(Diaporthales), with Emphasis on Gnomoniopsis And

Total Page:16

File Type:pdf, Size:1020Kb

(Diaporthales), with Emphasis on Gnomoniopsis And TAXONOMY, SYSTEMATICS, ECOLOGY, AND EVOLUTIONARY BIOLOGY OF THE GNOMONIACEAE (DIAPORTHALES), WITH EMPHASIS ON GNOMONIOPSIS AND OPHIOGNOMONIA by DONALD MATTHEW WALKER A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Plant Biology written under the direction of Dr. James F. White, Jr. and approved by ________________________ ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2012 TAXONOMY, SYSTEMATICS, ECOLOGY, AND EVOLUTIONARY BIOLOGY OF THE GNOMONIACEAE (DIAPORTHALES), WITH EMPHASIS ON GNOMONIOPSIS AND OPHIOGNOMONIA By DONALD MATTHEW WALKER Dissertation Director: Dr. James F. White, Jr. The Gnomoniaceae (Diaporthales, Sordariomycetes, Ascomycota) are a family of perithecial ascomycetes that occur as endophytes, pathogens, or saprobes on growing and overwintered leaves and twigs of hardwood trees, shrubs, and herbaceous host plants. Many species of Gnomoniaceae cause serious diseases in agricultural and ornamental plants. Despite their economic importance, the biodiversity, evolutionary biology, ecology, and host plant relationships are largely unknown. The objectives of this study were to: 1) infer species level phylogenies of the genera Gnomoniopsis and Ophiognomonia; 2) design primers for newly identified single- copy protein-coding genes to be used as phylogenetic markers for species-level systematics in the Sordariomycetes; 3) integrate host association and environmental data with a phylogenetic analysis of Ophiognomonia to better understand speciation events in this genus. To achieve these objectives, herbarium and freshly collected specimens were compared using morphology, host association, and phylogenetic analyses of multiple molecular markers. Microscopic measurements of morphological characters such as ii ascospore size and septation were integrated with molecular approaches to define species of Gnomoniopsis and Ophiognomonia. Fungal genome sequences were mined for single- copy orthologous genes, primers designed, gene regions sequenced, and phylogenetic informativeness of each marker assessed. The performance of the newly identified markers was then compared to other markers commonly used in fungal phylogenetics. In addition, the program Spatial Evolutionary and Ecological Vicariance Analysis (SEEVA) was used to study patterns of host plant specificity and ecological vicariance using a multi-gene phylogeny of Ophiognomonia. This research resulted in the recircumscription of the genera Gnomoniopsis and Ophiognomonia in the Gnomoniaceae along with an account of each species in these genera. A total of 32 taxonomic novelties were defined including 26 new species and 6 new combinations. Primer sets for two newly identified markers were developed that should be useful for ascomycete systematists. Host specificity and environmental influences were hypothesized as mechanisms contributing to speciation patterns in Ophiognomonia. A visual and statistically solid understanding of evolutionary mechanisms influencing speciation events, host switches, and ecological divergence in the genus Ophiognomonia is presented and discussed. This a comprehensive report of the taxonomy, evolutionary biology, and ecology of the genus Ophiognomonia. iii ACKNOWLEDGEMENTS This work was funded by the National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (NSF 03-28364) and USDA-ARS Systematic Mycology and Microbiology Laboratory. Additional funding to attend conferences and conduct field work was received through the C. Reed Funk award and Conference Travel Support award from Rutgers University; also through the Backus, Everett Lutrell, and National/International Travel Awards from the Mycological Society of America; through the Organization for Tropical Studies for travel and research in Costa Rica. I would like to extend a very special thank you to Amy Rossman, Lisa Castlebury, James White, Lena Struwe, and Peter Oudemans for their extraordinary guidance, support, and encouragement throughout this project and helpful discussions about the Gnomoniaceae. I would like to thank Luis Mejía and Mikhail Sogonov for teaching me how to collect, observe, and document the Gnomoniaceae and for the excellent times on several exciting collection trips. Thank you to Adam Bazinet, Jo Anne Crouch, Karl Kjer, and Steve Rehner for helpful discussions about data analysis, primer design, and species concepts. Thank you to Drew Minnis for nomenclatural advice. I am grateful for the laboratory support provided by Tunesha Phipps, Sasha Allen, and Ryan Vo at SMML and Marshall Bergen at Rutgers University. Thank you to Kentaro Hosaka, Shinobu Inoue, Takao Kobayashi, Tsuyoshi Hosoya, and Yousuke Degawa for hosting a collecting trip to Japan. I would like to thank Yuuri Hirooka for coordinating my trip to Japan and for the wonderful experience collecting fungi in Michigan. I would like to extend a special thank iv you to Alex Weir, June Wang, and Tom Horton who were my mycological mentors at SUNY ESF and primary reason for pursuing a graduate degree in mycology. v DEDICATION This work is dedicated to the very special people who have supported, encouraged, and believed in me over the last five years: my wife Lisa, my dad Donald, my mom Lynn, and sisters Danielle and April; also to the late Donald E. Walker and Robert D. Hartinger, you will be forever missed. Thank you for your love, patience, and support. vi TABLE OF CONTENTS Abstract of the dissertation………………………………………………………………..ii Acknowledgements…………………………………………………..…………………...iv Dedication……………………………………………………………………….………..vi Table of Contents……………………………………………………………….…….….vii List of Tables……………………………………………………………………………..ix List of Figures………………………………………………………………………….…xi CHAPTER 1. Introduction to the taxonomy, systematics, ecology, and evolutionary biology of the Gnomoniaceae (Diaporthales), with emphasis on Gnomoniopsis and Ophiognomonia……………………………………………………………………………1 Literature cited…………………………………………………………..………………...6 CHAPTER 2. Systematics of genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations and morphology.............................………11 Literature cited…………………………………………………………..…………….....54 CHAPTER 3. New molecular markers for fungal phylogenetics: Two genes for species- level systematics in the Sordariomycetes (Ascomycota)...................................................57 Literature cited……………………………………………………………………..…...108 CHAPTER 4. Systematics of the genus Ophiognomonia (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations, and morphology ............………...114 Literature cited………………………………………………………………………….249 CHAPTER 5. Host conservatism or host specialization? Patterns of fungal diversification are influenced by host specificity in Ophiognomonia (Gnomoniaceae, Diaporthales)……………………………………………………………………………254 vii Literature cited……………………………………………………………………….....288 CHAPTER 6. Environmental influences on speciation and niche evolution in the fungal genus Ophiognomonia (Gnomoniaceae, Diaporthales).....................................……......292 Literature cited……………………………………………………………………….…339 CURRICULUM VITA………………………………………………………...……….343 viii LIST OF TABLES Table 2.1 Specimens and cultures of Gnomoniaceae sequenced for this study…………52 Table 3.1. Isolates sequenced for this study……………………………………………..88 Table 3.2. Primers designed for current study and respective PCR protocols for each gene…………………………………………………………………………………........91 Table 3.3. Alignment properties from analyses of individual markers for Gnomoniopsis and Ophiognomonia……………………………………………………………………...92 Table 3.4. Summary of support values from Maximum Parsimony Boostrap (MP BS), Maximum Likelihood (ML BS), and Bayesian (PP) analyses…………………………...93 Table 3.5. Phylogenetic performance of individual markers……………………………95 Supplementary Table 3.1. Support values from Maximum Parsimony Boostrap (MP BS), Maximum Likelihood (ML BS), and Bayesian (PP) analyses of Gnomoniopsis…..96 Supplementary Table 3.2. ModelTest Results………………………………………..100 Supplementary Table 3.3. Summary of all evaluated genes regions for molecular marker development…………………………………………………………………….105 Table 4.1. Specimens and cultures of Gnomoniaceae sequenced for this study……….242 Table 4.2. Phylogenetic Species Recognition………………………………………….247 Supplementary Table 4.1. jModelTest results……………………………….………..248 Table 5.1. Host plant relationships and geographic distribution of Ophiognomonia…..283 Table 6.1. Index of divergence (D) from the SEEVA analysis of Clade 1 in Ophiognomonia using four temperature-based variables………………………………326 Table 6.2. Index of divergence (D) from the SEEVA analysis of Clade 1 in Ophiognomonia using four precipitation-based variables……………………………...327 ix Table 6.3. Index of divergence (D) from the SEEVA analysis of Clade 2 in Ophiognomonia using four temperature-based variables………………………………328 Table 6.4. Index of divergence (D) from the SEEVA analysis of Clade 2 in Ophiognomonia using four precipitation-based variables……………………………...329 Table 6.5. Index of divergence (D) from the SEEVA analysis of Clade 3 in Ophiognomonia using four temperature-based variables………………………………330 Table 6.6. Index of divergence (D) from the SEEVA analysis of Clade 3 in Ophiognomonia using four precipitation-based variables……………………………...331 Table 6.7. Host plant relationships
Recommended publications
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • Poplars and Willows: Trees for Society and the Environment / Edited by J.G
    Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • 48 European Invertebrate Survey Nederland
    issn 0169 - 2402 februari 2009 48 european invertebrate survey nieuwsbrief nederland 2 Nieuwsbrief European Invertebrate Survey – Nederland, 48 (2009) NIEUWSBRIEF van de EUROPEAN INVERTEBRATE SURVEY – NEDERLAND Nummer 48 - februari 2009 Contactorgaan voor de medewerkers van de Van de redactie werkgroepen van de European Invertebrate Survey – Nederland Deze extra nieuwsbrief, in kleur uitgegeven, is geheel gewijd aan het EIS-jubileum. De lezingen die Menno Schilthuizen en Informatie: Matthijs Schouten op de jubileumdag hebben gegeven kunt u Bureau EIS-Nederland, hier nog eens nalezen. Postbus 9517, 2300 RA Leiden tel. 071-5687670 / fax 071-5687666 Verder sluiten we de succesvolle inventarisatie van Naturalis- e-mail [email protected] terrein af. Het totaal aantal van 1569 soorten is al indrukwek- website www.naturalis.nl/eis kend, de grote hoeveelheid bijzonderheden is nog verbazing- wekkender. Het lijkt er op dat half-verwaarloosde terreinen in Wordt aan medewerkers gratis toegezonden. de stad een paradijs zijn voor schildwespen. Op deze plek wil ik alle personen bedanken die op een of andere manier hebben bijgedragen aan de soortenlijst. Tevens worden de fotografen Redactie: John T. Smit & Roy Kleukers bedankt voor het ter beschikking stellen van hun foto’s. Bij de soortenlijst worden zij met name genoemd, de beelden van de jubileumdag zijn voornamelijk van Berry van der Hoorn © copyright 2009 Stichting European Invertebrate Survey (Naturalis) en EIS-medewerkers. – Nederland, Leiden. Niets in deze uitgave mag worden vermenigvuldigd en/of openbaar Na zo’n mal jubileum van 33,3 jaar is het natuurlijk de vraag gemaakt door middel van fotokopie, microfilm of welke andere wijze wanneer het volgende feestje zal plaatsvinden.
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • RED ALDER Northwest Extracted a Red Dye from the Inner Bark, Which Was Used to Dye Fishnets
    Plant Guide and hair. The native Americans of the Pacific RED ALDER Northwest extracted a red dye from the inner bark, which was used to dye fishnets. Oregon tribes used Alnus rubra Bong. the innerbark to make a reddish-brown dye for basket Plant Symbol = ALRU2 decorations (Murphey 1959). Yellow dye made from red alder catkins was used to color quills. Contributed by: USDA NRCS National Plant Data Center A mixture of red alder sap and charcoal was used by the Cree and Woodland tribes for sealing seams in canoes and as a softener for bending boards for toboggans (Moerman 1998). Wood and fiber: Red alder wood is used in the production of wooden products such as food dishes, furniture, sashes, doors, millwork, cabinets, paneling and brush handles. It is also used in fiber-based products such as tissue and writing paper. In Washington and Oregon, it was largely used for smoking salmon. The Indians of Alaska used the hallowed trunks for canoes (Sargent 1933). Medicinal: The North American Indians used the bark to treat many complaints such a headaches, rheumatic pains, internal injuries, and diarrhea (Moerman 1998). The Salinan used an extract of the bark of alder trees to treat cholera, stomach cramps, and stomachaches (Heinsen 1972). The extract was made with 20 parts water to 1 part fresh or aged bark. The bark contains salicin, a chemical similar to aspirin (Uchytil 1989). Infusions made from the bark of red alders were taken to treat anemia, colds, congestion, and to © Tony Morosco relieve pain. Bark infusions were taken as a laxative @ CalFlora and to regulate menstruation.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
    Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • Desirable Plant List
    Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ...........
    [Show full text]