Identification of Halophilic Bacteria from Fish Sauce (Nam-Pla) in Thailand

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Halophilic Bacteria from Fish Sauce (Nam-Pla) in Thailand JOURNAL OF CULTURE COLLECTIONS Volume 6, 2008-2009, pp. 69-75 IDENTIFICATION OF HALOPHILIC BACTERIA FROM FISH SAUCE (NAM-PLA) IN THAILAND Somboon Tanasupawat1*, Sirilak Namwong1, Takuji Kudo2 and Takashi Itoh2 1Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; 2Japan Collection of Microorganisms, RIKEN BioResource Center, Wako-shi, Saitama 351-0198, Japan *Corresponding author, e-mail: [email protected] Summary Four strains of Gram-negative, rod-shaped, moderately halophilic bacteria, Group A, and eleven strains of strictly aerobic, extremely halophilic rods (10 strains, Group B) and coccoid (1 strain, Group C) were isolated from fish sauce fermentation (nam-pla) in Thailand. The 16S rRNA gene sequence analyses of the representative strains indicated that DS26-2 (Group A), HDS2-5 (Group B), and HRF6 (Group C), were closely related to Chromohalobacter salexigens KCTC 12941T, Halobacteirum salinarum JCM 8978T, and Halococcus saccharolyticus JCM 8878T with 99.3, 99.9, and 99.0 % similarity, respectively. Group A strains were identified as C. salexigens, Group B as H. salinarum, and Group C strain was H. saccharolyticus based on their DNA-DNA relatedness. Group A strains grew in 3–25 % (w/v) NaCl. Ubiquinone with nine isoprene units (Q-9) was a major component. The DNA G+C contents ranged from 63.1 to 64.2 mol %. Group B and Group C strains grew optimally in the presen- ce of 25-30 % NaCl. The tested strains of Group B contained major menaquinone with eight isoprene units (MK-8). DNA G+C contents ranged from 63.3 to 64.7 mol %. Group C strain had MK-8(H2) as a predominant menaquinone. The DNA G+C con- tent was 63.2 mol %. Key words: Archaea, Chromohalobacter salexigens, fish sauce, halophilic bacteria, Halobacterium salinarum, Halococcus saccharolyticus Introduction The moderately and extremely halophilic coccus and Halobacterium require at least bacteria occur to thrive in the salted environ- 1.5 M NaCl (optimal growth at 20–25 %, w/v ment, i.e. in salt lakes, soda lakes, saltern, cru- NaCl) for growth [11, 39]. de solar salts and proteinaceous products with In Thailand, Fish sauce contains high con- the capacity to balance the osmotic pressure of centration of salt (25–30 %, w/v NaCl), thus the environment and resist the denaturing ef- microorganisms found during fish sauce pro- fects of salts [5, 8, 14]. The moderately halo- duction are generally classified as halophilic philic bacteria i.e., Lentibacillus, Filobacillus, bacteria [16]. The strains of Lentibacillus sali- Tetragenococcus, Chromohalobacter are able campi, L. jurispiscarius [19], L. halophilus [30], to grow over a wide range of salt concentra- Filobacillus sp. RF2-5 [10], Halobacillus sp. tions and grow optimally in media containing SR5-3 [20], Piscibacillus salipiscarius [31], Tet- between 3 and 15 % (w/v) NaCl [1, 2, 19]. On ragenococcus halophilus and T. muriaticus [34], the other hand, the halophilic archaea i.e., Halo- Halobacterium salinarum [35], and Halococ- 69 cus thailandensis [21] were isolated from fer- teria isolated from fish sauce based on their mented fish sauce and related fish products. phenotypic and chemotaxonomic characteris- This work deals with the identification of tics including DNA-DNA relatedness and phy- the moderately and extremely halophilic bac- logenetic properties. Materials and Methods Source of samples and Isolation. Fish bed previously [12]. Polar lipids were determi- sauce samples (nam-pla) were collected from ned according to the method of Minnikin [17]. the factories (Sindhu Samuth Fish Sauce Fac- The quantitative analysis of cellular fatty acids tory (Squid Brand) LTD. (A), Samutprakarn, was employed with the Microbial Identification Thai Fish Sauce Factory (Squid Brand) Co., System (MIDI Inc.) [25]. DNAs were isolated LTD. (B), Samutsongkram, and Rayong Fish and purified according to the method of Saito Sauce Industry Co., Ltd. (C), Rayong Province, and Miura [23]. The DNA G+C content was de- in Thailand. The halophilic bacteria were isola- termined by the method of Tamaoka and Ko- ted by using spread-plate technique on agar magata [28] using reversed-phase HPLC. plates of JCM medium No. 169 and incubated DNA-DNA hybridization was conducted as at 37 °C for 1-2 weeks. described by Ezaki et al. [6] and detected as Identification methods. Morphological, reported by Tanasupawat et. al. [29]. The 16S cultural, physiological and biochemical charac- rRNA gene sequence of the moderately isolate teristics were determined as described by Bar- was determined as described previously [26], row and Feltham [3] and Namwong et al. [19, 21]; whereas the archaea strains were determined Oren et al. [22]. Acid production from carbohy- as described by Namwong et al. [21]. The phy- drate was determined in the medium described logenetic tree based on 16S rRNA gene sequen- by Leifson [15] supplemented with 6.5 % for ces was constructed as described by Kumar the moderately and 16.5 % NaCl for the ex- et al. [13]; Felsenstein [7]; Saitou and Nei [24]; tremely strains. Determination of the antibiotic Thompson et al. [33]. susceptibility of halophilic archaea was tested The GenBank/ EMBL/DDBJ accession num- as described by Stan-Lotter et al. [27]. The bers for the 16S rRNA gene sequences of strain meso-diaminopimelic acid in the peptidoglycan DS26-2, HDS2-5, and HRF6 were AB193815, and menaquinones were analyzed as descri- AB284264 and AB284265, respectively. Results and Discussion A total of fifteen isolates were divided into se, D-fructose, D-galactose, D-ribose and D-xy- three groups, the moderately rod-shaped halo- lose but did not produce it from D-amydalin, D- philic bacteria, Group A (4 isolates) and the ex- cellobiose (some weakly), glycerol, inulin, myo- tremely rod-shaped halophilic bacteria, Group inositol, lactose, D-maltose, D-mannitol, D-man- B (10 isolates) and a sphere-shaped bacterium, nose, D-melibiose, D-melezitose, raffinose, Group C (1 isolate, HRF6) based on their phe- rhamnose, salicin, sucrose, D-sorbitol and D- notypic and chemotaxonomic characteristics, trehalose (Table 1). Group A isolates contain- DNA-DNA relatedness including 16S rRNA ge- ed meso-diaminopimelic acid as the diagnostic ne sequence analyses (Fig. 1, 2; Tables 1, 2). diamino acid in the cell wall peptidoglycan. Group A contained isolates KS11-1, DS26-2, Strain DS26-2 contained fatty acids of C10:0 KS87-5, and PB12. All were Gram-negative, (5.0 %), C12:0 (7.5 %), C12:0 3OH (12.2 %), C14:0 cream-pigmented, non-spore-forming rods. (0.6 %), C16:0 (32.0 %), Cyclo C17:0 (11.9 %), Cells measured 0.7-1.0 µm in width and 2.0- C18:1ω7c (3.2 %), C18:0 (1.1 %), cyclo C19:0 ω8c 5.0 µm in length and occurred singly or in pairs (23.2 %) and trace (less than 0.5 %) of C10:0 3OH, on JCM. No. 169 agar plates supplemented methyl C18:1 ω7c and C20:1 ω7c and had ubiqui- with 10 % NaCl. Catalase, oxidase, urease, none with nine isoprene units (Q-9) as the pre- and nitrate reduction were positive but indole dominant quinone. The polar lipids of the repre- formation was negative. Group A isolates hyd- sentative strain, DS26-2 were phosphatidyl- rolysed arginine and starch but did not hydro- glycerol (PG), diphosphatidylglycerol (DPG), lyse gelatin, casein, Tween 80 and tyrosine. phosphatidyl ethanolamine (PE) and unidenti- They were capable to grow at temperature ran- fied glycolipids. The DNA G+ C contents of ging from 10 to 45 °C, at pH 5.0 to pH 9.0 and strains ranged from 63.1 to 63.5 mol %. On the in 3 to 25 %, w/v NaCl (optimally at 10 % NaCl). basis of the 16S rRNA gene sequence analy- They produced acid from L-arabinose, D-gluco- ses, strain DS26-2 was placed within the radia- 70 tion of the cluster comprising the members of related among themselves (100-102.9 %) and the family Halomonadaceae and the genus they exhibited high levels of DNA-DNA related- Chromohalobacter (Fig. 1) and was closely ness with C. salexigens KCTC 12941T (97.4- related to C. salsexigens KCTC 12941T (99.3 % 105.6 %) as shown in Table 2. Therefore, the sequence similarity). A DNA–DNA hybridiza- group A isolates were identified as C. salexi- tion experiment revealed that they were closely gens [1, 2, 36, 38]. Table 1. Differential characteristics of strains in Chromohalobacter, Halobacterium and Halococcus. Strains* Characteristics 1 2 3 4 5 6 Cell form Rods Rods Rods Rods Cocci Cocci Pigmentation Cream Cream Red Red Red Red NaCl range (%) 3-25 0.9-25 15-30 15-30 15-30 15-30 pH range 5-9 5-9 5-10 5-10 5-10 5-10 Nitrate reduction + + - - - - Hydrolysis of Arginine + + - - - - Casein - - d + + + Gelatin - - d + + + Acid from L-Arabinose + + - - - - D-Cellobiose d w - - - - D-Fructose + + D-Galactose + + - - - - D-Glucose + + - - - - *Strains: 1, 4 strains in Group A; 2, C. salexigens KCTC 12941T; 3, 10 strains in Group B; 4, H. salinarum JCM 8978T; 5, HRF6; 6, H. saccharolyticus JCM 8878T. Reaction: +, positive; d, some positive; w, weak positive; -, negative. JCM, Japan Collection of Microorganisms, RIKEN BioResource Center, Saitama, Japan; KCTC, Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. Group B contained isolates HDB1-1, HDB1- at pH 6.0 to 7.0 and the pH range for growth 11, HDB1-31, HDS2-5, HDB10-5, HIB20-2, was pH 5.0 to 10.0. At least 100 mM MgCl2 HIB60-1, HIS10-4, HIS30-1, and HIS50-2(1). was required for growth of strains in both All were Gram-negative, red-pigmented, non- Groups. The best growth was obtained at MgCl2 spore-forming rod-shaped archaea. Cells me- concentrations between 3 to 5 % (w/v).
Recommended publications
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
    ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica.
    [Show full text]
  • Extracellular Hydrolases Producing Haloarchaea from Marine Salterns at Okhamadhi, Gujarat, India
    Int.J.Curr.Microbiol.App.Sci (2016) 5(11): 51-64 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 11 (2016) pp. 51-64 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.511.006 Extracellular Hydrolases producing Haloarchaea from Marine Salterns at Okhamadhi, Gujarat, India Bhavini N. Rathod1, Harshil H. Bhatt2 and Vivek N. Upasani1* 1Department of Microbiology, M.G. Science Institute, Ahmedabad- 380009, India 2Kadi Sarva Vishwavidyalay Gandhinagar-23, India *Corresponding author ABSTRACT Haloarchaea thrive in hypersaline environments such as marine salterns, saline soils, soda lakes, salted foods, etc. The lysis of marine phyto- and zoo-planktons such as algae, diatoms, shrimps, purple and green bacteria, fish, etc. releases K e yw or ds biopolymers namely cellulose, starch, chitin, proteins, lipids, etc. in the saline Extremozymes , ecosystems. The chemorganotrophic haloarchaea therefore, need to produce haloarchaea, hydrolytic enzymes to utilize these substrates. However, the raw solar salt used for hydrolases, preservation can cause spoilage of foods due to the growth of halobacteria leading Halobacterium, to economic loss. We report here the isolation and identification of extracellular Haloferax, hydrolases (substrates casein, gelatin, starch, and Tweens: 20, 60, 40, 80) Halopetinus, producing haloarchaea isolated from the salt and brine samples collected from Okhamadhi marine salterns at Okhamadhi, Gujarat, India. Morphological,
    [Show full text]
  • The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
    biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations.
    [Show full text]
  • Levan Production Potentials from Different Hypersaline Environments in Turkey
    LEVAN PRODUCTION POTENTIALS FROM DIFFERENT HYPERSALINE ENVIRONMENTS IN TURKEY Hakan Çakmak1, Pınar Aytar Çelik*2,3, Seval Çınar4, Emir Zafer Hoşgün5, M. Burçin Mutlu4 , Ahmet Çabuk6 Address(es): 1Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey. 2Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey. 3Horse Breeding Vocational School, Eskişehir Osmangazi University, Eskişehir, Turkey. 4Department of Biology, Eskişehir Technical University, Eskişehir, Turkey. 5Department of Chemical Department, Eskişehir Technical University, Eskişehir, Turkey. 6Department of Biology, Eskişehir Osmangazi University, Eskişehir, Turkey. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2020.10.1.61-64 ARTICLE INFO ABSTRACT Received 9. 12. 2019 12 halophilic strains from different hypersaline environments such as solar salterns in Tuzlagözü (Sivas), Fadlum (Sivas), Kemah Revised 12. 3. 2020 (Erzincan), a hypersaline spring water in Pülümür (Tunceli) and a saline lake in Delice (Kırıkkale) belonging to Turkey, were Accepted 12. 3. 2020 investigated in terms of levan production. After incubation and ethyl alcohol treatment, dialysis process was operated for partial Published 1. 8. 2020 purification. Levan amounts in our samples after hydrolysis were calculated based on the amount of sugar obtained by acid hydrolysis of standard levan. Sugar amount of samples were determined using by high performance liquid chromatography system (HPLC). 1H- Nuclear Magnetic Resonance (1H-NMR) spectra of the levan sample and standard were recorded. The results obtained by HPLC Regular article analysis showed that Chromohalobacter canadensis strain 85B had highest production potential as 234.67 mg levan/g biomass. The chemical shifts of 1H-NMR spectrum of the extracted levan also showed high similarity to those of pure levan isolated from Erwinia herbicola.
    [Show full text]
  • In Vivo Multi-Dimensional Information-Keeping in Halobacterium Salinarum
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.949925; this version posted February 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. In vivo multi-dimensional information-keeping in Halobacterium salinarum Davis, J.1,2‡, Bisson-Filho, A.3, Kadyrov, D.4, De Kort, T. M.5,1, Biamonte, M. T.6, Thattai, M.7, Thutupalli, S.7,8, Church, G. M. 1‡ 1 Department of Genetics, Blavatnik Institute, Harvard Medical School, 2 Department of Biology, Massachusetts Institute of Technology 3 Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454. 4 SkBiolab, Technopark Skolkovo, Skolkovo Innovation center, Moscow 143026, Russia 5 Biosciences Master’s programme Molecular & Cellular Life Sciences, Faculty of Science, Utrecht University, Utrecht, the Neth- erlands 6 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 7 Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India 8 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India ‡ Corresponding authors. [email protected] (J.D.); [email protected] (G.M.C.) Shortage of raw materials needed to manufacture components for silicon-based digital memory storage has led to a search for alternatives, including systems for storing texts, images, movies and other forms of information in DNA.
    [Show full text]
  • Chromohalobacter Salexigens Type Strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W
    Standards in Genomic Sciences (2011) 5:379-388 DOI:10.4056/sigs.2285059 Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W. Berry1, John C. Detter1,3, Tijana Glavina Del Rio1, Nancy Hammon1, Eileen Dalin1, Hope Tice1, Sam Pit- luck1, David Bruce1,3, Lynne Goodwin1,3, Cliff Han1,3, Roxanne Tapia1,3, Elizabeth Saund- ers1,3, Jeremy Schmutz3, Thomas Brettin1,4 Frank Larimer1,4, Miriam Land1,4, Loren Hauser1,4, Carmen Vargas5, Joaquin J. Nieto5, Nikos C. Kyrpides1, Natalia Ivanova1, Markus Göker6, Hans-Peter Klenk6*, Laszlo N. Csonka2*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Department of Microbiology and Parasitology, University of Seville, Spain 6 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany *Corresponding authors: [email protected], [email protected] Keywords: aerobic, chemoorganotrophic, Gram-negative, motile, moderately halophilic, halo tolerant, ectoine synthesis, Halomonadaceae, Gammaproteobacteria, DOEM 2004 Chromohalobacter salexigens is one of nine currently known species of the genus Chromoha- lobacter in the family Halomonadaceae. It is the most halotolerant of the so-called ‘mod- erately halophilic bacteria’ currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11T and Halomonas elongata are the first and the second members of the family Halomonada- ceae with a completely sequenced genome.
    [Show full text]
  • Determination of Hydrolytic Enzyme Capabilities of Halophilic Archaea Isolated from Hides and Skins and Their Phenotypic and Phylogenetic Identification by S
    33 DETERMinATION OF HYDROLYTic ENZYME CAPABILITIES OF HALOPHILIC ARCHAEA ISOLATED FROM HIDES AND SKins AND THEIR PHENOTYpic AND PHYLOGENETic IDENTIFicATION by S. T. B LG School of Health, Canakkale Onsekiz Mart University, Terzioglu Campus Canakkale, Turkey, 17100. and B. MER ÇL YaPiCi Biology Department, Faculty of Arts and Science, Canakkale ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, Canakkale, Turkey, 17100. and İsmail Karaboz Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, İzmi r, Turkey, 35100. ABSTRACT INTRODUCTION This research aims to isolate extremely halophilic archaea The main constituent of the raw hide is protein, mainly from salted hides, to determine the capacities of their collagen (33% w/w), and remainder is moisture and fat. During hydrolytic enzymes, and to identify them by using phenotypic storage of raw hide, collagen’s excessive proteolysis by and molecular methods. Domestic and imported salted hide lysosomal autolysis or proteolytic bacterial enzymes can lead and skin samples obtained from eight different sources were to the disintegration of the structure of collagen fibers.1 used as the research material. 186 extremely halophilic Biodeterioration is among the major causes of impairment of microorganisms were isolated from salted raw hides and aesthetic, functional and other properties of leather and other skins. Some biochemical, antibiotic sensitivity, pH, NaCl, biopolymers or organic materials and the products made from temperature tolerance and quantitative and qualitative them. Due to the fact that prevention of biological degradation hydrolytic enzyme tests were performed on these isolates. In is very important in conservation and processing of leather, our study, taking into account the phenotypic findings of the great effort is being made for decontamination of these research, 34 of 186 isolates were selected.
    [Show full text]
  • Phylogeny of the Family Halomonadaceae Based on 23S and 16S Rdna Sequence Analyses
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 241–249 Printed in Great Britain Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses 1 Lehrstuhl fu$ r David R. Arahal,1,2 Wolfgang Ludwig,1 Karl H. Schleifer1 Mikrobiologie, Technische 2 Universita$ tMu$ nchen, and Antonio Ventosa 85350 Freising, Germany 2 Departamento de Author for correspondence: Antonio Ventosa. Tel: j34 954556765. Fax: j34 954628162. Microbiologı!ay e-mail: ventosa!us.es Parasitologı!a, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain In this study, we have evaluated the phylogenetic status of the family Halomonadaceae, which consists of the genera Halomonas, Chromohalobacter and Zymobacter, by comparative 23S and 16S rDNA analyses. The genus Halomonas illustrates very well a situation that occurs often in bacterial taxonomy. The use of phylogenetic tools has permitted the grouping of several genera and species believed to be unrelated according to conventional taxonomic techniques. In addition, the number of species of the genus Halomonas has increased as a consequence of new descriptions, particularly during the last few years, but their features are too heterogeneous to justify their placement in the same genus and, therefore, a re-evaluation seems necessary. We have determined the complete sequences (about 2900 bases) of the 23S rDNA of 18 species of the genera Halomonas and Chromohalobacter and resequenced the complete 16S rDNA sequences of seven species of Halomonas. The results of our analysis show that two phylogenetic groups (respectively containing five and seven species) can be distinguished within the genus Halomonas. Six other species cannot be assigned to either of the above-mentioned groups.
    [Show full text]
  • Microbial Diversity of Culinary Salts by Galen Muske and Bonnie Baxter, Ph.D
    Microbial Diversity of Culinary Salts By Galen Muske and Bonnie Baxter, Ph.D. Abstract Methods Results and Conclusion Extremophiles are exceptional microorganisms that live on this planet in extraordinarily harsh environments. One such extremophiles are Halophiles, salt-loving microorganisms that can survive in extreme salinity levels, and have been to found to survive inside salt crystals. We were curious is about the potential diversity of halophiles surviving in salts harvested from around the Figure 3: A mixed culture plate from primary cultures. A world. For this experiment various culinary salts were suspended in a 23 % NaCl growth media typical petri dish of the various species of halophilic microorganisms that grew from the original growth media. broth and allowed to grow for 4 weeks. Afterwards, the individual strains were isolated on 23 % These colonies were isolated and were grown separately in NaCl growth media agar plates. The colonies observed were visually diverse in color and margins. media broth before DNA isolation. Individual colonies were grown in broth and DNA was extracted. PCR and sequencing were http://www.stylepinner.com/quadrant-technique-streak- plate/cXVhZHJhbnQtdGVjaG5pcXVlLXN0cmVhay1wbGF0Z utilized to compare the 16S rRNA gene in each species of bacteria or archaea. We will present Q/ Isolation: Individual Colonies (isolated species) were chosen from Cultures were then plated onto data on the microbial diversity of the salts that did have media cultures. These salts come from 1) the plates and inoculated in 23% 23 % MGM agar plates. They MGM broth. They were incubated at salt pearls from Lake Assal Djibouti, Africa; 2 Fleur De Sel Gris Sea Salt from France, Europe; 3) were incubated at 37degrees C 37degrees C for 2 weeks sea salt from Bali, Indonesia; and 4) salt collected from the lake bed of Great Salt Lake, Utah.
    [Show full text]
  • Quorum Sensing in Some Representative Species of Halomonadaceae
    Life 2013, 3, 260-275; doi:10.3390/life3010260 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Quorum Sensing in Some Representative Species of Halomonadaceae Ali Tahrioui 1, Melanie Schwab 1, Emilia Quesada 1,2 and Inmaculada Llamas 1,2,* 1 Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; E-Mails: [email protected] (A.T.); [email protected] (M.S.); [email protected] (E.Q.) 2 Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-958-243871; Fax: +34-958-246235. Received: 7 December 2012; in revised form: 18 January 2013 / Accepted: 22 February 2013 / Published: 5 March 2013 Abstract: Cell-to-cell communication, or quorum-sensing (QS), systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs), which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC) analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4) as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog.
    [Show full text]
  • Exploring the Diversity of Extremely Halophilic Archaea in Food-Grade Salts
    International Journal of Food Microbiology 191 (2014) 36–44 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Exploring the diversity of extremely halophilic archaea in food-grade salts Olivier Henriet, Jeanne Fourmentin, Bruno Delincé, Jacques Mahillon ⁎ Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium article info abstract Article history: Salting is one of the oldest means of food preservation: adding salt decreases water activity and inhibits microbial Received 28 April 2014 development. However, salt is also a source of living bacteria and archaea. The occurrence and diversity of viable Received in revised form 7 August 2014 archaea in this extreme environment were assessed in 26 food-grade salts from worldwide origin by cultivation Accepted 13 August 2014 on four culture media. Additionally, metagenomic analysis of 16S rRNA gene was performed on nine salts. Viable Available online 20 August 2014 archaea were observed in 14 salts and colony counts reached more than 105 CFU per gram in three salts. All fi Keywords: archaeal isolates identi ed by 16S rRNA gene sequencing belonged to the Halobacteriaceae family and were Food-grade salt related to 17 distinct genera among which Haloarcula, Halobacterium and Halorubrum were the most represented. Halophilic archaea High-throughput sequencing generated extremely different profiles for each salt. Four of them contained a single High salinity media major genus (Halorubrum, Halonotius or Haloarcula) while the others had three or more genera of similar Metagenomics occurrence. The number of distinct genera per salt ranged from 21 to 27.
    [Show full text]