Rank Cmap Namemean N Enrichmentp Specificitypercent Non-Null

Total Page:16

File Type:pdf, Size:1020Kb

Rank Cmap Namemean N Enrichmentp Specificitypercent Non-Null rank cmap namemean n enrichmentp specificitypercent non-null 1 trichostatin-0.264 A 182 -0.299 0 0.5941 50 2 rottlerin -0.633 3 -0.928 0.00054 0.0252 100 3 PF-01378883-000.488 4 0.847 0.00076 0 100 4 nitrofurantoin-0.522 5 -0.771 0.00118 0 100 5 sulfadoxine-0.683 3 -0.909 0.00132 0 100 6 pirlindole 0.552 3 0.901 0.00194 0 100 7 CP-690334-010.394 8 0.602 0.00249 0.0606 75 8 alverine 0.198 4 0.8 0.003 0 50 9 triflusal -0.643 3 -0.883 0.00318 0.0051 100 10 betonicine -0.261 6 -0.672 0.00334 0 50 11 cytisine 0.385 4 0.79 0.00388 0 75 12 etoposide 0.356 4 0.786 0.00408 0.0923 75 13 primaquine0.26 4 0.785 0.0041 0.0049 50 14 5224221 -0.696 2 -0.952 0.00489 0.1203 100 15 chlorzoxazone-0.563 4 -0.777 0.00511 0.0201 100 16 Gly-His-Lys0.489 3 0.852 0.00613 0.0225 100 17 flunarizine -0.587 4 -0.765 0.00627 0.0061 100 18 calcium folinate0.516 5 0.697 0.00627 0.0663 80 19 etiocholanolone-0.376 6 -0.64 0.00628 0.1429 66 20 florfenicol -0.63 4 -0.762 0.0066 0.0252 100 21 raloxifene 0.332 7 0.592 0.00685 0.019 71 22 Prestwick-9810.512 3 0.843 0.00759 0.0106 100 23 nimesulide-0.501 4 -0.752 0.00762 0.0065 100 24 Prestwick-10850.278 4 0.733 0.00993 0.014 50 25 oxedrine 0.305 4 0.732 0.01017 0.0055 50 26 alprostadil 0.359 7 0.572 0.0105 0.1016 71 27 BCB000039-0.581 3 -0.819 0.01174 0 100 28 suxibuzone-0.375 4 -0.716 0.01325 0.0057 75 29 etomidate -0.638 3 -0.811 0.01346 0.0049 100 30 testosterone-0.479 5 -0.646 0.01368 0.0194 80 31 betamethasone0.462 3 0.806 0.01466 0 66 32 hydrastinine-0.358 5 -0.641 0.01506 0.0146 60 33 Prestwick-1100-0.521 4 -0.704 0.01581 0.0248 75 34 bupivacaine0.252 4 0.704 0.01583 0.0067 50 35 gemfibrozil-0.519 5 -0.637 0.01616 0.0526 80 36 dropropizine-0.257 4 -0.697 0.01784 0 50 37 streptozocin-0.293 4 -0.693 0.01884 0.0417 50 38 rifabutin -0.549 3 -0.788 0.01941 0.1833 100 39 benzamil -0.252 6 -0.577 0.02038 0.0323 66 40 (+/-)-catechin0.448 4 0.685 0.02097 0.0192 75 41 strophanthidin0.461 4 0.685 0.02109 0.157 75 42 cyclopentolate0.245 4 0.684 0.02129 0 50 43 dirithromycin-0.546 3 -0.777 0.02275 0.0056 100 44 parthenolide0.286 4 0.678 0.02335 0.2814 50 45 quinostatin-0.701 2 -0.891 0.02378 0.1985 100 46 carcinine -0.516 4 -0.677 0.02421 0.016 75 47 iopromide 0.497 4 0.672 0.0252 0.0284 75 48 natamycin -0.467 4 -0.666 0.02801 0.0964 75 49 pyrazinamide0.355 4 0.665 0.02851 0.0315 75 50 depudecin0.549 2 0.879 0.02919 0.025 100 51 rimexolone-0.497 4 -0.662 0.02954 0.1036 75 52 pentetic acid-0.377 5 -0.593 0.03228 0.05 80 53 naringenin0.49 4 0.656 0.03264 0.2394 75 54 CP-8631870.449 4 0.654 0.03322 0.0775 75 55 nadide -0.239 4 -0.653 0.03416 0.0581 50 56 sulfachlorpyridazine-0.455 5 -0.588 0.03477 0.032 80 57 megestrol -0.25 4 -0.651 0.03503 0.034 50 58 tolfenamic 0.203acid 4 0.65 0.03565 0.0352 50 59 vorinostat -0.283 12 -0.391 0.03664 0.6018 50 60 apramycin-0.447 4 -0.646 0.03756 0.1422 75 61 flavoxate -0.414 4 -0.644 0.03811 0.0121 75 62 ciprofibrate0.424 4 0.643 0.03923 0.0263 75 63 theobromine-0.483 4 -0.641 0.03965 0.0479 75 64 chlorhexidine-0.299 5 -0.578 0.04021 0.0602 60 65 oxamniquine-0.43 4 -0.64 0.04024 0.0265 75 66 metaraminol-0.486 4 -0.639 0.04076 0.0223 75 67 BCB0000380.268 4 0.639 0.04142 0.0407 50 68 carmustine-0.285 3 -0.726 0.0426 0.0541 66 69 iproniazid 0.288 5 0.577 0.04288 0.1285 60 70 5194442 0.217 4 0.635 0.04351 0.0903 50 71 perhexiline-0.449 4 -0.633 0.04434 0.1261 75 72 octopamine-0.395 4 -0.631 0.04502 0.0143 75 73 dacarbazine-0.391 4 -0.626 0.04812 0.0777 75 74 prochlorperazine-0.206 16 -0.328 0.04871 0.3396 50 75 bambuterol0.275 4 0.626 0.04904 0.0397 75 76 dihydroergocristine0.275 4 0.623 0.05047 0.1538 75 77 mesalazine-0.451 5 -0.558 0.05167 0.0535 80 78 meprylcaine-0.274 4 -0.62 0.05236 0.0121 50 79 lactobionic-0.465 acid 4 -0.617 0.05427 0.0226 75 80 betulin -0.345 3 -0.699 0.05552 0.0455 66 81 suprofen -0.44 4 -0.614 0.05588 0.061 75 82 metrizamide0.259 4 0.615 0.05624 0.1301 50 83 5279552 -0.555 2 -0.83 0.05696 0.0476 100 84 dequalinium-0.351 chloride 4 -0.609 0.05954 0.1379 75 85 alvespimycin-0.267 12 -0.366 0.06027 0.2826 58 86 bupropion -0.368 4 -0.607 0.06145 0.1 75 87 amiodarone-0.319 5 -0.544 0.06324 0.2036 60 88 chloropyrazine0.37 4 0.599 0.0671 0.2025 75 89 fenbendazole0.359 4 0.598 0.06829 0.1361 75 90 guanfacine-0.42 5 -0.538 0.06843 0.1326 60 91 semustine0.187 4 0.597 0.06901 0.2486 75 92 fenoterol -0.286 3 -0.675 0.06931 0.0654 66 93 dexamethasone0.187 8 0.432 0.0701 0.0914 50 94 roxarsone -0.493 4 -0.59 0.07649 0.1353 75 95 (+)-isoprenaline0.254 4 0.587 0.07718 0.0933 75 96 cromoglicic-0.516 acid 2 -0.799 0.07897 0.0553 100 97 AG-012559-0.339 3 -0.658 0.0797 0.0707 66 98 isopropamide-0.333 iodide 4 -0.586 0.08003 0.0514 50 99 pentoxyverine-0.276 4 -0.585 0.08031 0.264 75 100 pinacidil -0.409 4 -0.585 0.08039 0.0718 75 101 fludroxycortide-0.375 5 -0.524 0.08123 0.1452 60 102 cyclic adenosine-0.274 monophosphate4 -0.584 0.08184 0.1948 50 103 imipramine-0.286 4 -0.583 0.08307 0.0949 50 104 corticosterone0.291 4 0.58 0.08319 0.1443 50 105 tiratricol -0.353 4 -0.582 0.08343 0.1353 75 106 halcinonide-0.383 5 -0.522 0.08345 0.1076 60 107 arachidonyltrifluoromethane-0.543 2 -0.793 0.08382 0.1307 100 108 hexetidine -0.292 4 -0.581 0.08427 0.1648 50 109 glibenclamide-0.447 4 -0.578 0.08667 0.1709 75 110 isocarboxazid0.369 5 0.52 0.0886 0.2071 60 111 benzathine0.367 benzylpenicillin4 0.569 0.09374 0.2686 50 112 PNU-0230031-0.173 8 -0.412 0.09822 0.1875 50 113 monensin 0.276 6 0.468 0.09922 0.5714 50 114 MG-262 0.26 3 0.634 0.10101 0.4703 66 115 5253409 0.284 2 0.771 0.10585 0.118 50 116 imipenem -0.388 4 -0.559 0.10627 0.2541 75 117 phenazone0.307 3 0.627 0.10818 0.1007 66 118 ramifenazone0.227 4 0.553 0.10975 0.0968 50 119 ciclosporin-0.378 6 -0.461 0.11042 0.1667 66 120 ronidazole-0.484 3 -0.624 0.11115 0.3033 66 121 suloctidil 0.228 4 0.551 0.11208 0.4455 50 122 glycocholic0.309 acid 4 0.551 0.11307 0.0857 50 123 amitriptyline0.333 6 0.453 0.12018 0.5631 50 124 methocarbamol-0.352 3 -0.612 0.12573 0.1755 66 125 terazosin -0.279 4 -0.541 0.12823 0.2985 50 126 hydroxyzine0.338 5 0.487 0.13057 0.0503 60 127 prenylamine0.077 4 0.536 0.13092 0.5222 50 128 loperamide0.131 6 0.445 0.1323 0.3687 50 129 levodopa -0.362 5 -0.484 0.13265 0.2172 60 130 metolazone-0.405 5 -0.483 0.13512 0.162 60 131 4-hydroxyphenazone0.3 5 0.484 0.13534 0.1126 60 132 velnacrine -0.255 4 -0.531 0.14033 0.0947 50 133 co-dergocrine-0.218 mesilate4 -0.53 0.14223 0.2632 50 134 F0447-01250.292 4 0.527 0.14285 0.2667 50 135 chlortetracycline-0.375 5 -0.477 0.14331 0.1507 60 136 bergenin 0.27 4 0.523 0.14868 0.1646 50 137 nisoxetine 0.27 4 0.522 0.14967 0.1487 50 138 spiramycin0.107 6 0.434 0.15025 0.1697 50 139 benzbromarone-0.296 3 -0.593 0.15103 0.283 66 140 levcycloserine-0.387 4 -0.522 0.1526 0.2784 75 141 fluticasone0.292 4 0.518 0.15519 0.2194 50 142 vinblastine0.385 3 0.591 0.15532 0.3536 66 143 11-deoxy-16,16-dimethylprostaglandin0.268 4 0.517 E2 0.157 0.1902 50 144 tranexamic0.377 acid 5 0.47 0.15781 0.4969 60 145 NU-1025 -0.177 2 -0.716 0.16019 0.1344 50 146 omeprazole-0.261 4 -0.515 0.16332 0.4975 50 147 dihydroergotamine0.206 5 0.466 0.16427 0.1105 60 148 cefalexin -0.373 5 -0.465 0.16495 0.5027 60 149 staurosporine-0.404 4 -0.511 0.16814 0.1644 75 150 labetalol -0.297 4 -0.511 0.16883 0.1151 75 151 dicloxacillin-0.39 4 -0.51 0.16927 0.1534 75 152 propidium iodide0.244 4 0.508 0.16985 0.1242 50 153 16,16-dimethylprostaglandin0.362 3 E20.581 0.17078 0.2575 66 154 cefalotin -0.234 4 -0.508 0.17261 0.1759 50 155 isotretinoin-0.215 4 -0.507 0.17414 0.246 50 156 debrisoquine-0.346 4 -0.507 0.17462 0.1333 75 157 corbadrine0.176 4 0.504 0.17621 0.2252 50 158 oxymetazoline-0.218 4 -0.505 0.17774 0.2048 75 159 azathioprine-0.231 7 -0.391 0.17972 0.0861 57 160 sulfinpyrazone-0.201 4 -0.503 0.18154 0.3231 75 161 chloroquine0.216 4 0.5 0.18288 0.1471 50 162 econazole -0.212 4 -0.502 0.1829 0.2564 75 163 aciclovir 0.317 6 0.417 0.18372 0.4658 50 164 practolol -0.281 4 -0.501 0.18383 0.2143 50 165 BAS-0124164530.404 3 0.573 0.18442 0.1242 66 166 MS-275 0.286 2 0.695 0.18565 0.5325 50 167 pivmecillinam-0.283 4 -0.499 0.18676 0.2762 50 168 felodipine -0.282 7 -0.387 0.18776 0.3727 57 169 tetracaine 0.343 3 0.57 0.18907 0.2588 66 170 dexpropranolol-0.411 3 -0.569 0.18953 0.3316 66 171 pronetalol 0.231 4 0.494 0.19153 0.1786 50 172 dexpanthenol-0.277 4 -0.496 0.19193 0.16 50 173 C-75 0.36 4 0.493 0.19463 0.2663 50 174 carbamazepine-0.266 8 -0.36 0.19608 0.2606 50 175 pimethixene0.332 3 0.564 0.19924 0.2843 66 176 clomifene -0.332 4 -0.492 0.19937 0.2464 50 177 gramine -0.25 4 -0.492 0.19937 0.1967 50 178 S-propranolol-0.353 4 -0.491 0.20114 0.1829 50 179 baclofen -0.365 5 -0.446 0.20232 0.2169 60 180 butein 0.262 2 0.681 0.20249 0.2222 50 181 mepyramine-0.157 4 -0.489 0.2039 0.1607 50 182 pyrvinium -0.196 6 -0.407 0.20806 0.4742 50 183 naringin -0.295 4 -0.486 0.20951 0.301 50 184 niflumic acid-0.341 4 -0.482 0.21741 0.1932 50 185 tridihexethyl0.119 4 0.477 0.22348 0.2105 50 186 valdecoxib0.328 3 0.551 0.2238 0.1824 66 187 cefamandole0.333 4 0.477 0.22425 0.5417 50 188 tremorine -0.265 4 -0.478 0.22728 0.3151 50 189 procainamide-0.326 4 -0.478 0.22754 0.285 50 190 meteneprost0.327 4 0.474 0.23002 0.5652 50 191 ipratropium-0.385 bromide 3 -0.547 0.23041 0.4577 66 192 noretynodrel0.104 4 0.473 0.2308 0.2373 50 193 LM-1685 0.368 3 0.545 0.23418 0.2312 66 194 valinomycin-0.109 4 -0.474 0.23617 0.4 50 195 carbenoxolone-0.217 4 -0.473 0.23708 0.3082 50 196 proglumide-0.299 5 -0.429 0.23899 0.1858 60 197 amrinone -0.266 4 -0.471 0.24055 0.3409 50 198 Prestwick-685-0.368 5 -0.428 0.24167 0.4316 60 199 streptomycin0.377 4 0.467
Recommended publications
  • Pharmacokinetic Interactions Between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
    life Review Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance Laura Rombolà 1 , Damiana Scuteri 1,2 , Straface Marilisa 1, Chizuko Watanabe 3, Luigi Antonio Morrone 1, Giacinto Bagetta 1,2,* and Maria Tiziana Corasaniti 4 1 Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (L.A.M.) 2 Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] 4 School of Hospital Pharmacy, University “Magna Graecia” of Catanzaro and Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493462 Received: 28 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Metabolism and Pharmacokinetics in the Development of New Therapeutics for Cocaine and Opioid Abuse
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse Pradeep Kumar Vuppala University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Vuppala, Pradeep Kumar, "Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse" (2012). Electronic Theses and Dissertations. 731. https://egrove.olemiss.edu/etd/731 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. METABOLISM AND PHARMACOKINETICS IN THE DEVELOPMENT OF NEW THERAPEUTICS FOR COCAINE AND OPIOID ABUSE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Department of Pharmaceutics The University of Mississippi by PRADEEP KUMAR VUPPALA April 2012 Copyright © 2012 by Pradeep Kumar Vuppala All rights reserved ABSTRACT Cocaine and opioid abuse are a major public health concern and the cause of significant morbidity and mortality worldwide. The development of effective medication for cocaine and opioid abuse is necessary to reduce the impact of this issue upon the individual and society. The pharmacologic treatment for drug abuse has been based on one of the following strategies: agonist substitution, antagonist treatment, or symptomatic treatment. This dissertation is focused on the role of metabolism and pharmacokinetics in the development of new pharmacotherapies, CM304 (sigma-1 receptor antagonist), mitragynine and 7-hydroxymitragynine (µ-opioid receptor agonists), for the treatment of drug abuse.
    [Show full text]
  • Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells
    Int. J. Mol. Sci. 2015, 16, 5572-5589; doi:10.3390/ijms16035572 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells Cheng-Fang Tsai 1,†, Yueh-Hsiung Kuo 1,2,†, Wei-Lan Yeh 3, Caren Yu-Ju Wu 4, Hsiao-Yun Lin 5, 4 4 4 1 5,6, Sheng-Wei Lai , Yu-Shu Liu , Ling-Hsuan Wu , Jheng-Kun Lu and Dah-Yuu Lu * 1 Department of Biotechnology, Asia University, Taichung 413, Taiwan; E-Mails: [email protected] (C.-F.T.); [email protected] (Y.-H.K.); [email protected] (J.-K.L.) 2 Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan 3 Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan; E-Mail: [email protected] 4 Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: [email protected] (C.Y.-J.W.); [email protected] (S.-W.L.); [email protected] (Y.-S.L.); [email protected] (L.-H.W.) 5 Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan; E-Mail: [email protected] 6 Department of Photonics and Communication Engineering, Asia University, Taichung 413, Taiwan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-4-2205-3366 (ext. 8206); Fax: +886-4-2207-1507. Academic Editor: Guido R.
    [Show full text]
  • Alpha^ and Beta^Blocking Agents: Pharmacology and Properties
    CURRENT DRUG THERAPY DONALD G. VIDT, MD AND ALAN BAKST, PharmD, EDITORS Alpha^ and beta^blocking agents: pharmacology and properties PROFESSOR B.N.C. PRICHARD • Adrenergic receptors have been separated into alpha and beta groups, which have then been further subdivided. Agents have been developed that block each type of receptor with varying degrees of specificity between the sub-types, leading to differences in pharmacodynamic profile. A more recent innovation has been the development of multiple action beta-blocking drugs, ie, those not only blocking the beta receptors but also posessing a peripheral vasodilator effect that may be due to alpha blockade, beta-2 stimulation, or a vasodilator action independent of either alpha or beta receptors. • INDEX TERMS: ALPHA BLOCKERS; BETA BLOCKERS; HYPERTENSION • CLEVE CLIN ] MED 1991; 58:33 7-350 HE CONCEPT that binding of Rosenblueth suggested that a transmitter released at catecholamines to receptors leads to differ- sympathetic nerve endings produced either inhibitory ing responses was first described by Langley, or excitatory responses as a result of combination with who in 1905 noted that a cell may make sympathin I or sympathin E at the receptor.3 Tmotor or inhibitory substances or both, and that "the The current classification of alpha and beta respon- effect of a nerve impulse depends upon the proportion ses is based on the classic work of Ahlquist,4 who of the two kinds of receptive substance which is af- studied six sympathomimetic amines and found two fected by the impulse."1 In 1906, Dale reported that patterns of reactivity. One group of actions, mediated ergot blocked the excitatory but not the inhibitory ac- by what were termed "alpha receptors," were principally tions of adrenaline.2 In 1933, Cannon and excitatory.
    [Show full text]
  • Identification of Compounds That Rescue Otic and Myelination
    RESEARCH ARTICLE Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant Elvira Diamantopoulou1†, Sarah Baxendale1†, Antonio de la Vega de Leo´ n2, Anzar Asad1, Celia J Holdsworth1, Leila Abbas1, Valerie J Gillet2, Giselle R Wiggin3, Tanya T Whitfield1* 1Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom; 2Information School, University of Sheffield, Sheffield, United Kingdom; 3Sosei Heptares, Cambridge, United Kingdom Abstract Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design. DOI: https://doi.org/10.7554/eLife.44889.001 *For correspondence: [email protected] †These authors contributed Introduction equally to this work Adgrg6 (Gpr126) is an adhesion (B2) class G protein-coupled receptor (aGPCR) with conserved roles in myelination of the vertebrate peripheral nervous system (PNS) (reviewed in Langenhan et al., Competing interest: See 2016; Patra et al., 2014).
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Coptis Japonica</Emphasis>
    Plant Cell Reports (1988) 7:1-4 Plant Cell Reports © Springer-Verlag 1988 Alternative final steps in berberine biosynthesis in Coptisjaponica cell cultures E. Galneder 1 M. Rueffer 1, G. Wanner 1, 2, M. Tabata 1, 3, and M. H. Zenk 1 1 Lehrstuhl tar Pharmazeutische Biologie der Universitfit Mfinchen, Karlstrasse 29, D-8000 Mt~nchen 2, Federal Republic of Germany 2 Botanisches Institut der Universitfit Miinchen, Menzinger Strasse 67, D-8000 Manchen 19, Federal Republic of Germany 3 Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan Received October 30, 1987 - Communicated by K. Hahlbrock ABSTRACT oxidase (STOX) reported from our laboratory (Amann et al., 1984) in that the Coptis enzyme dehydrogenated In Coptis japonica cell cultures an alternative path- only (S)-canadine while other tetrahydroprotober- way has been discovered which leads from (S)-tetra- berines were reported to be inactive. In further hydrocolumbamine via (S)-canadine to berberine. The contrast to the STOX enzyme, their enzyme did not two enzymes involved have been partially purified. produce hydrogen peroxide but rather H20 as one of (S)-Tetrahydrocolumbamine is stereospecifically the reaction products. Our analysis of the Coptis transformed into (S)-canadine under formation of the system reported here led to the surprising result methylenedioxy bridge in ring A. This new enzyme was that the terminal two steps in the biosynthesis of named (S)-canad/ne synthase. (S)-Canadine in turn is berberine in 8erberis and Coptis are biochemically stereospecifically dehydrogenated to berberine by an completely different while similar at the cytological oxidase, (S)-canadine oxidase (COX), which was level.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • United States Patent (19) (11) 4,310,524 Wiech Et Al
    United States Patent (19) (11) 4,310,524 Wiech et al. 45 Jan. 12, 1982 (54) TCA COMPOSITION AND METHOD FOR McMillen et al., Fed. Proc., 38,592 (1979). RAPD ONSET ANTDEPRESSANT Sellinger et al., Fed. Proc., 38,592 (1979). THERAPY Pandey et al., Fed. Proc., 38,592 (1979). 75) Inventors: Norbert L. Wiech; Richard C. Ursillo, Primary Examiner-Stanley J. Friedman both of Cincinnati, Ohio Attorney, Agent, or Firm-Millen & White 73) Assignee: Richardson-Merrell, Inc., Wilton, Conn. (57 ABSTRACT A method is provided for treating depression in a pa (21) Appl. No.: 139,498 tient therefrom and requiring rapid symptomatic relief, (22 Filed: Apr. 11, 1980 which comprises administering to said patient concur 51) Int. Cl. .................... A61K 31/33; A61K 31/135 rently (a) an effective antidepressant amount of a tricy clic antidepressant or a pharmaceutically effective acid (52) ...... 424/244; 424/330 addition salt thereof, and (b) an amount of an a-adrener 58) Field of Search ................................ 424/244, 330 gic receptor blocking agent effective to achieve rapid (56) References Cited onset of the antidepressant action of (a), whereby the PUBLICATIONS onset of said antidepressant action is achieved within Chemical Abst., vol. 66-72828m, (1967), Kellett. from 1 to 7 days. Chemical Abst, vol. 68-94371a, (1968), Martelli et al. A pharmaceutical composition is also provided which is Chemical Abst., vol. 74-86.048j, (1971), Dixit et al. especially adapted for use with the foregoing method. Holmberg et al., Psychopharm., 2,93 (1961). Svensson, Symp. Med. Hoechst., 13, 245 (1978). 17 Claims, No Drawings 4,310,524 1.
    [Show full text]
  • Journal of Pharmaceutical and Biomedical Analysis Stability Of
    Journal of Pharmaceutical and Biomedical Analysis 49 (2009) 519–524 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis journal homepage: www.elsevier.com/locate/jpba Short communication Stability of selected chlorinated thiazide diuretics K. Deventer a,∗, G. Baele b, P. Van Eenoo a, O.J. Pozo a, F.T. Delbeke a a DoCoLab, UGent, Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30, B-9052 Zwijnaarde, Belgium b Department of Applied Mathematics and Computer Science, Krijgslaan 281, S9, B-9000 Gent, Belgium article info abstract Article history: In sports, diuretics are used for two main reasons: to flush previously taken prohibited substances with Received 6 August 2008 forced diuresis and in sports where weight classes are involved to achieve acute weight loss. A com- Received in revised form 5 November 2008 mon property observed for thiazides is hydrolysis in aqueous media resulting in the formation of the Accepted 6 November 2008 degradation product aminobenzenedisulphonamide. This degradation product can be observed for sev- Available online 13 November 2008 eral thiazides. Because there is limited information regarding the effect of pH, temperature and light on the stability of thiazides, these parameters were investigated for chlorothiaizide, hydrochlorothiazide Keywords: and altizide. For all three compounds the degradation product could be detected after incubation at pH Doping ◦ Urine 9.5 for 48 h at 60 C. At lower pH and temperature the degradation product could not be detected for all Diuretics compounds. When samples were exposed to UV-light altizide and hydrochlorothiazide were photode- Thiazides graded to chlorothiazide. When the degradation rate between the different compounds was compared Sports for a given temperature and pH, altizide is the most unstable compound.
    [Show full text]