Annual Conference 2019 Poster Book

Total Page:16

File Type:pdf, Size:1020Kb

Annual Conference 2019 Poster Book Annual Conference 2019 8-11 April, ICC Belfast, UK @MicrobioSoc #Microbio19 Global food security: the challenges for microbiology Presentations: Monday and Tuesday evening A001 PHYTOCHEMICAL AND ANTIBACTERIAL PROPERTY OF FINGER MILLET (Eleusine Coracana) ON SOME SELECTED CLINICAL BACTERIA JeremiaH Ogbeba Federal PolytecHniC BauCHi , BauCHi, Nigeria Abstract Finger millet in nortHern Nigeria was subjected to pHytoCHemiCal sCreening using standard proCedures. The agar well metHod was used to test tHe antibaCterial aCtivities of metHanoliC and aqeous (Combined) extraCts of tHe grain on Salmonella typhi, EsCHeriCHia Coli, Pseudomonas aeruginosa and StapHyloCoCCus aureus. The result of tHe antimiCrobial activity as indiCated by zone of inHibition ranged from 1-8mm for different extract ConCentrations. The finger millet extract sHowed zones of inHibition of 8mm against Pseudomonas aeruginosa at a ConCentration of 100mg/ml, 3mm at 50mg/ml and 2mm at 25mg/ml ConCentrations. The inHibition zones of EsCHeriCHia Coli at extract ConCentrations of 100mg/ml,50mg/ml,25mg/ml, 12.25mg/ml and 6.125mg/ml were 4mm, 3mm, 3mm, 6mm and 1mm respeCtively, and for StapHyloCoCCus aureus were 5mm,2mm, 1mm at 100mg/ml, 50mg/ml and 12.25mg/ml respeCtively. The zones of inHibition against all tHe tested isolates at 100mg/ml was not signifiCantly different from those of 50mg/ml (p=0.160), 25mg/ml (p=0.067) and 12.5mg/ml (p=0.160), but signifiCantly HigHer than 6.125mg/ml (p=0.05). AlthougH S. aureus and S. typHi also did not differ signifiCantly in their susCeptibility to the varying ConCentrations of the extraCt (p=0.157), but susCeptibility by S. typHi was significantly lower tHan tHose of E. Coli (p=0.007) and P. aeruginosa (p=0.015). The qualitative phytochemiCal analysis indiCated the presence tannin/pHenol, flavonoids, alkaloid, saponin, glyCosides, terpenoid and steroids in finger millet. THe quantitative phytochemiCal revealed total phenoliC Content (6.57 mg/100g) and total flavonoid Content (0.224 mg/100g). The overall results indiCate that finger millet are potent antimiCrobial preparations at least invitro and also have high nutritional value. Global food security: the challenges for microbiology Presentations: Monday and Tuesday evening A002 Chaga Mushroom (Inonotus obliquus) inhibits growth of both lung adenocarCinoma (A549) Cells and Aspergillus fumigatus Magda Al-Tuwaijri1, JeHane IbraHim2,3 1Faculty of Applied ScienCe - Umm Al-Qura University, MakkaH, Saudi Arabia. 2Adham university College - Umm Al- Qura University, MakkaH, Saudi Arabia. 3Faculty of ScienCe - Cairo University, Makkah, Saudi Arabia Abstract Lung tumors and infections remain the most Common leading Cause of mortality worldwide. Chaga mushroom (Inonotus obliquus) Has long been Considered the king of mediCinal musHrooms wHiCH Constitutes an inexHaustible source of active compounds wHiCH can affect tHe survival of tumor cells. It has been used widely for Centuries as a dietary supplement and tea. In tHis sense, tHe aim of tHis study was to investigate in vitro cytotoxic capaCity of water extraCts of I. obliquus (CHaga musHroom) against the Human lung CanCer A549 Cell line after 72 h incubation. In addition, the extraCts were sCreened for antifungal aCtivity on Aspergillus fumigatus speCies, a life-threatening Cause of invasive pulmonary aspergillosis. The CytotoxiC and the antimiCrobial effeCts were performed using the MTT assay and the minimum inHibitory ConCentration (MIC) test, respeCtively. Owing to tHe notiCeable effeCt on antiproliferation of Hot-water extraCts, espeCially tHose from I. obliquus, tHe extract Could be of great potential to be used as an alternative CanCer tHerapy. However, it was not proven to Have antifungal effect against A. fumigatus fungi. Global food security: the challenges for microbiology Presentations: Monday and Tuesday evening A003 NUTRITIONAL QUALITY AND MICROBIAL DENSITY OF SWEET POTATO FLOUR FORTIFIED WITH SOYBEAN AND CRAYFISH FLOURS Tesleem IBRAHIM Rufus Giwa PolyteChniC,, Owo, Nigeria Abstract Nutritional quality and miCrobial density of sweet potato based Complementary food fortified witH soybean and crayfish flours was investigated. THree different samples were produced from mixing sweet potato, soybean and crayfish at different formulation. Sample I, II, III are sweet potato: soybean: CrayfisH at ratio 80:15:5, 70:20:10 and 60:25:15 respeCtively. The formulated flours were analysed for proximate Composition and miCrobial density. The result of proximate Composition sHowed that the value of moisture Content ranged between 6.50 - 8.50%, wHile asH Content, Crude protein Crude fat, Crude fibre, CarboHydrate and energy value ranged from 5.50 – 9.50%, 25.10 – 28.50%, 4.20 – 6.20%, 0.13 – 0.27%, 47.73 – 56.27% and 363.42 – 370.48 Kcal/100g respectively. Its observed that as the level of inClusion of soybean and CrayfisH to sweet potato flour inCreases, there was inCrease in protein and Crude fibre Content but decrease in CarboHydrate Content. Also, tHe total bacteria Count, Coliform Count, yeast and mould Count ranged from 28-50 x 10-4, 18-37 x 10-4 and 40-62 x 10-4 ( CFU/g ) respeCtively wHiCH are within the reCommended limit value for miCrobial density in food. THerefore, sweet potato flour fortified with soybean and crayfish flour can be reCommended as weaning food to reduce the incidence of malnutrition in infants. Global food security: the challenges for microbiology Presentations: Monday and Tuesday evening A004 Detoxifying Potentials of Two Indigenous Adsorbents: Imarsil and ACtivated CHarCoal in tHe ReduCtion of Aflatoxin in vegetable oils consumed in Nigeria. Oni Eniola, Oluwafemi Flora, Kareem Sarafadeen, Omemu Adebukunolami Federal University of AgriCuture, Abeokuta, Nigeria Abstract Food Contamination witH aflatoxin is more prevalent in tropiCal regions wHere environmental Conditions suCH as HigH temperature and Humidity prevail, wHiCH favour tHe growtH of toxigeniC fungi and acCumulation of tHese toxins in food and feeds represent a major tHreat to Human and animal HealtH. In lieu of the previously known adsorbents, adsorption studies of Aflatoxin (AF) were performed using inexpensive, readily available and loCal adsorbents Imarsil and activated CHarCoal (AC). Fifteen edible oils were purChases from open markets in Nigeria and sCreened for aflatoxin using HigH PerformanCe Liquid Chromatography (HPLC). Thirteen out of the fifteen vegetable oil samples were positive to aflatoxin at the following ConCentration (172, 123, 195, 142, 46, 107, 96, 116, 22, 33, 228, 17 and 4) ng/kg while two had no deteCtable AF. At six different concentrations (0.5, 1, 1.5, 2, 2.5 and 3%) of Imarsil and activated CHarCoal (AC) with ContaCt time of 1,2 and 3Hours at room temperature (37°C), the aflatoxin-adsorbing Capabilities depend on the adsorbent Concentrations and ContaCt time. Imarsil demostrated 100 % adsorption effiCienCy witHin one hour. At AF Contamination rates of 96-228ng/kg, activated CHarCoal was not effeCtive while Imarsil had 100 % removal effiCiency within 3 hours witH a signifiCant reduCtion (p< 0.05) observed at the HigHest Contamination rate and adsorbent ConCentration. AC demonstrated very mild adsorption activity. Results from tHis study indiCated tHat Industrial inCorporation of Imarsil into tHe oil refining proCess would reduCe greatly tHe menaCe of aflatoxiCosis. HenCe, tHe use of Imarsil should be encouraged. Global food security: the challenges for microbiology Presentations: Monday and Tuesday evening A005 Starter Culture development using selected strains of Bacillus spp. AssoCiated witH “kantong” produCtion in GHana Felix KwasHie Madilo1, RiCHard Kwame Glover2, Lawer Terlabie3 1University of Ghana, ACCra, Ghana. 23International CounCil for ScienCe, Regional OffiCe for AfriCa, Pretoria, SoutH AfriCa. 3Kwame Nkrumah University of ScienCe and TecHnology, Kumasi, GHana Abstract TeCHnologiCal properties of Bacillus spp. involved in fermenting Ceiba pentandra seeds into “kantong” a condiment prepared and Consumed in the northern part of Ghana were invested so as to develop starter Cultures with the predominant speCies for CommerCial production of “kantong”. The Bacillus species wHiCH predominated 205 Bacillus strains isolated from 11 stages of “kantong” production includes: Bacillus amyloliquefaciens, B. safensis, B. altitudinis, B. thuringiensis, B. pumilus, B. megaterium, B. cereus, B. circulans, B. coagulans, B. firmus, B. subtilis, and B. licheniformis. These predominant species were assessed for some teCHnologiCal properties suCH as proliferation at different temperatures and pH; substrate utilization preferences including “kantong” formulated media (i.e. 48-hrs sample, dried pellet and the final product) and inHibitory activity against 12 selected patHogeniC and spoilage miCroorganisms. The strains proliferated at different temperatures between 10°C and 55°C and pH of 2 to 9. Substrate utilization preferenCes were Nutrient Agar witH 5-9% Sodium CHloride (NA/ NaCl C, and ordinary Nutrient BrotH [NB], Nutrient Agar (NA), Potato Dextrose Agar (PDA), Tryptone Soya Agar (TSA), MaCConkey Agar (MCA) and “kantong” formulated media. All strains exHibited inHibitory aCtivity against one or more pathogeniC and spoilage organisms. Salmonella typhimurium, staphylococcus aureus, E. faecium and Proteus vulgris were tHe most susCeptible indiCator miCroorganisms. Many strains qualified as potential Candidates for seleCtion and development as starter Cultures to be used in tHe large sCale CommerCial produCtion of “kantong” of Consistent
Recommended publications
  • Catalogue of Bacteria Shapes
    We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Genomics and Epigenomics of Sporosarcina ureae A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Biology By Andrew Oliver August 2016 The thesis of Andrew Oliver is approved by: _________________________________________ ____________ Sean Murray, Ph.D. Date _________________________________________ ____________ Gilberto Flores, Ph.D. Date _________________________________________ ____________ Kerry Cooper, Ph.D., Chair Date California State University, Northridge ii Acknowledgments First and foremost, a special thanks to my advisor, Dr. Kerry Cooper, for his advice and, above all, his patience. If I can be half the scientist you are someday, I would be thrilled. I would like to also thank everyone in the Cooper lab, especially my colleagues Courtney Sams and Tabitha Bayangnos. It was a privilege to work along side you. More thanks to my committee members, Dr. Gilberto Flores and Dr. Sean Murray. Dr. Flores, you were instrumental in guiding me to ask the right questions regarding bacterial taxonomy. Dr. Murray, your contributions to my graduate studies would make this section run on for pages. I thank you for taking me under your wing from the beginning. Acknowledgement and thanks to the Baresi lab, especially Dr. Larry Baresi and Tania Kurbessoian for their partnership in this research. Also to Bernardine Pregerson for all the work that lays at the foundation of this study. This research would not be what it is without the help of my childhood friend, Matthew Kay. You wrote programs, taught me coding languages, and challenged me to go digging for answers to very difficult questions.
    [Show full text]
  • Sporosarcina Aquimarina Sjam16103 Isolated from the Pneumatophores of Avicennia Marina L
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2012, Article ID 532060, 10 pages doi:10.1155/2012/532060 Research Article Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L. S. Rylo Sona Janarthine1 and P. Eganathan2 1 Faculty of Marine Science, Annamalai University, Chidambaram 608 502, India 2 Biotechnology Division, M S Swaminathan Research Foundation, Chennai 600 113, India Correspondence should be addressed to S. Rylo Sona Janarthine, jana [email protected] Received 17 October 2011; Revised 12 January 2012; Accepted 20 April 2012 AcademicEditor:A.J.M.Stams Copyright © 2012 S. R. S. Janarthine and P. Eganathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26◦C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants.
    [Show full text]
  • Unravelling the Evolutionary Relationships of Hepaciviruses Within and Across Rodent Hosts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.332932; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Unravelling the evolutionary relationships of hepaciviruses within and across rodent hosts Magda Bletsa1, Bram Vrancken1, Sophie Gryseels1;2, Ine Boonen1, Antonios Fikatas1, Yiqiao Li1, Anne Laudisoit3, Sebastian Lequime1, Josef Bryja4, Rhodes Makundi5, Yonas Meheretu6, Benjamin Dudu Akaibe7, Sylvestre Gambalemoke Mbalitini7, Frederik Van de Perre8, Natalie Van Houtte8, Jana Teˇsˇ´ıkova´ 4;9, Elke Wollants1, Marc Van Ranst1, Jan Felix Drexler10;11, Erik Verheyen8;12, Herwig Leirs8, Joelle Gouy de Bellocq4 and Philippe Lemey1∗ 1Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA 3EcoHealth Alliance, New York, USA 4Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic 5Pest Management Center – Sokoine University of Agriculture, Morogoro, Tanzania 6Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia 7Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic
    [Show full text]
  • Unfolded Protein Response in Hepatitis C Virus Infection
    REVIEW ARTICLE published: 20 May 2014 doi: 10.3389/fmicb.2014.00233 Unfolded protein response in hepatitis C virus infection Shiu-Wan Chan* Faculty of Life Sciences, The University of Manchester, Manchester, UK Edited by: Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical Hirofumi Akari, Kyoto University, importance. The virus establishes a chronic infection and can progress from chronic Japan hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The Reviewed by: mechanisms of viral persistence and pathogenesis are poorly understood. Recently Ikuo Shoji, Kobe University Graduate School of Medicine, Japan the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic Kohji Moriishi, University of reticulum (ER) stress, has emerged to be a major contributing factor in many human Yamanashi, Japan diseases. It is also evident that viruses interact with the host UPR in many different ways *Correspondence: and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular Shiu-Wan Chan, Faculty of Life type of infection. Here we present evidence for the elicitation of chronic ER stress in Sciences, The University of Manchester, Michael Smith HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the Building, Oxford Road, various levels of UPR regulation by different viral proteins and finally, we propose several Manchester M13 9PT, UK mechanisms by which the virus provokes the UPR. e-mail: shiu-wan.chan@ manchester.ac.uk Keywords: hepatitis C virus, unfolded protein response, endoplasmic reticulum stress, hepacivirus, virus-host interaction INTRODUCTION (LDLs) and very low-density lipoproteins (VLDLs) to form the Hepatitis C virus (HCV) infection produces a clinically important lipoviroparticles (Andre et al., 2002).
    [Show full text]
  • Antibus Revised Thesis 11-16 For
    Molecular and Cultivation-based Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Doug Antibus December, 2009 Thesis written by Doug Antibus B.S., Kent State University, 2007 M.S., Kent State University, 2009 Approved by Dr. Christopher B. Blackwood Advisor Dr. James L. Blank Chair, Department of Biological Sciences Dr. Timothy Moerland Dean, College of Arts and Sciences iii TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………..iv LIST OF FIGURES ……………………………………………………………………...vi ACKNOWLEDGEMENTS…………………………………………………………......viii CHAPTER I: General Introduction……………………………………………………….1 CHAPTER II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity Introduction……………………………………………………………....22 Results and Discussion……………………………………………..……27 Methods…………………………………………………………………..51 Literature Cited…………………………………………………………..59 CHAPTER III: Recovery of Viable Bacteria from Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica Introduction………………………………………………..……………..78 Methods…………………………………………………………………..80 Results……………………………………………………………...…….88 Discussion…………………………………………………………...….106 Literature Cited………………………………………………………....109 CHAPTER IV: General Discussion…………………………………………………….120 iii LIST OF TABLES Chapter II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Examining the Link Between Macrophyte Diversity, Bacterial
    EXAMINING THE LINK BETWEEN MACROPHYTE DIVERSITY, BACTERIAL DIVERSITY, AND DENITRIFICATION FUNCTION IN WETLANDS DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Janice M. Gilbert, B.E.S., B.Ed., M.E.S., M.S. ***** The Ohio State University 2004 Dissertation Committee: Professor Virginie Bouchard, Adviser Approved by Professor Serita D. Frey, Co-adviser Professor Olli H. Tuovinen Professor Frederick C. Michel, Jr. Adviser Environmental Science Graduate Program ABSTRACT The relationship between aquatic plant (macrophyte) diversity, bacterial diversity, and the biochemical reduction of nitrate (denitrification) within wetlands was examined. Denitrification occurs under anoxic conditions when nitrate is reduced to either nitrous oxide (N2O), or dinitrogen (N2). Although previous studies have identified physical and chemical factors regulating the production of either gas in wetlands, the role that macrophyte diversity plays in this process is not known. The central hypothesis, based on the niche-complimentarity mechanism, was that an increase in macrophyte diversity would lead to increased bacterial diversity, increased denitrification, and decreased N2O flux. This hypothesis was investigated in two mesocosm studies to control environmental conditions while altering macrophyte functional groups (FG) and functional group diversity. In Study #1, five macrophyte functional groups (clonal dominants, tussocks, reeds, facultative annuals, and obligate annuals) were each represented by two species. Fifty-five mesocosms with 5-6 replicates of 0, 1, 2, 3, 4, or 5 macrophyte FG (0-10 species) were established in the spring of 2001 and sampled in August 2001, September 2001, and April 2002.
    [Show full text]
  • Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer
    viruses Review Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer Yani Arhab y , Alexander G. Bulakhov y, Tatyana V. Pestova and Christopher U.T. Hellen * Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; [email protected] (Y.A.); [email protected] (A.G.B.); [email protected] (T.V.P.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 11 May 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 50-untranslated region (50UTR) of their genomes. Each class of IRES has a conserved structure and promotes 50-end-independent initiation of translation by a different mechanism. Picornavirus 50UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity.
    [Show full text]
  • Soil Biology & Biochemistry
    Soil Biology & Biochemistry 65 (2013) 33e38 Contents lists available at SciVerse ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon Woo Jun Sul a,b,1, Stella Asuming-Brempong c, Qiong Wang a, Dieter M. Tourlousse a, C. Ryan Penton a,b, Ye Deng d, Jorge L.M. Rodrigues a,e, Samuel G.K. Adiku c, James W. Jones f, Jizhong Zhou d, James R. Cole a, James M. Tiedje a,b,* a Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA b Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA c Department of Soil Science, College of Agriculture and Consumer Sciences, University of Ghana, Legon, Ghana d Institute of Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA e Department of Biology, University of Texas, Arlington, TX 76019, USA f Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA article info abstract Article history: We analyzed the microbial community that developed after 4 years of testing different soil-crop man- Received 11 February 2013 agement systems in the savannaheforest transition zone of Eastern Ghana where management systems Received in revised form can rapidly alter stored soil carbon as well as soil fertility. The agricultural managements were: (i) the 1 May 2013 local practice of fallow regrowth of native elephant grass (Pennisetum purpureum) followed by biomass Accepted 10 May 2013 burning before planting maize in the spring, (ii) the same practice but without burning and the maize Available online 25 May 2013 receiving mineral nitrogen fertilizer, (iii) a winter crop of a legume, pigeon pea (Cajanus cajan), followed by maize, (iv) vegetation free winter period (bare fallow) followed by maize, and (v) unmanaged Keywords: Tropical agricultural practices elephant grass-shrub vegetation.
    [Show full text]
  • (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH
    ( 2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, A61K 48/00 (2006.01) A61K 31/7105 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, A61K 31/7088 (2006.01) C07K 14/725 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12N 15/115 (2010.01) C12N 15/85 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C12N 15/64 (2006.01) C12N 15/11 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US2020/034418 SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (22) International Filing Date: TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. 22 May 2020 (22.05.2020) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available) . ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/85 1,548 22 May 2019 (22.05.2019) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 62/857,121 04 June 2019 (04.06.2019) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, PCT/US2019/03553 1 TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, 05 June 2019 (05.06.2019) US KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Esta Dissertação Está De Acordo Com
    Fernanda de Mello Malta Seqüenciamento da Região NS5A do Genoma do Vírus da Hepatite C, Genótipo 3, de Pacientes Brasileiros com Infecção Crônica Dissertação apresentada à Faculdade de Medicina da Universidade de São Paulo para a obtenção do título de Mestre em Ciências Área de concentração: Fisiopatologia Experimental Orientador: Dr. João Renato Rebello Pinho São Paulo 2006 Dedico este trabalho... Aos meus pais, Zeca e Cris, que sempre investiram na minha formação. Obrigada pelo apoio, incentivo e por todo amor. À minha sobrinha querida, Maria Luiza, amiga e companheira. Obrigada pelos grandes momentos de alegria! À minha irmã e ao meu cunhado, Gabriela e Marcelo, pelo apoio e pelos momentos de descontração. À amiga, Isabel M.V.G.C.Mello, pelo que me ajudou a conquistar, por tudo que me ensinou e pela dedicação. Muito Obrigada! Ao meu orientador, João Renato, pelo incentivo, pelas oportunidades e pela confiança. Muito Obrigada! Agradecimentos À Michele M. S. Gomes, amiga e companheira nas horas boas e difíceis do laboratório e da vida. Obrigada por tudo! À Mônica Yamaguchi e Gabriela P. Lopes pelo apoio e incentivo. Ao Prof. Dr. Flair José Carrilho pela confiança em meu trabalho e por valorizar a integração da área de pesquisa básica com a clínica. Ao Dr. José Eymard de Medeiros Filho pelo auxílio e pelas idéias fornecidas no início deste trabalho. À “Alves de Queiroz Family Fund For Research” pelo auxílio fornecido. Ao Instituto Adolfo Lutz pela utilização de sua estrutura física para a realização deste trabalho. À Fapesp, que por intermédio do projeto Rede de Diversidade Genética Viral – VGDN, possibilitou a realização deste trabalho.
    [Show full text]