Temperature- and Salinity-Decoupled Overproduction of Hydroxyectoine by Chromohalobacter Salexigens

Total Page:16

File Type:pdf, Size:1020Kb

Temperature- and Salinity-Decoupled Overproduction of Hydroxyectoine by Chromohalobacter Salexigens View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Temperature- and Salinity-Decoupled Overproduction of Hydroxyectoine by Chromohalobacter salexigens Javier Rodríguez-Moya,a Montserrat Argandoña,a Fernando Iglesias-Guerra,b Joaquín J. Nieto,a Carmen Vargasa Department of Microbiology and Parasitologya and Department of Organic and Pharmaceutical Chemistry,b Faculty of Pharmacy, University of Seville, Seville, Spain Downloaded from Hydroxyectoine overproduction by the natural producer Chromohalobacter salexigens is presented in this study. Genetically engineered strains were constructed that at low salinity coexpressed, in a vector derived from a native plasmid, the ectoine (ectABC) and hydroxyectoine (ectD) genes under the control of the ectA promoter, in a temperature-independent manner. Hy- droxyectoine production was further improved by increasing the copies of ectD and using a C. salexigens genetic background unable to synthesize ectoines. ctoine and hydroxyectoine (ectoines) are compatible solutes imal during stationary phase, the accumulation of hydroxyectoine http://aem.asm.org/ Esynthesized and accumulated by halophilic and halotolerant is upregulated by salinity and temperature, and the accumulation bacteria in response to osmotic and heat stress (1, 2). Ectoines of ectoine is upregulated by salinity and downregulated by tem- have current applications as biostabilizers of proteins and nucleic perature. Thus, hydroxyectoine production and accumulation is acids, as well as a potential role as therapeutics for certain diseases maximum at 45°C and 14.5% NaCl, while ectoine accumulation (3, 4). This, together with the complexity of their chemical syn- reaches its maximum at 37°C and 17.4% NaCl (2). This regulation thesis, has encouraged recent efforts to improve ectoine produc- occurs, at least in part, at the transcriptional level. The ectoine tion from bacteria. Hydroxyectoine is especially interesting, as it synthesis genes ectABC can be expressed from two promoter re- seems to confer additional protections derived from its hydroxy- gions, one located upstream of ectA and composed of four puta- on March 3, 2016 by USE/BCTA.GEN UNIVERSITARIA lated nature (3, 4). Ectoines are synthesized from aspartate semi- tive promoters (PectA1 to PectA4 [PectA1-4]) and a second inter- aldehyde. First, this metabolite is converted into diaminobutyric nal promoter located upstream of ectB (PectB). In silico analysis of acid, which is acetylated to N␥-acetyldiaminobutyric acid and the Ϫ10 and Ϫ35 sequences of these regions showed that PectA1 subsequently cycled to ectoine (5, 6). The main route of hy- and PectA2 may be dependent on the main vegetative factor ␴70 droxyectoine synthesis is via ectoine hydroxylation (2). The en- (and therefore constitutively expressed), whereas PectA3 and zymes for ectoine synthesis are usually encoded in an ectABC-type PectB were similar to ␴S- and ␴32-dependent promoters, respec- gene cluster, which is usually well conserved among ectoine-pro- tively. In agreement with these predictions, expression of a ducing microorganisms (7). There are exceptions, such as incom- PectA1-4::lacZ fusion was osmoregulated and depended in part on plete operons, gene clusters including the ask gene (for the aspar- the general stress factor ␴S, whereas PectB was induced by contin- tate kinase), gene clusters carrying ectABC-ectD-ask, and uous growth at a high temperature (13). On the other hand, the scattering of the genes within the chromosome, with duplications promoter region of ectD is composed of two promoters (PectD1 of ectC and ectD or even solitary ectC (5, 7, 8). Industrial produc- and PectD2), and ectD expression is both osmo- and thermoregu- tion of hydroxyectoine uses Halomonas elongata ATCC 33173T lated (M. Reina-Bueno, unpublished data). grown under high-salinity and high-temperature conditions, us- In this work, we have metabolically engineered C. salexigens to ing the bacterial milking method (9), or a derivative of this tech- overproduce hydroxyectoine at low salinity, in a temperature-in- nique (10), followed by separation and purification of ectoine and dependent manner. In order to maximize hydroxyectoine pro- hydroxyectoine (9). This salt and temperature requirement for duction and to minimize its temperature and salinity require- hydroxyectoine synthesis is a serious drawback of using natural ments, we designed transcriptional fusions between the ectoine producers, since fermentation under high temperature and salin- synthesis genes ectABC and the main hydroxyectoine synthesis ity increases production costs and corrodes industrial reactors. gene ectD, so that the second became transcriptionally controlled Chromohalobacter salexigens is a halophilic gammaproteobac- by the ectABC promoter region. To construct a functional terium which produces ectoine and hydroxyectoine in response to ectABCD cassette, we first amplified by PCR a 3,384-bp sequence, salt and heat stress, respectively (7). It is easy to grow and its including the promoter region upstream of ectA, the ectABC gene genome sequence is available (http://genome.ornl.gov/microbial cluster, and the rho-independent terminator downstream of ectC, /csal/). It has been suggested as an alternative to H. elongata (11). In C. salexigens, the genes encoding ectoine synthesis lay within a 2.8-kb region encoding the diaminobutyric acid acetyltransferase Received 8 September 2012 Accepted 9 November 2012 (EctA), diaminobutyric acid transaminase (EctB), and ectoine Published ahead of print 16 November 2012 synthase (EctC) (12). The microorganism has two paralogs of the Address correspondence to Carmen Vargas, [email protected]. enzyme ectoine hydroxylase, EctD and EctE, but EctD is the main Supplemental material for this article may be found at http://dx.doi.org/10.1128 responsible enzyme for hydroxyectoine production (2). In C. /AEM.02774-12. salexigens, the gene cluster ectABC and the genes ectD and ectE are Copyright © 2013, American Society for Microbiology. All Rights Reserved. at different loci within the chromosome. doi:10.1128/AEM.02774-12 Whereas accumulation of both solutes in C. salexigens is max- 1018 aem.asm.org Applied and Environmental Microbiology p. 1018–1023 February 2013 Volume 79 Number 3 Overproduction of Hydroxyectoine by Chromohalobacter FIG 1 Genetic organization of constructed inserts, cloned in pHS15 to obtain pHYDROX1 (A) and pHYDROX2 (B). Downloaded from and cloned it into pBluescript SK, resulting in pME2. Then, we uid chromatography-mass spectrometry (LC-MS) and superna- inserted a BamHI restriction site between ectC and the rho-inde- tants used for high-pressure liquid chromatography with UV de- pendent terminator by site-directed mutagenesis using the primer tector (HPLC-UV) analysis of ectoine and hydroxyectoine were pair ectBam_fw and ectBam_rv (see Table S1 in the supplemental prepared by using a modified Bligh-Dyer technique described by material for a list of primers used in this study). Subsequently, we Kraegeloh and Kunte (15). For cellular extracts, chromatographic http://aem.asm.org/ eliminated the BamHI restriction site from the multicloning separation and HPLC-electrospray ionization was performed as site of pBluescript SK using the primers QuitBam_fw and described by Argandoña et al. (16). For supernatants, samples QuitBam_rv, getting pME2.3. Next, we amplified a 1,200-bp were analyzed as described by García-Estepa et al. (2). sequence from the C. salexigens genome, including ectD, and Hydroxyectoine levels observed in the heterologous recombi- inserted it into pBluescript SK, getting the plasmid pECTD. nant strains E. coli DH5␣/pHYDROX1 and E. coli DH5␣/ Then, we introduced a BclI restriction site downstream of ectD pHYDROX2 grown at 1%, 2%, or 3% NaCl were very low, and using the primers ectDBcl_fw and ectDBcl_rv, resulting in only traces of ectoine were detected (data not shown). Table 1 pECTD2. Subsequently, we excised promoterless ectD from summarizes growth rates and ectoine and hydroxyectoine pro- pECTD2 by digesting it with BclI and inserted it in BamHI- duction by the different C. salexigens wild-type and recombinant on March 3, 2016 by USE/BCTA.GEN UNIVERSITARIA digested pME2.3, yielding pECTABCD. Finally, the engineered strains, as well as their specific production rates. As production of ectABCD gene cluster was excised from pECTABCD by diges- ectoines is directly related to the biomass produced at a certain tion with EcoRI and cloned into EcoRI-digested pHS15 (a salinity (11), the specific production rate (␮mol/g bacterial dry cloning and expression vector based on a native plasmid from matter [BDM] · h) is a simple function reflecting solute content H. elongata harboring a streptomycin resistance gene [14]), and growth rate (17). As previously reported (2), ectoine accumu- obtaining pHYDROX1 (Fig. 1A). To increase the ectD gene lation by C. salexigens wild type was salinity dependent and, at a dose, a second functional cassette, ectABCDD, was constructed. given salinity, inversely correlated to increasing temperature. For this purpose, a second copy of ectD was cloned between Ectoine reached its maximal accumulation (725 ␮mol/g BDM) at ectD and the rho-independent terminator in the previous ect- 37°C with 14.5% of NaCl, with an ectoine/hydroxyectoine ratio of ABCD-constructed gene cluster. First, we introduced a BamHI 2.24:1. On the other hand, hydroxyectoine accumulation by the restriction site between ectD and
Recommended publications
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Halomonas Almeriensis Sp. Nov., a Moderately Halophilic, 1 Exopolysaccharide-Producing Bacterium from Cabo De Gata
    1 Halomonas almeriensis sp. nov., a moderately halophilic, 2 exopolysaccharide-producing bacterium from Cabo de Gata (Almería, 3 south-east Spain). 4 5 Fernando Martínez-Checa, Victoria Béjar, M. José Martínez-Cánovas, 6 Inmaculada Llamas and Emilia Quesada. 7 8 Microbial Exopolysaccharide Research Group, Department of Microbiology, 9 Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja 10 s/n, 18071 Granada, Spain. 11 12 Running title: Halomonas almeriensis sp. nov. 13 14 Keywords: Halomonas; exopolysaccharides; halophilic bacteria; hypersaline 15 habitats. 16 17 Subject category: taxonomic note; new taxa; γ-Proteobacteria 18 19 Author for correspondence: 20 E. Quesada: 21 Tel: +34 958 243871 22 Fax: +34 958 246235 23 E-mail: [email protected] 24 25 26 The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene 27 sequence of strain M8T is AY858696. 28 29 30 31 32 33 34 1 Summary 2 3 Halomonas almeriensis sp. nov. is a Gram-negative non-motile rod isolated 4 from a saltern in the Cabo de Gata-Níjar wild-life reserve in Almería, south-east 5 Spain. It is moderately halophilic, capable of growing at concentrations of 5% to 6 25% w/v of sea-salt mixture, the optimum being 7.5% w/v. It is chemo- 7 organotrophic and strictly aerobic, produces catalase but not oxidase, does not 8 produce acid from any sugar and does not synthesize hydrolytic enzymes. The 9 most notable difference between this microorganism and other Halomonas 10 species is that it is very fastidious in its use of carbon source. It forms mucoid 11 colonies due to the production of an exopolysaccharide (EPS).
    [Show full text]
  • Downloaded Halomonas Elongata: High-Afnity Betaine Transport System and Choline- from NCBI Database
    Rekadwad et al. BMC Res Notes (2021) 14:296 https://doi.org/10.1186/s13104-021-05689-3 BMC Research Notes RESEARCH NOTE Open Access The diversity of unique 1,4,5,6-Tetrahydro- 2-methyl-4-pyrimidinecarboxylic acid coding common genes and Universal stress protein in Ectoine TRAP cluster (UspA) in 32 Halomonas species Bhagwan Narayan Rekadwad1* , Wen‑Jun Li2 and P. D. Rekha1 Abstract Objectives: To decipher the diversity of unique ectoine‑coding housekeeping genes in the genus Halomonas. Results: In Halomonas, 1,4,5,6‑Tetrahydro‑2‑methyl‑4‑pyrimidinecarboxylic acid has a crucial role as a stress‑tolerant chaperone, a compatible solute, a cell membrane stabilizer, and a reduction in cell damage under stressful conditions. Apart from the current 16S rRNA biomarker, it serves as a blueprint for identifying Halomonas species. Halomonas elongata 1H9 was found to have 11 ectoine‑coding genes. The presence of a superfamily of conserved ectoine‑ coding among members of the genus Halomonas was discovered after genome annotations of 93 Halomonas spp. As a result of the inclusion of 11 single copy ectoine coding genes in 32 Halomonas spp., genome‑wide evaluations of ectoine coding genes indicate that 32 Halomonas spp. have a very strong association with H. elongata 1H9, which has been proven evidence‑based approach to elucidate phylogenetic relatedness of ectoine‑coding child taxa in the genus Halomonas. Total 32 Halomonas species have a single copy number of 11 distinct ectoine‑coding genes that help Halomonas spp., produce ectoine under stressful conditions. Furthermore, the existence of the Universal stress protein (UspA) gene suggests that Halomonas species developed directly from primitive bacteria, highlighting its role during the progression of microbial evolution.
    [Show full text]
  • Levan Production Potentials from Different Hypersaline Environments in Turkey
    LEVAN PRODUCTION POTENTIALS FROM DIFFERENT HYPERSALINE ENVIRONMENTS IN TURKEY Hakan Çakmak1, Pınar Aytar Çelik*2,3, Seval Çınar4, Emir Zafer Hoşgün5, M. Burçin Mutlu4 , Ahmet Çabuk6 Address(es): 1Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey. 2Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey. 3Horse Breeding Vocational School, Eskişehir Osmangazi University, Eskişehir, Turkey. 4Department of Biology, Eskişehir Technical University, Eskişehir, Turkey. 5Department of Chemical Department, Eskişehir Technical University, Eskişehir, Turkey. 6Department of Biology, Eskişehir Osmangazi University, Eskişehir, Turkey. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2020.10.1.61-64 ARTICLE INFO ABSTRACT Received 9. 12. 2019 12 halophilic strains from different hypersaline environments such as solar salterns in Tuzlagözü (Sivas), Fadlum (Sivas), Kemah Revised 12. 3. 2020 (Erzincan), a hypersaline spring water in Pülümür (Tunceli) and a saline lake in Delice (Kırıkkale) belonging to Turkey, were Accepted 12. 3. 2020 investigated in terms of levan production. After incubation and ethyl alcohol treatment, dialysis process was operated for partial Published 1. 8. 2020 purification. Levan amounts in our samples after hydrolysis were calculated based on the amount of sugar obtained by acid hydrolysis of standard levan. Sugar amount of samples were determined using by high performance liquid chromatography system (HPLC). 1H- Nuclear Magnetic Resonance (1H-NMR) spectra of the levan sample and standard were recorded. The results obtained by HPLC Regular article analysis showed that Chromohalobacter canadensis strain 85B had highest production potential as 234.67 mg levan/g biomass. The chemical shifts of 1H-NMR spectrum of the extracted levan also showed high similarity to those of pure levan isolated from Erwinia herbicola.
    [Show full text]
  • Chromohalobacter Salexigens Type Strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W
    Standards in Genomic Sciences (2011) 5:379-388 DOI:10.4056/sigs.2285059 Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W. Berry1, John C. Detter1,3, Tijana Glavina Del Rio1, Nancy Hammon1, Eileen Dalin1, Hope Tice1, Sam Pit- luck1, David Bruce1,3, Lynne Goodwin1,3, Cliff Han1,3, Roxanne Tapia1,3, Elizabeth Saund- ers1,3, Jeremy Schmutz3, Thomas Brettin1,4 Frank Larimer1,4, Miriam Land1,4, Loren Hauser1,4, Carmen Vargas5, Joaquin J. Nieto5, Nikos C. Kyrpides1, Natalia Ivanova1, Markus Göker6, Hans-Peter Klenk6*, Laszlo N. Csonka2*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Department of Microbiology and Parasitology, University of Seville, Spain 6 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany *Corresponding authors: [email protected], [email protected] Keywords: aerobic, chemoorganotrophic, Gram-negative, motile, moderately halophilic, halo tolerant, ectoine synthesis, Halomonadaceae, Gammaproteobacteria, DOEM 2004 Chromohalobacter salexigens is one of nine currently known species of the genus Chromoha- lobacter in the family Halomonadaceae. It is the most halotolerant of the so-called ‘mod- erately halophilic bacteria’ currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11T and Halomonas elongata are the first and the second members of the family Halomonada- ceae with a completely sequenced genome.
    [Show full text]
  • Phylogeny of the Family Halomonadaceae Based on 23S and 16S Rdna Sequence Analyses
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 241–249 Printed in Great Britain Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses 1 Lehrstuhl fu$ r David R. Arahal,1,2 Wolfgang Ludwig,1 Karl H. Schleifer1 Mikrobiologie, Technische 2 Universita$ tMu$ nchen, and Antonio Ventosa 85350 Freising, Germany 2 Departamento de Author for correspondence: Antonio Ventosa. Tel: j34 954556765. Fax: j34 954628162. Microbiologı!ay e-mail: ventosa!us.es Parasitologı!a, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain In this study, we have evaluated the phylogenetic status of the family Halomonadaceae, which consists of the genera Halomonas, Chromohalobacter and Zymobacter, by comparative 23S and 16S rDNA analyses. The genus Halomonas illustrates very well a situation that occurs often in bacterial taxonomy. The use of phylogenetic tools has permitted the grouping of several genera and species believed to be unrelated according to conventional taxonomic techniques. In addition, the number of species of the genus Halomonas has increased as a consequence of new descriptions, particularly during the last few years, but their features are too heterogeneous to justify their placement in the same genus and, therefore, a re-evaluation seems necessary. We have determined the complete sequences (about 2900 bases) of the 23S rDNA of 18 species of the genera Halomonas and Chromohalobacter and resequenced the complete 16S rDNA sequences of seven species of Halomonas. The results of our analysis show that two phylogenetic groups (respectively containing five and seven species) can be distinguished within the genus Halomonas. Six other species cannot be assigned to either of the above-mentioned groups.
    [Show full text]
  • Phylogeny of the Family Halomonadaceae Based on 23S and 16S Rdna Sequence Analyses
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 241–249 Printed in Great Britain Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses 1 Lehrstuhl fu$ r David R. Arahal,1,2 Wolfgang Ludwig,1 Karl H. Schleifer1 Mikrobiologie, Technische 2 Universita$ tMu$ nchen, and Antonio Ventosa 85350 Freising, Germany 2 Departamento de Author for correspondence: Antonio Ventosa. Tel: j34 954556765. Fax: j34 954628162. Microbiologı!ay e-mail: ventosa!us.es Parasitologı!a, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain In this study, we have evaluated the phylogenetic status of the family Halomonadaceae, which consists of the genera Halomonas, Chromohalobacter and Zymobacter, by comparative 23S and 16S rDNA analyses. The genus Halomonas illustrates very well a situation that occurs often in bacterial taxonomy. The use of phylogenetic tools has permitted the grouping of several genera and species believed to be unrelated according to conventional taxonomic techniques. In addition, the number of species of the genus Halomonas has increased as a consequence of new descriptions, particularly during the last few years, but their features are too heterogeneous to justify their placement in the same genus and, therefore, a re-evaluation seems necessary. We have determined the complete sequences (about 2900 bases) of the 23S rDNA of 18 species of the genera Halomonas and Chromohalobacter and resequenced the complete 16S rDNA sequences of seven species of Halomonas. The results of our analysis show that two phylogenetic groups (respectively containing five and seven species) can be distinguished within the genus Halomonas. Six other species cannot be assigned to either of the above-mentioned groups.
    [Show full text]
  • Cobetia Crustatorum Sp. Nov., a Novel Slightly Halophilic Bacterium Isolated from Traditional Fermented Seafood in Korea
    International Journal of Systematic and Evolutionary Microbiology (2010), 60, 620–626 DOI 10.1099/ijs.0.008847-0 Cobetia crustatorum sp. nov., a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea Min-Soo Kim, Seong Woon Roh and Jin-Woo Bae Correspondence Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee Jin-Woo Bae University, Seoul 130-701, Republic of Korea [email protected] A slightly halophilic, Gram-stain-negative, straight-rod-shaped aerobe, strain JO1T, was isolated from jeotgal, a traditional Korean fermented seafood. Cells were observed singly or in pairs and had 2–5 peritrichous flagella. Optimal growth occurred at 25 6C, in 6.5 % (w/v) salts and at pH 5.0–6.0. Strain JO1T was oxidase-negative and catalase-positive. Cells did not reduce fumarate, nitrate or nitrite on respiration. Acid was produced from several carbohydrates and the strain utilized many sugars and amino acids as carbon and nitrogen sources. The main fatty acids were C12 : 0 3-OH, C16 : 0,C17 : 0 cyclo and summed feature 3 (C16 : 1v7c/iso-C15 : 0 2-OH). DNA–DNA hybridization experiments with strain JO1T and Cobetia marina DSM 4741T revealed 24 % relatedness, although high 16S rRNA gene sequence similarity (98.9 %) was observed between these strains. Based on phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate from jeotgal should be classified as a representative of a novel species, Cobetia crustatorum sp. nov., with strain JO1T (5KCTC 22486T5JCM 15644T) as the type strain. The genus Cobetia comprises aerobic, Gram-stain-negative, recent study of the microbial diversity of Korean traditional slightly halophilic, rod-shaped micro-organisms.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • Are the Closely Related Cobetia Strains of Different Species?
    molecules Brief Report Are the Closely Related Cobetia Strains of Different Species? Yulia Noskova 1 , Aleksandra Seitkalieva 1 , Olga Nedashkovskaya 1, Liudmila Shevchenko 1, Liudmila Tekutyeva 2, Oksana Son 2 and Larissa Balabanova 1,2,* 1 Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, The Russian Academy of Sciences, 690022 Vladivostok, Russia; [email protected] (Y.N.); [email protected] (A.S.); [email protected] (O.N.); [email protected] (L.S.) 2 Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; [email protected] (L.T.); [email protected] (O.S.) * Correspondence: [email protected] Abstract: Marine bacteria of the genus Cobetia, which are promising sources of unique enzymes and secondary metabolites, were found to be complicatedly identified both by phenotypic indicators due to their ecophysiology diversity and 16S rRNA sequences because of their high homology. Therefore, searching for the additional methods for the species identification of Cobetia isolates is significant. The species-specific coding sequences for the enzymes of each functional category and different structural families were applied as additional molecular markers. The 13 closely related Cobetia isolates, collected in the Pacific Ocean from various habitats, were differentiated by the species-specific PCR patterns. An alkaline phosphatase PhoA seems to be a highly specific marker for C. amphilecti. However, the issue of C. amphilecti and C. litoralis, as well as C. marina and C. pacifica, belonging to the same or different species remains open. Keywords: Cobetia amphilecti; Cobetia litoralis; Cobetia pacifica; Cobetia marina; Cobetia crustatorum; Citation: Noskova, Y.; Seitkalieva, A.; identification markers; alkaline phosphatase PhoA Nedashkovskaya, O.; Shevchenko, L.; Tekutyeva, L.; Son, O.; Balabanova, L.
    [Show full text]
  • Complete Genome Sequence of Halomonas Sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1
    Williamson et al. Standards in Genomic Sciences (2016) 11:62 DOI 10.1186/s40793-016-0192-4 EXTENDED GENOME REPORT Open Access Complete genome sequence of Halomonas sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1 Abstract The marine Arctic isolate Halomonas sp. R5-57 was sequenced as part of a bioprospecting project which aims to discover novel enzymes and organisms from low-temperature environments, with potential uses in biotechnological applications. Phenotypically, Halomonas sp. R5-57 exhibits high salt tolerance over a wide range of temperatures and has extra-cellular hydrolytic activities with several substrates, indicating it secretes enzymes which may function in high salinity conditions. Genome sequencing identified the genes involved in the biosynthesis of the osmoprotectant ectoine, which has applications in food processing and pharmacy, as well as those involved in production of polyhydroxyalkanoates, which can serve as precursors to bioplastics. The percentage identity of these biosynthetic genes from Halomonas sp. R5-57 and current production strains varies between 99 % for some to 69 % for others, thus it is plausible that R5-57 may have a different production capacity to currently used strains, or that in the case of PHAs, the properties of the final product may vary. Here we present the finished genome sequence (LN813019) of Halomonas sp. R5-57 which will facilitate exploitation of this bacterium; either as a whole-cell production host, or by recombinant expression of its individual enzymes. Keywords: Halomonas, Growth temperature, Salt tolerance, Secreted enzymes, Osmolyte, Polyhydroxyalkanoates Abbreviations: COG, Cluster of orthologous groups; PHAs, Polyhydroxyalkanoates; RDP, Ribosomal database project; SMRT, Single molecule real-time Introduction H.
    [Show full text]