References Campbell, D

Total Page:16

File Type:pdf, Size:1020Kb

References Campbell, D 1 References Campbell, D. B., A. A. Hine, J. K. Harmon, D. A. Senske, R. W. Vorder Bruegge, P. C. Fisher, Bok, B. J., A. A. Hine, and E. W. Miller, IAU S. Frank, and J. W. Head, New Arecibo High- Symp. 38: The Spiral Structure of our Galaxy, Resolution Radar Images of Venus: Prelimi- in , vol. 38, p. 246, 1970. nary Interpretation, LPI Contributions, 698, 17, Campbell, D. B., J. K. Harmon, A. A. Hine, and 1989d. J. W. Head, Lunar and Planetary Institute Con- Campbell, D. B., J. W. Head, D. A. Senske, A. A. ference Abstracts, in , vol. 13, p. 83, 1982. Hine, N. J. Stacy, and P. C. Fisher, Lunar and Campbell, D. B., J. K. Harmon, A. A. Hine, and Planetary Institute Conference Abstracts, in , B. A. Burns, Venus: Recent Arecibo Radar Ob- vol. 21, p. 161, 1990a. servations, Bull. American Astron. Soc., 15, 818, Campbell, D. B., A. A. Hine, and P. C. Fisher, Lu- 1983a. nar and Planetary Institute Conference Abstracts, Campbell, D. B., J. K. Harmon, A. A. Hine, I. I. in , vol. 21, p. 163, 1990b. Sapiro, B. G. Marsden, and G. H. Pettengill, Campbell, D. B., N. J. S. Stacy, and A. A. Hine, Arecibo Radar Observations of Comets IRAS- Venus - Crater distributions at low northern lat- Araki-Alcock and Sugano-Saigusa-Fujikawa (In- itudes and in the southern hemisphere from new vited) ( 15 min. ), Bull. American Astron. Soc., Arecibo observations, Geophys. Res. Lett., , 17, 15, 800, 1983b. 1389{1392, 1990c. Campbell, D. B., J. W. Head, J. K. Harmon, and Campbell, D. B., D. A. Senske, J. W. Head, P. C. A. A. Hine, Venus - Identification of banded ter- Fisher, and A. A. Hine, Venus southern hemi- rain in the mountains of Ishtar Terra, Science, sphere - Geologic character and age of terrains 221, 644{647, 1983c. in the Themis-Alpha-Lada region, Science, 251, Campbell, D. B., J. K. Harmon, A. A. Hine, and 180{183, 1991. J. W. Head, Lunar and Planetary Institute Con- Campbell, D. B., G. J. Black, L. M. Carter, A. A. ference Abstracts, in , vol. 15, p. 120, 1984a. Hine, J. L. Margot, M. C. Nolan, and S. J. Os- Campbell, D. B., J. W. Head, J. K. Harmon, and tro, Lunar and Planetary Institute Conference A. A. Hine, Lunar and Planetary Institute Con- Abstracts, in , vol. 33, p. 1941, 2002. ference Abstracts, in , vol. 15, pp. 123{124, 1984b. Daubar, I. J., M. C. Nolan, D. B. Campbell, A. Cre- Campbell, D. B., J. W. Head, J. K. Harmon, and spo, J. K. Harmon, A. A. Hine, P. J. Perillat, A. A. Hine, Volcanism and rift formation in Beta G. Black, S. J. Ostro, L. A. M. Benner, R. F. Regio, Venus: New radar results., LPI Contribu- Jurgens, M. A. Slade, J. D. Giorgini, and J. F. tions, 526, 5, 1984c. Chandler, First Results from the Arecibo Obser- Campbell, D. B., J. W. Head, J. K. Harmon, and vatory Planetary Radar, Bulletin of the American A. A. Hine, Lunar and Planetary Science Con- Astronomical Society, 30, 1390, 1998. ference, in , vol. 15, pp. 8{9, 1984d. Harmon, J. K., D. B. Campbell, A. A. Hine, I. I. Campbell, D. B., J. W. Head, J. K. Harmon, and Shapiro, and B. G. Marsden, Radar observations A. A. Hine, Venus - Volcanism and rift formation of Comet IRAS-Araki-Alcock 1983d, Astrophys. in Beta Regio, Science, 226, 167{170, 1984e. J., , 338, 1071{1093, 1989. Campbell, D. B., J. W. Head, J. K. Harmon, and Head, J. W., D. B. Campbell, A. A. Hine, P. C. A. A. Hine, Planetary Geology and Geophysics Fisher, and D. Senske, Geological Analysis of New Program Report, in , pp. 95{96, 1985. Arecibo Data in the Beta-Guinevere-Eisila and Campbell, D. B., J. W. Head, A. A. Hine, J. K. Themis-Lavinia-Alpha Areas, Bull. American As- Harmon, D. A. Senske, and P. C. Fisher, Styles of tron. Soc., 21, 919, 1989. volcanism on Venus - New Arecibo high resolution Hine, A. A., D. B. Campbell, J. W. Head, and P. C. radar data, Science, 246, 373{377, 1989a. Fisher, Venus: New Arecibo Radar Images, Bull. Campbell, D. B., A. A. Hine, and J. K. Harmon, Lu- American Astron. Soc., 21, 922, 1989. nar and Planetary Institute Conference Abstracts, Larson, S. M., J. R. Johnson, D. Campbell, P. Ford, in , vol. 20, p. 141, 1989b. A. Forni, J. Harmon, A. Hine, B. G. Marsden, I. I. Campbell, D. B., A. A. Hine, J. K. Harmon, D. A. Shapiro, P. M. Millman, A. F. Cook, S. Clifton, Senske, R. W. Vor der Bruegge, P. C. Fisher, J. E. Bortle, and C. S. Morris, Comet IRAS- S. Frank, and J. W. Head, Lunar and Planetary Araki-Alcock (1983d), IAU Circ., 3811, 1, 1983. Institute Conference Abstracts, in , vol. 20, p. 142, 1989c. 2 Mitterer, R. M., M. J. Malone, G. A. Goodfriend, dler, I. I. Shapiro, A. A. Hine, and R. Velez, As- P. K. Swart, U. G. Wortmann, G. A. Logan, D. A. teroid radar astrometry, Astron. J., , 102, 1490{ Feary, and A. C. Hine, Co-Generation of hydro- 1502, 1991c. gen sulfide and methane in marine carbonate sed- Ostro, S. J., K. D. Rosema, D. B. Campbell, J. F. iments, Geophys. Res. Lett., , 28, 3931, 2001. Chandler, A. A. Hine, and R. S. Hudson, Asteroid Nolan, M. C., J. K. Harmon, A. A. Hine, D. B. 1986 DA - Radar evidence for a metallic compo- Campbell, P. J. Perillat, G. Black, I. J. Daubar, sition, Science, 252, 1399{1404, 1991d. S. J. Ostro, L. A. M. Benner, R. F. Jurgens, Senske, D. A., D. B. Campbell, J. W. Head, A. A. M. A. Slade, J. D. Giorgini, and J. F. Chandler, Hine, and P. C. Fisher, Geology of the Themis- First Results from the Arecibo Observatory Plan- Alpha-Lada Region of the Venus Southern Hemi- etary Radar, Bulletin of the American Astronom- sphere: Results from Arecibo Radar Imaging, ical Society, 30, 1036, 1998. Bull. American Astron. Soc., 22, 1064, 1990. Nolan, M. C., D. B. Campbell, A. A. Hine, J.-L. Senske, D. A., P. C. Fisher, J. W. Head, J. C. Margot, P. J. Perillat, S. J. Ostro, L. A. M. Ben- Aubele, D. B. Campbell, N. Stacy, E. R. Stofan, ner, J. D. Giorgini, D. K. Yeomans, and J. F. A. A. Hine, and J. K. Harmon, Geology and tec- Chandler, Arecibo Radar Observations of Near- tonics of Beta Regio, Guinevere Planitia, Sedna Earth Asteroids in 1999, AAS/Division for Plan- Planitia, and Western Eistla Regio, Venus - Re- etary Sciences Meeting, 31, 0, 1999. sults from Arecibo image data, Earth Moon and Nolan, M. C., J.-L. Margot, E. S. Howell, A. A. Hine, Planets, 55, 163{214, 1991a. A. Crespo, V. Negr´on,P. J. Perrilat, C. Magri, Senske, D. A., J. W. Head, C. P. Fisher, S. J. Ostro, J. D. Giorgini, and D. B. Camp- A. Decharon, S. L. Frank, S. T. Keddie, K. M. bell, Arecibo Radar Observations of Main-Belt Roberts, D. B. Campbell, A. A. Hine, and E. R. Asteroids in 2000, AAS/Division for Planetary Stofan, Geology and tectonics of the THEMIS Sciences Meeting, 32, 0, 2000. Regio-Lavinia Planitia-Alpha Regio-Lada Terra Ostro, S. J., D. B. Cambpell, A. Hine, and I. I. area, Venus - Results from Arecibo image data, Shapiro, Radar Echoes from Asteroid 1986 DA Earth Moon and Planets, 55, 97{161, 1991b. Indicate a Metallic Composition, Bull. American Shapiro, I. I., B. G. Marsden, F. L. Whipple, D. B. Astron. Soc., 19, 840, 1987. Campbell, J. K. Harmon, A. A. Hine, and G. H. Ostro, S. J., D. B. Campbell, I. I. Shapiro, J. F. Pettengill, Interpretations of Radar Observations Chandler, and A. A. Hine, Asteroid Radar As- of Comets (Invited) ( 15 min. ), Bull. American tronomy: Recent Arecibo Observations, Bull. Astron. Soc., 15, 800, 1983. American Astron. Soc., 20, 863, 1988. Shapiro, I. I., J. F. Chandler, D. B. Campbell, A. A. Ostro, S. J., D. B. Campbell, A. A. Hine, I. I. Hine, and N. J. S. Stacy, The spin vector of Shapiro, J. F. Chandler, C. L. Werner, and K. D. Venus, Astron. J., , 100, 1363{1368, 1990. Rosema, Radar images of asteroid 1627 Ivar, As- Stofan, E. R., D. B. Campbell, J. W. Head, and tron. J., , 99, 2012{2018, 1990a. A. A. Hine, Lunar and Planetary Institute Con- Ostro, S. J., J. F. Chandler, A. A. Hine, K. D. ference Abstracts, in , vol. 16, pp. 823{824, 1985. Rosema, I. I. Shapiro, and D. K. Yeomans, Radar Wyckoff, S., P. A. Wehinger, Z. Ceplecha, M. Simek, images of asteroid 1989 PB, Science, 248, 1523{ V. Vanysek, L. Kresak, D. Campbell, A. Forni, 1528, 1990b. J. Harmon, A. Hine, B. Marsden, G. Pettengill, Ostro, S. J., D. B. Campbell, J. F. Chandler, A. A. I. Shapiro, J. Gibson, E. Everhart, R. E. Mc- Hine, R. S. Hudson, K. D. Rosema, and I. I. Crosky, A. C. Gilmore, and P. M. Kilmartin, Shapiro, NASA Reports of Planetary Astronomy, Comet Sugano-Saigusa-Fujikawa (1983e), IAU in , p. 174, 1991a. Circ., 3832, 1, 1983. Ostro, S. J., J. K. Harmon, A. A. Hine, P. Per- illat, D. B. Campbell, J. F. Chandler, I. I. Shapiro, R. F. Jurgens, and D. K. Yeomans, High-Resolution Radar Ranging to Near-Earth This preprint was prepared with AGU's LATEX macros Asteroids, Bull. American Astron. Soc., 23, 1144, v5.01, with the extension package `AGU++' by P. W. Daly, 1991b. version 1.5e from 1997/11/18. Ostro, S. J., R.
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Determining Venusian Lithospheric Thickness Using Frequency-Length Statistics of Fractures
    Determining Venusian Lithospheric Thickness using Frequency-Length Statistics of Fractures Alyssa M. Beach California State University, Fullerton, Department of Geological Sciences May 2005 ABTRACT Frequency-length statistics were applied to the north-west trending set of irregularly spaced curvilinear radar-bright fractures on Venus’ Guinevere Planitia, located at 30º N latitude between 330º E and 333º E longitudes, to determine the thickness of the elastic lithosphere in this region. These fractures are interpreted as shear fractures in the lithosphere which have propagated up through the surface basalt flow. According to Scholz & Shaw (2002) cracks that penetrate through the entire thickness of a brittle layer have a surface length of twice their height. A log-log plot of the length distribution of this set of shear cracks has a sharp bend at a length of about 80 km. This reflects the transition from 2-dimensional growth of a penny-shaped crack in the lithosphere to the 1-dimensional elongation of a crack which has penetrated the elastic lithosphere. This interpretation implies that the lithosphere is roughly 40 km thick, in agreement with other recent estimates based on flexure and analyses of gravity and topography. This interpretation also implies that the 500 Ma resurfacing event suggested by crater statistics was accompanied by the emplacement of extensive flood basalts in the plains regions, and that the global resurfacing event may have been accomplished by global destruction of an older preexisting lithosphere. INTRODUCTION In this study, frequency-length statistics were applied to the Guinevere Planitia to determine the elastic lithospheric thickness of this region.
    [Show full text]
  • Geological Evolution of Lada Terra, Venus
    42nd Lunar and Planetary Science Conference (2011) 1090.pdf GEOLOGICAL EVOLUTION OF LADA TERRA, VENUS. P. Senthil Kumar 1,2 and James W. Head 2, National Geophysical Research Institute, CSIR, Hyderabad 500606, India ([email protected]); 2Department of Geological Sciences, Brown University, Providence, RI02912, USA ([email protected]) Introduction: In this study, we present the history depict outflow features inundating the ejecta deposits. of geologic processes at Lada Terra (V-56 Quadrangle) Lineaments are abundant in V-56. These are in the southern hemisphere of Venus, through geologic principally secondary deformation features such as mapping at 1:5,000,000 scale, using 250-m-per-pixel fractures, faults, grabens, linear ridges, and wrinkle Magellan SAR image and ArcGIS 9.3 software, ridges. In V-56, there are three concentric coronae following the methods of geologic unit definition and (e.g., Quetzalpetlatl, Eithinaho, and Serpantium), one characterization of planetary surfaces [1-3]. Geological double ringed corona (Otygen), seven asymmetric units in the V-56 were products of tectonics, coronae (e.g., Derceto, Demvamvit, Toyo-uke, volcanism, and impact cratering with characteristic Dyamenyuo and Ekhe-Burkhan) and one astra-like geomorphic expressions (Figure 1). Basically, this structure (Loo-Wit Mons). Radial and concentric quadrangle addresses how coronae evolved in fractures and grabens define the coronae structures. association with regional extensional belts, in addition The large extensional belts are composed of fractures, to evolution of tessera, regional plains and impact grabens and strike-slip zones. The most prominent craters, which are also significant geological units of tectonic features are the traverses of four large-scale Lada Terra.
    [Show full text]
  • Observational Constraints on Venus Surface Composition and Geologic History
    Comparative Tectonics and Geodynamics (2015) 5025.pdf OBSERVATIONAL CONSTRAINTS ON VENUS SURFACE COMPOSITION AND GEOLOGIC HISTORY. M. S. Gilmore, Dept. Earth & Environmental Sciences, Wesleyan University, 265 Church St., Mid- dletown CT 06457 [email protected], www.wesleyan.edu/planetary. Introduction: The Venus atmosphere precludes hematite, the high emissivity anomalies correspond to the visible-near-infrared hyperspectral observations more mafic (less weathered) compositions [10] and the that have revolutionized the study of the surface com- low emissivity anomalies correspond to more felsic position of mars, Mercury and the Moon. Our under- compositions [7, 9, 11]. If the weathering rate of bas- standing of the surface composition the Earth-sized alt to hematite is fast, this suggests the volcanoes are planet Venus is derived wholly from 1) geochemical geologically young [10]. analyses of rocks from 7 landing sites, 2) observations Tesserae – How felsic? The radiance flux corre- of the surface at 1µm through a spectral window in the sponds to low emissivity values for tessera terrain atmosphere. These data are supported by theoretical leading to the following radical conclusions about Ve- and laboratory studies of the weathering, rheology and nus: 1) tesserae have a different (more felsic, less fer- spectra of candidate rocks at Venus temperatures and rous) primary composition. This can include Archean atmospheric composition. – type (TTG) granites formed by dehydration of under- Bulk Composition: The Venera and Vega landers thrust slabs or the lower crust, or true granites which acquired drilled samples (rock + soil) at 7 locations on may require a mature global recycling mechanism in- Venus. Major elements were measured by XRF at 3 troducing water-rich rocks.
    [Show full text]
  • Constraints on the Interior Dynamics of Venus
    Constraints on the Interior Dynamics of Venus Sue Smrekar Jet Propulsion Laboratory Venus: Earth’s evil twin or distant cousin? Twin: Diameter is 5% smaller Same bulk composition Once had an ocean’s worth of water Average surface age: 0.3-1 b.y Evil Twin: Surface T ~460°C Surface P ~90 bars Atmosphere: CO greenhouse 2 No magnetic field Distant Cousin: No terrestial style plate tectonics Outline Available constraints Geologic overview Composition Topography, gravity Recent data Evidence for “Continents” Evidence for recent hotspot volcanism Implications for the interior Inferences (myths?) Catastrophic resurfacing No evidence for plate tectonic processes Venus interior is dry Geologic Overview Main Features Hotspots (analogs to Hawaii, etc) Coronae (smaller scale upwelling, delamination, combo) Chasmata (Troughs with fractures) Rifts (Chasmata w/graben) Subduction? (analogs to ocean-ocean subduction) Tessera Plateaus (highly deformed, isostatically compensated) Analogs to continents? Data: Magellan Mission: Early 1990s Topo (12-25 km footprint) Synthetic Apeture Radar Imaging (~125 m pixel) Gravity (Deg. & Order 40-90, ~500-250 km) Derived surface thermal emissivity from Venus Express Hotspots, Coronae, , ~10 Hotspots ~ 500 Coronae Type 1 Coronae + Type 2 Coronae Flow fields N. Hemisphere Hotspots S. Hemisphere Hotspots Hotspots, Coronae, , Type 1 Coronae + Type 2 Coronae Flow fields N. Hemisphere Hotspots S. Hemisphere Hotspots Hotspots, Coronae, , Type 1 Coronae + Type 2 Coronae Flow fields N. Hemisphere Hotspots S. Hemisphere Hotspots Hotspots, Coronae, , Rifts Type 1 Coronae + Type 2 Coronae Flow fields N. Hemisphere Hotspots S. Hemisphere Hotspots Soviet landers (1970s) had x- ray fluorescence and gamma- ray spectrometers. Composition Compositions all found to be basalts to alkaline basalts.
    [Show full text]
  • Nightwatch PVAA Gen Meeting 02/26/16 PVAA Officers and Board
    Carl Sagan If you wish to make an apple pie from scratch, scratch, from pie an apple make to wish If you universe. the invent first must you Volume 36 Number 3 nightwatch March 2016 PVAA Gen Meeting 02/26/16 The Claremont Library is adding a third telescope to its was 12 separate areas of the galaxy seamlessly stitched together collection. You can check out the telescope for a week at a time. for a 5800 x 7700 pixel masterpiece. The photographer used the This telescope is a duplicate of the other two currently available. Slooh 17 inch reflector with a 2939mm focal length (f/6.8). 623 “Available” means you can check them out of the library, just exposures were stitched together to create the final image. like a book, but there is a waiting list that you would be put on. Eldred Tubbs brought in a graph showing gravity waves, and As the list is several (almost 6) months long, the 3rd telescope had a small presentation of what they had to go through to detect will, hopefully, reduce the wait. Many library patrons, after these waves. returning the telescope back to the library, immediately put their On a separate note, the April issue of Sky & Telescope has names back on the waiting list. Without a doubt, the Library an article entitled “Big Fish, Small Tackle” (Grab your Telescopes are a big hit. The PVAA maintains the telescopes, binoculars and drop a line in the deep pool of the Virgo Galaxy making sure they are kept in working order.
    [Show full text]
  • Vénus Les Transits De Vénus L’Exploration De Vénus Par Les Sondes Iconographie, Photos Et Additifs
    VVÉÉNUSNUS Introduction - Généralités Les caractéristiques de Vénus Les transits de Vénus L’exploration de Vénus par les sondes Iconographie, photos et additifs GAP 47 • Olivier Sabbagh • Février 2015 Vénus I Introduction – Généralités Vénus est la deuxième des huit planètes du Système solaire en partant du Soleil, et la sixième par masse ou par taille décroissantes. La planète Vénus a été baptisée du nom de la déesse Vénus de la mythologie romaine. Symbolisme La planète Vénus doit son nom à la déesse de l'amour et de la beauté dans la mythologie romaine, Vénus, qui a pour équivalent Aphrodite dans la mythologie grecque. Cythère étant une épiclèse homérique d'Aphrodite, l'adjectif « cythérien » ou « cythéréen » est parfois utilisé en astronomie (notamment dans astéroïde cythérocroiseur) ou en science-fiction (les Cythériens, une race de Star Trek). Par extension, on parle d'un Vénus à propos d'une très belle femme; de manière générale, il existe en français un lexique très développé mêlant Vénus au thème de l'amour ou du plaisir charnel. L'adjectif « vénusien » a remplacé « vénérien » qui a une connotation moderne péjorative, d'origine médicale. Les cultures chinoise, coréenne, japonaise et vietnamienne désignent Vénus sous le nom d'« étoile d'or », et utilisent les mêmes caractères (jīnxīng en hanyu, pinyin en hiragana, kinsei en romaji, geumseong en hangeul), selon la « théorie » des cinq éléments. Vénus était connue des civilisations mésoaméricaines; elle occupait une place importante dans leur conception du cosmos et du temps. Les Nahuas l'assimilaient au dieu Quetzalcoatl, et, plus précisément, à Tlahuizcalpantecuhtli (« étoile du matin »), dans sa phase ascendante et à Xolotl (« étoile du soir »), dans sa phase descendante.
    [Show full text]
  • Comparison of Flat-Topped Stellate Seamounts on Earth's Seafloor with Stellate Domes on Venus Using Side-Scan Sonar and Magellan Synthetic Aperture Radar
    EPSL Comparison of flat-topped stellate seamounts on Earth's seafloor with stellate domes on Venus using side-scan sonar and Magellan synthetic aperture radar M.H. Bulmer a,*, J.B. Wilson etary Studies, National Air and Space Museum, Smithsonian Ins 6 ~epartmentpf Geology, Royal Holloway, University of Landon, Eghm Surrey, m0OEX, UK Received 14 September 1998; revised version received 30 April 1999; accepted 21 June 1999 Abstract The diameters of many domes on Venus imaged by the Magellan synthetic aperture radar (aAR) are an order of magnitude larger than terrestrial subaerial domes; however, surveys of the seafloor using sonar imaging systems such as GLORIA (Geological Long Range Inclined Asdic) and SeaBEAM have revealed flat-topped volcanic features with similar diameters, volumes and slope angles. Suggested analogies between domes on Venus and seamounts on the northern East Pacific Rise and off Hawaii have been tested by D.K. Smith [J. Volcanol. Geotherm. Res. 73 (1996) 47-64] using comparisons of size and shape and significant differences identified. GLORIA images of flat-topped seamounts near Hawaii show them to have stellate planforms. Over half of the total population of 375 domes on Venus have been modified and many have stellate planforms. We have focused on the similarities in stellate planforms between flat-topped seamounts and modified domes on Venus. We have used GLORIA sonar and Magellan radar data to constrain the formation and evolution of both flat-topped seamounts on the ocean floor and volcanic domes on Venus to see if the processes that formed them are similar. We propose that flat-topped seamounts on the Hawaiian Ridge are built on sediments overlying the oceanic crust and that available evidence supports three processes that can form stellate margins: (1) radial dike intrusions related to flank rift zones; (2) dike intrusions which cause slope failures; and (3) gravitational slope failures unrelated to intrusions.
    [Show full text]
  • Naše Osončje 1
    NAŠE OSONČJE 1. Nekaj o sončevem sistemu: Sončev sistem je edini del vesolja, ki ga lahko raziskujemo z vesoljskimi plovili. Sestavlja ga ena zvezda (Sonce) in devet planetov. Zelo očitno je sončni sistem razdeljen na dva dela; najprej pridejo notranji planeti, ki jih imenujemo tudi kamniti planeti, nato pa zunanji planeti, imenovani tudi kot plinasti planeti. Med njimi je velik presledek, po katerem se giblje asteroidni pas. Notranje planete sončevega sistema sestavljajo štirje planeti, ki sem jih opisal spodaj na bolj ali manj natančno. Ti planeti so Merkur, Venera, Zemlja in Mars. Od vseh teh štirih planetov imata svoje satelite samo Zemlja (Luna) in Mars (Deimos in Fobos). Merkur Venera Zemlja Mars Oddaljenost od Sonca (milijoni km) (srednja) 57,9 108,2 149,6 227,9 Obhodni čas (dni) 87,97 224,7 365,3 687 Vrtilni čas (ekvatorialni) 58,646 d 234,16 d 23h 56m 4s 24h 37m 23s Naklon osi (stopinje) 2 178 23,4 24 Ubežna hitrost (km/s) 4,25 10,36 11,18 5,03 Gravitacijski pospešek (Zemlja=1) 0,38 0,90 1 0,38 Površinska temperatura podnevi (°C) +427 +480 +22 -23 Premer na ekvatorju (km) 4878 12104 12756 6794 Masa (Zemlja=1) 0,055 0,815 1 0,11 2. Opis planetov: 1. MerkUR Že stare kulture so poznale pet nebesnih teles - planetov, za katere je značilno, da se po nebu premikajo. Med nje sodi tudi Merkur. Prvi naj bi ga že pred 3000 leti opazovali Sumerci. Stari Grki so mu nadeli ime po hitronogem selu bogov - Merkurju. Johannes Hevelius (1611 - 1681) je kot prvi opazil Merkurjeve mene.
    [Show full text]
  • The Importance of Venus Tesserae and Remaining Open Questions
    Venus Tesserae: The importance of Venus tesserae and remaining open questions White Paper Jennifer L. Whitten1, Martha S. Gilmore2, Jeremy Brossier2, Paul K. Byrne3, Joshua J. Knicely4, Suzanne E. Smrekar5 1Dept. of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118 [email protected], 504-862-3257 2Dept. of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459 3Marine, Earth, and Atmospheric Sciences Dept., North Carolina State University, Raleigh, NC 27695 4Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775 5Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91024 All cosigners for this white paper are listed here. Tesserae are some of the oldest terrains on Venus and, depending on the chronology model used, correspond to an age of 420 Ma to 1.1 Ga. This average tessera age overlaps with 3D climate simulations [Way et al., 2016] that show Venus was more habitable ~1–3 Gyr. Thus, the tesserae may have formed during a period with substantially different climactic conditions than today and may even preserve a record of this more temperate climate. Evidence indicates that during tessera formation the lithospheric thermal gradient and surface strain rates were higher than today [Brown and Grimm, 1997]. Thus, tesserae represent a record of a substantially different Venus from what is observed today. The identification of multiple tesserae morphologies [e.g., Vorder Bruegge and Head, 1989; Bindschadler and Head, 1991; Hansen and Willis, 1996] hints at several processes that formed tesserae, rather than one mechanism. Observations reveal just how complex the tesserae are and how much information is likely preserved in these materials; tesserae hold the oldest record of the climate and internal processes on Venus.
    [Show full text]
  • Venus Voyage 2050 White Paper Wilson, Widemann Et Al
    Venus Voyage 2050 White Paper Wilson, Widemann et al. August 2019 Venus: Key to understanding the evolution of terrestrial planets A response to ESA’s Call for White Papers for the Voyage 2050 long- term plan in the ESA Science Programme. ? Contact Scientist: Colin Wilson Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, UK. E-mail: [email protected] Venus Voyage 2050 White Paper Wilson, Widemann et al. August 2019 Executive summary In this Voyage 2050 White Paper, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Why are the terrestrial planets so different from each other? Venus, our nearest neighbour, should be the most Earth-like of all our planetary siblings. Its size, bulk composition and solar energy input are very similar to those of the Earth. Its original atmosphere was probably similar to that of early Earth, with large atmospheric abundances of carbon dioxide and water. Furthermore, the young sun’s fainter output may have permitted a liquid water ocean on the surface. While on Earth a moderate climate ensued, Venus experienced runaway greenhouse warming, which led to its current hostile climate. How and why did it all go wrong for Venus? What lessons can we learn about the life story of terrestrial planets/exoplanets in general, whether in our solar system or in others? Comparing the interior, surface and atmosphere evolution of Earth, Mars and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere.
    [Show full text]
  • Bond 210X275 Chimie Atkins Jones 11/09/2014 09:47 Page1
    Bond 210X275_chimie_atkins_jones 11/09/2014 09:47 Page1 Bond Bond L’exploration du système solaire Bond L’exploration Édition française revue et corrigée La planétologie à vivre comme un roman Exploration du système solaire est la première traduction policier actualisée et corrigée en français d’Exploring the Solar Destiné aux lecteurs et étudiants ne possédant que peu du système solaire System. Le traducteur a collaboré avec l’auteur pour ou pas de connaissances scientifiques, cet ouvrage très apporter plus de 70 mises à jour dont 7 nouvelles images. richement illustré prouve que la planétologie peut être racontée comme un roman policier, pratiquement sans Beau comme un livre d’art mathématiques. Les nombreuses illustrations en couleur montrent la vie quo- tidienne des mondes étranges et fascinants de notre petit Entre mille autres exemples, on y apprend : coin de l’Univers. À partir des plus récentes découvertes de Où se placer pour admirer deux couchers de Soleil par jour l’exploration du Système Solaire, Peter Bond offre un panora- sur Mercure, la planète de roche et de fer, brûlante d’un côté ma exhaustif et exemplaire des planètes, lunes et autres et congelée de l’autre ; comment détecter un océan d’eau Traduction de Nicolas Dupont-Bloch petits corps en orbite autour du Soleil et des étoiles proches. salée sur une lune de Saturne, protégé de l’espace par une banquise qui, sans cesse, se fracture, laisse fuser des geysers, Une exploration surprenante puis regèle ; pourquoi Vénus tourne à l’envers ; comment on Le texte, riche mais limpide, est ponctué d’anecdotes sur déduit qu’une planète autour d’une autre étoile possède une les hasards des découvertes, les trésors d’ingéniosité pour surface de goudron percée de montagnes de graphite.
    [Show full text]