well defined subclass of all neutron stars, which has the following properties (Mereghetti et al. 2002): 1) They are isolated neutron stars, with spin periods P between 5 s and 12 s, and similar glitch behaviour to other neutron-star sources, which correlates with their X-ray bursting.
    [Show full text]
  • Anton Pannekoek: Ways of Viewing Science and Society
    STUDIES IN THE HISTORY OF KNOWLEDGE Tai, Van der Steen & Van Dongen (eds) Dongen & Van Steen der Van Tai, Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Anton Pannekoek: Ways of Viewing Science and Society Ways of Viewing ScienceWays and Society Anton Pannekoek: Anton Pannekoek: Ways of Viewing Science and Society Studies in the History of Knowledge This book series publishes leading volumes that study the history of knowledge in its cultural context. It aspires to offer accounts that cut across disciplinary and geographical boundaries, while being sensitive to how institutional circumstances and different scales of time shape the making of knowledge. Series Editors Klaas van Berkel, University of Groningen Jeroen van Dongen, University of Amsterdam Anton Pannekoek: Ways of Viewing Science and Society Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Amsterdam University Press Cover illustration: (Background) Fisheye lens photo of the Zeiss Planetarium Projector of Artis Amsterdam Royal Zoo in action. (Foreground) Fisheye lens photo of a portrait of Anton Pannekoek displayed in the common room of the Anton Pannekoek Institute for Astronomy. Source: Jeronimo Voss Cover design: Coördesign, Leiden Lay-out: Crius Group, Hulshout isbn 978 94 6298 434 9 e-isbn 978 90 4853 500 2 (pdf) doi 10.5117/9789462984349 nur 686 Creative Commons License CC BY NC ND (http://creativecommons.org/licenses/by-nc-nd/3.0) The authors / Amsterdam University Press B.V., Amsterdam 2019 Some rights reserved. Without limiting the rights under copyright reserved above, any part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise).
    [Show full text]
  • Hagedorn's Hadron Mass Spectrum and the Onset of Deconfinement
    Hagedorn’s Hadron Mass Spectrum and the Onset of Deconfinement∗ Marek Gazdzicki´ and Mark I. Gorenstein Abstract A brief history of the observation of the onset of deconfinement - the beginning of the creation of quark gluon plasma in nucleus-nucleus collisions with increasing collision energy - is presented. It starts with the measurement of hadron mass spectrum and the Hagedorn’s hypothesis of the limiting temperature of hadronic matter (the Hagedorn temperature). Then the conjecture that the Hage- dorn temperature is the phase transition temperature was formulated with the crucial Hagedorn participation. It was confirmed by the observation of the onset of decon- finement in lead-lead collisions at the CERN SPS energies. 1 Hadron Mass Spectrum and the Hagedorn Temperature A history of multi-particle production started with discoveries of hadrons, first in cosmic-ray experiments and soon after in experiments using beams of particles produced in accelerators. Naturally, the first hadrons, discovered in collisions of cosmic-ray particles, were the lightest ones, pion, kaon and L. With the rapid ad- vent of particle accelerators new particles were uncovered almost day-by-day. There are about 1000 hadronic states known so far. Their density in mass r(m) increases approximately exponentially as predicted by the Hagedorn’s Statistical Bootstrap Model [1] formulated in 1965: r(m) = const m−a exp(bm) : (1) In the case of point-like hadron states this leads to a single-particle partition func- tion: p ! V Z ¥ Z ¥ k2 + m2 Z(T;V) = dm k2dk exp − r(m) ; (2) arXiv:1502.07684v1 [nucl-th] 26 Feb 2015 2 2p mp 0 T Marek: Goethe-University, Frankfurt, Germany; and Jan Kochanowski University, Kielce, Poland Mark: Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine; and Frankfurt Institute for Advanced Studies, Frankfurt, Germany ∗Chapter in: R.
    [Show full text]