The Ocaml System Release 4.05

Total Page:16

File Type:pdf, Size:1020Kb

The Ocaml System Release 4.05 The OCaml system release 4.05 Documentation and user's manual Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier R´emy and J´er^omeVouillon July 13, 2017 Copyright © 2017 Institut National de Recherche en Informatique et en Automatique 2 Contents I An introduction to OCaml 11 1 The core language 13 1.1 Basics........................................... 13 1.2 Data types......................................... 14 1.3 Functions as values.................................... 15 1.4 Records and variants................................... 16 1.5 Imperative features.................................... 18 1.6 Exceptions......................................... 20 1.7 Symbolic processing of expressions........................... 21 1.8 Pretty-printing...................................... 22 1.9 Standalone OCaml programs............................... 23 2 The module system 25 2.1 Structures......................................... 25 2.2 Signatures......................................... 26 2.3 Functors.......................................... 27 2.4 Functors and type abstraction.............................. 29 2.5 Modules and separate compilation............................ 31 3 Objects in OCaml 33 3.1 Classes and objects.................................... 33 3.2 Immediate objects..................................... 36 3.3 Reference to self...................................... 37 3.4 Initializers......................................... 38 3.5 Virtual methods...................................... 38 3.6 Private methods...................................... 40 3.7 Class interfaces...................................... 42 3.8 Inheritance......................................... 43 3.9 Multiple inheritance.................................... 43 3.10 Parameterized classes................................... 44 3.11 Polymorphic methods................................... 47 3.12 Using coercions...................................... 50 3.13 Functional objects..................................... 54 3.14 Cloning objects...................................... 55 3.15 Recursive classes..................................... 58 1 2 3.16 Binary methods...................................... 58 3.17 Friends........................................... 60 4 Labels and variants 63 4.1 Labels........................................... 63 4.2 Polymorphic variants................................... 69 5 Advanced examples with classes and modules 73 5.1 Extended example: bank accounts............................ 73 5.2 Simple modules as classes................................ 79 5.3 The subject/observer pattern.............................. 84 II The OCaml language 89 6 The OCaml language 91 6.1 Lexical conventions.................................... 91 6.2 Values........................................... 95 6.3 Names........................................... 97 6.4 Type expressions..................................... 100 6.5 Constants......................................... 103 6.6 Patterns.......................................... 104 6.7 Expressions........................................ 108 6.8 Type and exception definitions.............................. 121 6.9 Classes........................................... 123 6.10 Module types (module specifications).......................... 130 6.11 Module expressions (module implementations)..................... 134 6.12 Compilation units..................................... 137 7 Language extensions 139 7.1 Integer literals for types int32, int64 and nativeint ................ 139 7.2 Recursive definitions of values.............................. 139 7.3 Lazy patterns....................................... 141 7.4 Recursive modules..................................... 141 7.5 Private types........................................ 142 7.6 Local opens........................................ 145 7.7 Record and object notations............................... 146 7.8 Explicit polymorphic type annotations......................... 147 7.9 Locally abstract types.................................. 147 7.10 First-class modules.................................... 149 7.11 Recovering the type of a module............................. 151 7.12 Substituting inside a signature.............................. 151 7.13 Type-level module aliases................................. 152 7.14 Explicit overriding in class definitions.......................... 154 7.15 Overriding in open statements.............................. 154 7.16 Generalized algebraic datatypes............................. 155 3 7.17 Syntax for Bigarray access................................ 160 7.18 Attributes......................................... 160 7.19 Extension nodes...................................... 167 7.20 Quoted strings....................................... 169 7.21 Exception cases in pattern matching.......................... 169 7.22 Extensible variant types................................. 170 7.23 Generative functors.................................... 171 7.24 Extension-only syntax.................................. 171 7.25 Inline records....................................... 172 7.26 Local exceptions...................................... 173 7.27 Documentation comments................................ 173 III The OCaml tools 177 8 Batch compilation (ocamlc) 179 8.1 Overview of the compiler................................. 179 8.2 Options........................................... 180 8.3 Modules and the file system............................... 191 8.4 Common errors...................................... 192 8.5 Warning reference..................................... 194 9 The toplevel system (ocaml) 199 9.1 Options........................................... 200 9.2 Toplevel directives..................................... 207 9.3 The toplevel and the module system.......................... 209 9.4 Common errors...................................... 210 9.5 Building custom toplevel systems: ocamlmktop ..................... 210 9.6 Options........................................... 211 10 The runtime system (ocamlrun) 213 10.1 Overview.......................................... 213 10.2 Options........................................... 214 10.3 Dynamic loading of shared libraries........................... 216 10.4 Common errors...................................... 216 11 Native-code compilation (ocamlopt) 219 11.1 Overview of the compiler................................. 219 11.2 Options........................................... 220 11.3 Common errors...................................... 232 11.4 Running executables produced by ocamlopt...................... 232 11.5 Compatibility with the bytecode compiler....................... 232 4 12 Lexer and parser generators (ocamllex, ocamlyacc) 235 12.1 Overview of ocamllex .................................. 235 12.2 Syntax of lexer definitions................................ 236 12.3 Overview of ocamlyacc .................................. 241 12.4 Syntax of grammar definitions.............................. 241 12.5 Options........................................... 244 12.6 A complete example.................................... 245 12.7 Common errors...................................... 246 12.8 Module Depend : Module dependencies.......................... 247 13 The browser/editor (ocamlbrowser) 249 14 The documentation generator (ocamldoc) 251 14.1 Usage............................................ 251 14.2 Syntax of documentation comments........................... 258 14.3 Custom generators.................................... 268 14.4 Adding command line options.............................. 271 15 The debugger (ocamldebug) 273 15.1 Compiling for debugging................................. 273 15.2 Invocation......................................... 273 15.3 Commands......................................... 274 15.4 Executing a program................................... 275 15.5 Breakpoints........................................ 278 15.6 The call stack....................................... 278 15.7 Examining variable values................................ 279 15.8 Controlling the debugger................................. 280 15.9 Miscellaneous commands................................. 283 15.10 Running the debugger under Emacs........................... 283 16 Profiling (ocamlprof) 285 16.1 Compiling for profiling.................................. 285 16.2 Profiling an execution................................... 286 16.3 Printing profiling information.............................. 286 16.4 Time profiling....................................... 287 17 The ocamlbuild compilation manager 289 18 Interfacing C with OCaml 291 18.1 Overview and compilation information......................... 291 18.2 The value type...................................... 298 18.3 Representation of OCaml data types.......................... 299 18.4 Operations on values................................... 302 18.5 Living in harmony with the garbage collector..................... 305 18.6 A complete example.................................... 309 18.7 Advanced topic: callbacks from C to OCaml...................... 313 5 18.8 Advanced example with callbacks............................ 317 18.9 Advanced topic: custom blocks............................. 319 18.10 Advanced topic: cheaper C call............................. 323 18.11 Advanced topic: multithreading............................. 325 18.12 Building mixed C/OCaml libraries: ocamlmklib .................... 328 19 Optimisation with Flambda
Recommended publications
  • Bit Shifts Bit Operations, Logical Shifts, Arithmetic Shifts, Rotate Shifts
    Why bit operations Assembly languages all provide ways to manipulate individual bits in multi-byte values Some of the coolest “tricks” in assembly rely on Bit Shifts bit operations With only a few instructions one can do a lot very quickly using judicious bit operations And you can do them in almost all high-level ICS312 programming languages! Let’s look at some of the common operations, Machine-Level and starting with shifts Systems Programming logical shifts arithmetic shifts Henri Casanova ([email protected]) rotate shifts Shift Operations Logical Shifts The simplest shifts: bits disappear at one end A shift moves the bits around in some data and zeros appear at the other A shift can be toward the left (i.e., toward the most significant bits), or toward the right (i.e., original byte 1 0 1 1 0 1 0 1 toward the least significant bits) left log. shift 0 1 1 0 1 0 1 0 left log. shift 1 1 0 1 0 1 0 0 left log. shift 1 0 1 0 1 0 0 0 There are two kinds of shifts: right log. shift 0 1 0 1 0 1 0 0 Logical Shifts right log. shift 0 0 1 0 1 0 1 0 Arithmetic Shifts right log. shift 0 0 0 1 0 1 0 1 Logical Shift Instructions Shifts and Numbers Two instructions: shl and shr The common use for shifts: quickly multiply and divide by powers of 2 One specifies by how many bits the data is shifted In decimal, for instance: multiplying 0013 by 10 amounts to doing one left shift to obtain 0130 Either by just passing a constant to the instruction multiplying by 100=102 amounts to doing two left shifts to obtain 1300 Or by using whatever
    [Show full text]
  • Mod Perl 2.0 Source Code Explained 1 Mod Perl 2.0 Source Code Explained
    mod_perl 2.0 Source Code Explained 1 mod_perl 2.0 Source Code Explained 1 mod_perl 2.0 Source Code Explained 15 Feb 2014 1 1.1 Description 1.1 Description This document explains how to navigate the mod_perl source code, modify and rebuild the existing code and most important: how to add new functionality. 1.2 Project’s Filesystem Layout In its pristine state the project is comprised of the following directories and files residing at the root direc- tory of the project: Apache-Test/ - test kit for mod_perl and Apache2::* modules ModPerl-Registry/ - ModPerl::Registry sub-project build/ - utilities used during project build docs/ - documentation lib/ - Perl modules src/ - C code that builds libmodperl.so t/ - mod_perl tests todo/ - things to be done util/ - useful utilities for developers xs/ - source xs code and maps Changes - Changes file LICENSE - ASF LICENSE document Makefile.PL - generates all the needed Makefiles After building the project, the following root directories and files get generated: Makefile - Makefile WrapXS/ - autogenerated XS code blib/ - ready to install version of the package 1.3 Directory src 1.3.1 Directory src/modules/perl/ The directory src/modules/perl includes the C source files needed to build the libmodperl library. Notice that several files in this directory are autogenerated during the perl Makefile stage. When adding new source files to this directory you should add their names to the @c_src_names vari- able in lib/ModPerl/Code.pm, so they will be picked up by the autogenerated Makefile. 1.4 Directory xs/ Apache2/ - Apache specific XS code APR/ - APR specific XS code ModPerl/ - ModPerl specific XS code maps/ - tables/ - Makefile.PL - 2 15 Feb 2014 mod_perl 2.0 Source Code Explained 1.4.1 xs/Apache2, xs/APR and xs/ModPerl modperl_xs_sv_convert.h - modperl_xs_typedefs.h - modperl_xs_util.h - typemap - 1.4.1 xs/Apache2, xs/APR and xs/ModPerl The xs/Apache2, xs/APR and xs/ModPerl directories include .h files which have C and XS code in them.
    [Show full text]
  • Typedef in C
    CC -- TTYYPPEEDDEEFF http://www.tutorialspoint.com/cprogramming/c_typedef.htm Copyright © tutorialspoint.com The C programming language provides a keyword called typedef, which you can use to give a type a new name. Following is an example to define a term BYTE for one-byte numbers: typedef unsigned char BYTE; After this type definitions, the identifier BYTE can be used as an abbreviation for the type unsigned char, for example:. BYTE b1, b2; By convention, uppercase letters are used for these definitions to remind the user that the type name is really a symbolic abbreviation, but you can use lowercase, as follows: typedef unsigned char byte; You can use typedef to give a name to user defined data type as well. For example you can use typedef with structure to define a new data type and then use that data type to define structure variables directly as follows: #include <stdio.h> #include <string.h> typedef struct Books { char title[50]; char author[50]; char subject[100]; int book_id; } Book; int main( ) { Book book; strcpy( book.title, "C Programming"); strcpy( book.author, "Nuha Ali"); strcpy( book.subject, "C Programming Tutorial"); book.book_id = 6495407; printf( "Book title : %s\n", book.title); printf( "Book author : %s\n", book.author); printf( "Book subject : %s\n", book.subject); printf( "Book book_id : %d\n", book.book_id); return 0; } When the above code is compiled and executed, it produces the following result: Book title : C Programming Book author : Nuha Ali Book subject : C Programming Tutorial Book book_id : 6495407 typedef vs #define The #define is a C-directive which is also used to define the aliases for various data types similar to typedef but with following differences: The typedef is limited to giving symbolic names to types only where as #define can be used to define alias for values as well, like you can define 1 as ONE etc.
    [Show full text]
  • Enum, Typedef, Structures and Unions CS 2022: Introduction to C
    Enum, Typedef, Structures and Unions CS 2022: Introduction to C Instructor: Hussam Abu-Libdeh Cornell University (based on slides by Saikat Guha) Fall 2009, Lecture 6 Enum, Typedef, Structures and Unions CS 2022, Fall 2009, Lecture 6 Numerical Types I int: machine-dependent I Standard integers I defined in stdint.h (#include <stdint.h>) I int8 t: 8-bits signed I int16 t: 16-bits signed I int32 t: 32-bits signed I int64 t: 64-bits signed I uint8 t, uint32 t, ...: unsigned I Floating point numbers I float: 32-bits I double: 64-bits Enum, Typedef, Structures and Unions CS 2022, Fall 2009, Lecture 6 Complex Types I Enumerations (user-defined weekday: sunday, monday, ...) I Structures (user-defined combinations of other types) I Unions (same data, multiple interpretations) I Function pointers I Arrays and Pointers of the above Enum, Typedef, Structures and Unions CS 2022, Fall 2009, Lecture 6 Enumerations enum days {mon, tue, wed, thu, fri, sat, sun}; // Same as: // #define mon 0 // #define tue 1 // ... // #define sun 6 enum days {mon=3, tue=8, wed, thu, fri, sat, sun}; // Same as: // #define mon 3 // #define tue 8 // ... // #define sun 13 Enum, Typedef, Structures and Unions CS 2022, Fall 2009, Lecture 6 Enumerations enum days day; // Same as: int day; for(day = mon; day <= sun; day++) { if (day == sun) { printf("Sun\n"); } else { printf("day = %d\n", day); } } Enum, Typedef, Structures and Unions CS 2022, Fall 2009, Lecture 6 Enumerations I Basically integers I Can use in expressions like ints I Makes code easier to read I Cannot get string equiv.
    [Show full text]
  • Github: a Case Study of Linux/BSD Perceptions from Microsoft's
    1 FLOSS != GitHub: A Case Study of Linux/BSD Perceptions from Microsoft’s Acquisition of GitHub Raula Gaikovina Kula∗, Hideki Hata∗, Kenichi Matsumoto∗ ∗Nara Institute of Science and Technology, Japan {raula-k, hata, matumoto}@is.naist.jp Abstract—In 2018, the software industry giants Microsoft made has had its share of disagreements with Microsoft [6], [7], a move into the Open Source world by completing the acquisition [8], [9], the only reported negative opinion of free software of mega Open Source platform, GitHub. This acquisition was not community has different attitudes towards GitHub is the idea without controversy, as it is well-known that the free software communities includes not only the ability to use software freely, of ‘forking’ so far, as it it is considered as a danger to FLOSS but also the libre nature in Open Source Software. In this study, development [10]. our aim is to explore these perceptions in FLOSS developers. We In this paper, we report on how external events such as conducted a survey that covered traditional FLOSS source Linux, acquisition of the open source platform by a closed source and BSD communities and received 246 developer responses. organization triggers a FLOSS developers such the Linux/ The results of the survey confirm that the free community did trigger some communities to move away from GitHub and raised BSD Free Software communities. discussions into free and open software on the GitHub platform. The study reminds us that although GitHub is influential and II. TARGET SUBJECTS AND SURVEY DESIGN trendy, it does not representative all FLOSS communities.
    [Show full text]
  • Evaluation of On-Ramp Control Algorithms
    CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY Evaluation of On-ramp Control Algorithms Michael Zhang, Taewan Kim, Xiaojian Nie, Wenlong Jin University of California, Davis Lianyu Chu, Will Recker University of California, Irvine California PATH Research Report UCB-ITS-PRR-2001-36 This work was performed as part of the California PATH Program of the University of California, in cooperation with the State of California Business, Transportation, and Housing Agency, Department of Transportation; and the United States Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation. Final Report for MOU 3013 December 2001 ISSN 1055-1425 CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS Evaluation of On-ramp Control Algorithms September 2001 Michael Zhang, Taewan Kim, Xiaojian Nie, Wenlong Jin University of California at Davis Lianyu Chu, Will Recker PATH Center for ATMS Research University of California, Irvine Institute of Transportation Studies One Shields Avenue University of California, Davis Davis, CA 95616 ACKNOWLEDGEMENTS Technical assistance on Paramics simulation from the Quadstone Technical Support sta is also gratefully acknowledged. ii EXECUTIVE SUMMARY This project has three objectives: 1) review existing ramp metering algorithms and choose a few attractive ones for further evaluation, 2) develop a ramp metering evaluation framework using microscopic simulation, and 3) compare the performances of the selected algorithms and make recommendations about future developments and eld tests of ramp metering systems.
    [Show full text]
  • Presentation on Ocaml Internals
    OCaml Internals Implementation of an ML descendant Theophile Ranquet Ecole Pour l’Informatique et les Techniques Avancées SRS 2014 [email protected] November 14, 2013 2 of 113 Table of Contents Variants and subtyping System F Variants Type oddities worth noting Polymorphic variants Cyclic types Subtyping Weak types Implementation details α ! β Compilers Functional programming Values Why functional programming ? Allocation and garbage Combinatory logic : SKI collection The Curry-Howard Compiling correspondence Type inference OCaml and recursion 3 of 113 Variants A tagged union (also called variant, disjoint union, sum type, or algebraic data type) holds a value which may be one of several types, but only one at a time. This is very similar to the logical disjunction, in intuitionistic logic (by the Curry-Howard correspondance). 4 of 113 Variants are very convenient to represent data structures, and implement algorithms on these : 1 d a t a t y p e tree= Leaf 2 | Node of(int ∗ t r e e ∗ t r e e) 3 4 Node(5, Node(1,Leaf,Leaf), Node(3, Leaf, Node(4, Leaf, Leaf))) 5 1 3 4 1 fun countNodes(Leaf)=0 2 | countNodes(Node(int,left,right)) = 3 1 + countNodes(left)+ countNodes(right) 5 of 113 1 t y p e basic_color= 2 | Black| Red| Green| Yellow 3 | Blue| Magenta| Cyan| White 4 t y p e weight= Regular| Bold 5 t y p e color= 6 | Basic of basic_color ∗ w e i g h t 7 | RGB of int ∗ i n t ∗ i n t 8 | Gray of int 9 1 l e t color_to_int= function 2 | Basic(basic_color,weight) −> 3 l e t base= match weight with Bold −> 8 | Regular −> 0 in 4 base+ basic_color_to_int basic_color 5 | RGB(r,g,b) −> 16 +b+g ∗ 6 +r ∗ 36 6 | Grayi −> 232 +i 7 6 of 113 The limit of variants Say we want to handle a color representation with an alpha channel, but just for color_to_int (this implies we do not want to redefine our color type, this would be a hassle elsewhere).
    [Show full text]
  • Using LLVM for Optimized Lightweight Binary Re-Writing at Runtime
    Using LLVM for Optimized Lightweight Binary Re-Writing at Runtime Alexis Engelke, Josef Weidendorfer Department of Informatics Technical University of Munich Munich, Germany EMail: [email protected], [email protected] Abstract—Providing new parallel programming models/ab- helpful in reducing any overhead of provided abstractions. stractions as a set of library functions has the huge advantage But with new languages, porting of existing application that it allows for an relatively easy incremental porting path for code is required, being a high burden for adoption with legacy HPC applications, in contrast to the huge effort needed when novel concepts are only provided in new programming old code bases. Therefore, to provide abstractions such as languages or language extensions. However, performance issues PGAS for legacy codes, APIs implemented as libraries are are to be expected with fine granular usage of library functions. proposed [5], [6]. Libraries have the benefit that they easily In previous work, we argued that binary rewriting can bridge can be composed and can stay small and focused. However, the gap by tightly coupling application and library functions at libraries come with the caveat that fine granular usage of runtime. We showed that runtime specialization at the binary level, starting from a compiled, generic stencil code can help library functions in inner kernels will severely limit compiler in approaching performance of manually written, statically optimizations such as vectorization and thus, may heavily compiled version. reduce performance. In this paper, we analyze the benefits of post-processing the To this end, in previous work [7], we proposed a technique re-written binary code using standard compiler optimizations for lightweight code generation by re-combining existing as provided by LLVM.
    [Show full text]
  • Relational Representation of the LLVM Intermediate Language
    NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS UNDERGRADUATE STUDIES UNDERGRADUATE THESIS Relational Representation of the LLVM Intermediate Language Eirini I. Psallida Supervisors: Yannis Smaragdakis, Associate Professor NKUA Georgios Balatsouras, PhD Student NKUA ATHENS JANUARY 2014 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεσιακή Αναπαράσταση της Ενδιάμεσης Γλώσσας του LLVM Ειρήνη Ι. Ψαλλίδα Επιβλέποντες: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ Γεώργιος Μπαλατσούρας, Διδακτορικός φοιτητής ΕΚΠΑ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 UNDERGRADUATE THESIS Relational Representation of the LLVM Intermediate Language Eirini I. Psallida R.N.: 1115200700272 Supervisor: Yannis Smaragdakis, Associate Professor NKUA Georgios Balatsouras, PhD Student NKUA ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεσιακή Αναπαράσταση της ενδιάμεσης γλώσσας του LLVM Ειρήνη Ι. Ψαλλίδα Α.Μ.: 1115200700272 Επιβλέπων: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ Γεώργιος Μπαλατσούρας, Διδακτορικός φοιτητής ΕΚΠΑ ΠΕΡΙΛΗΨΗ Περιγράφουμε τη σχεσιακή αναπαράσταση της ενδιάμεσης γλώσσας του LLVM, γνωστή ως LLVM IR. Η υλοποίηση μας παράγει σχέσεις από ένα πρόγραμμα εισόδου σε ενδιάμεση μορφή LLVM. Κάθε σχέση αποθηκεύεται σαν πίνακας βάσης δεδομένων σε ένα περιβάλλον εργασίας Datalog. Αναπαριστούμε το σύστημα τύπων καθώς και το σύνολο εντολών της γλώσσας του LLVM. Υποστηρίζουμε επίσης τους περιορισμούς της γλώσσας προσδιορίζοντάς τους με χρήση της προγραμματιστικής γλώσσας Datalog. ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μεταγλωτιστές, Γλώσσες Προγραμματισμού ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: σχεσιακή αναπαράσταση, ενδιάμεση αναπαράσταση, σύστημα τύπων, σύνολο εντολών, LLVM, Datalog ABSTRACT We describe the relational representation of the LLVM intermediate language, known as the LLVM IR. Our implementation produces the relation contents of an input program in the LLVM intermediate form. Each relation is stored as a database table into a Datalog workspace.
    [Show full text]
  • Kratka Povijest Unixa Od Unicsa Do Freebsda I Linuxa
    Kratka povijest UNIXa Od UNICSa do FreeBSDa i Linuxa 1 Autor: Hrvoje Horvat Naslov: Kratka povijest UNIXa - Od UNICSa do FreeBSDa i Linuxa Licenca i prava korištenja: Svi imaju pravo koristiti, mijenjati, kopirati i štampati (printati) knjigu, prema pravilima GNU GPL licence. Mjesto i godina izdavanja: Osijek, 2017 ISBN: 978-953-59438-0-8 (PDF-online) URL publikacije (PDF): https://www.opensource-osijek.org/knjige/Kratka povijest UNIXa - Od UNICSa do FreeBSDa i Linuxa.pdf ISBN: 978-953- 59438-1- 5 (HTML-online) DokuWiki URL (HTML): https://www.opensource-osijek.org/dokuwiki/wiki:knjige:kratka-povijest- unixa Verzija publikacije : 1.0 Nakalada : Vlastita naklada Uz pravo svakoga na vlastito štampanje (printanje), prema pravilima GNU GPL licence. Ova knjiga je napisana unutar inicijative Open Source Osijek: https://www.opensource-osijek.org Inicijativa Open Source Osijek je član udruge Osijek Software City: http://softwarecity.hr/ UNIX je registrirano i zaštićeno ime od strane tvrtke X/Open (Open Group). FreeBSD i FreeBSD logo su registrirani i zaštićeni od strane FreeBSD Foundation. Imena i logo : Apple, Mac, Macintosh, iOS i Mac OS su registrirani i zaštićeni od strane tvrtke Apple Computer. Ime i logo IBM i AIX su registrirani i zaštićeni od strane tvrtke International Business Machines Corporation. IEEE, POSIX i 802 registrirani i zaštićeni od strane instituta Institute of Electrical and Electronics Engineers. Ime Linux je registrirano i zaštićeno od strane Linusa Torvaldsa u Sjedinjenim Američkim Državama. Ime i logo : Sun, Sun Microsystems, SunOS, Solaris i Java su registrirani i zaštićeni od strane tvrtke Sun Microsystems, sada u vlasništvu tvrtke Oracle. Ime i logo Oracle su u vlasništvu tvrtke Oracle.
    [Show full text]
  • The Mathematical-Function Computation Handbook Nelson H.F
    The Mathematical-Function Computation Handbook Nelson H.F. Beebe The Mathematical-Function Computation Handbook Programming Using the MathCW Portable Software Library Nelson H.F. Beebe Department of Mathematics University of Utah Salt Lake City, UT USA ISBN 978-3-319-64109-6 ISBN 978-3-319-64110-2 (eBook) DOI 10.1007/978-3-319-64110-2 Library of Congress Control Number: 2017947446 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Dedication This book and its software are dedicated to three Williams: Cody, Kahan, and Waite.
    [Show full text]
  • Open Systems December 27, 2019
    1969 1970 1971 1972 1973 UNIX Time-Sharing System UNIX Time-Sharing System UNIX Time-Sharing System UNICS First Edition (V1) Second Edition (V2) Third Edition (V3) september 1969 november 3, 1971 june 12, 1972 february 1973 Open Systems December 27, 2019 Éric Lévénez 1998-2019 <http://www.levenez.com/unix/> 1974 1975 1976 1977 SRI Eunice UNSW Mini Unix may 1977 LSX UNIX Time-Sharing System UNIX Time-Sharing System UNIX Time-Sharing System Fourth Edition (V4) Fifth Edition (V5) Sixth Edition (V6) november 1973 june 1974 may 1975 PWB/UNIX PWB 1.0 1974 july 1, 1977 USG 1.0 TS 1.0 1977 MERT 1974 RT 1.0 1977 1978 1979 1980 UNIX Time-Sharing System Seventh Edition Modified (V7M) december 1980 1BSD 2BSD 2.79BSD march 9, 1978 may 10, 1979 april 1980 3BSD 4.0BSD march 1980 october 1980 UCLA Secure Unix 1979 The Wollongong Group Eunice (Edition 7) 1980 UNSW 01 UNSW 04 january 1978 november 1979 BRL Unix V4.1 july 1979 UNIX 32V V7appenda may 1979 february 12, 1980 UNIX Time-Sharing System Seventh Edition (V7) january 1979 PWB 2.0 PWB 1.2 1978 XENIX OS august 25, 1980 CB UNIX 1 CB CB UNIX 3 UNIX 2 USG 2.0 USG 3.0 TS 2.0 TS 3.0 TS 3.0.1 1978 1979 1980 Interactive IS/1 UCLA Locally Cooperating Unix Systems 1980 Note 1 : an arrow indicates an inheritance like a compatibility, it is not only a matter of source code. Note 2 : this diagram shows complete systems and [micro]kernels like Mach, Linux, the Hurd..
    [Show full text]