The Effect of Protistan Bacterivory on Bacterioplankton Community Structure

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Protistan Bacterivory on Bacterioplankton Community Structure AN ABSTRACT OF THE THESIS OF Marcelino T. Suzuki for the degree of Doctor of Philosophy in Oceanography presented on October 14th 1997. Title: The Effect of Protistan Bacterivory on Bacterioplankton Community Structure. Redacted for privacy Abstract approved: Barry F. Sherr A series of experiments were performed to test the hypothesis that bacterivorous protists selectively feed on specific genotypes of marine bacterioplankton, affecting bacterioplankton community structure. A study comparing the bacterioplankton community diversity estimated by a SSU rDNA gene (SSU rDNA) clone library and a collection of cultivated bacteria from the same water sample suggests that bacterioplankton is dominated by organisms that do not grow easily in enrichmentcultures and are underrepresented in culture collections. Therefore, a new method, length heterogeneity analysis by PCR (LH-PCR) was developed to assess the community structure of in situ bacterioplankton communities. In LH-PCR, a region of the SSU rDNA which exhibits length variations among different phylogenetic groups isamplified from environmental DNA by PCR. Fragments originating from different organisms are discriminated by their length and quantified by the fluorescence emission of a labeled primer. Since the method is based on PCR, a study was performed to evaluate the introduction of bias by the reaction.Using pairwise mixtures of rDNAs I described reannealing bias, a new source of PCR bias by PCR. This bias is caused byself-inhibitionofPCR ampliconsthatattainelevated concentrations after several reaction cycles;thus templates with higher concentration in original gene mixtures tend to be underrepresented in products. This bias can be minimized by limitingfinal PCR product concentrations.I applied LH-PCR to assess changes in bacterioplankton communities in four protist exclusion experiments. Changes in the genotypic composition of the bacterial community of water samples with protists removed by filtration was followed and compared to the changes in community structure of control water samples.There were differences between filtered water samples and controls incubated for 24 to 48 hours. In the absence of bacterivores some SSU rDNAs that were insignificant in the original water samples dominated the bacterioplankton SSU rDNA pool after48hours. Protistsappearedtobecapableofcontrolling bacterioplankton taxonomic diversity under manipulated conditions.This supports the hypothesis that aquatic bacterioplankton communities are dominated by relatively inactive cells that are less susceptible to grazing by bacterivorous protists. The Effect of Protistan Bacterivory on Bacterioplankton Community Structure Marcelino 1. Suzuki A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed September14th,1997 Commencement June 1998 Doctor of Philosophy thesis of Marcelin.o T. Suzuki presented on October 14th1997 APPROVED: Redacted for privacy Co-Major Professot, representing Oceanography Redacted for privacy Co-Major Professor, representing Oceanography Redacted for privacy Dean of the College of Oceanic and Atmospheric Sciences Redacted for privacy Dean of Gradfjte School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted.. for privacy Marcelino I; ACKNOWLEDGMENTS First of all I would like to thank my major professors Drs. Barry and Evelyn Sherr for all the enthusiasm, patience and support in my seven years in Corvallis, I will always consider them as my American step-parents.I would also like to thank my co-major professor, Dr. Stephen Giovannoni, for all his support to this dissertation, and for introducing me to the molecular approach in microbial ecology, which is a major part of my dissertation. Thanks as well for my past and present committee members, p Dr. Pat Wheeler, Dr. Kate Field, Dr. Anne-Michelle Wood and Dr. Rebecca Donatelle. Many thanks go as well to all the people in the College of Oceanic and Atmospheric Sciences and Department of Microbiology, Irma Delson, Robin Hzlobeczy, Kelly Gibbs, Marylin Wallace and Donna Obert who saved my life so many times. I would also like to thank Dr. Charlie Miller, for his excellent lectures and discussions. Thanks to Dr. Dick Morita for such enjoyableandenlighteningdiscussions,andsuggestionsforthe Introduction on this thesis. Thanks as well to my lab. mates, in special to Nanci Adair for teaching me the basics molecular techniques, and my co- workers Mike Rappé and Zara Haimberger, it was sure lots of fun to work with you. I would like to also thanks all the people that made my stay in Corvallis so much more enjoyable. Thanks to my friends, most of whom are miles away from Corvallis for such good times:Luca Tallini, Axel Fabritius, Vasilis Zervakis, Ulrike Hahn and Iris Bechinger, just to name a few.Last, but not least, many thanks to my parents,for without their support for all those years, this thesis would have never have been possible. CONTRIBUTION OF AUTHORS Dr. Stephen Giovannoni was involved in the design, analysis and writing of the first three manuscripts. Dr. Michael Rappé was involved in the construction of the clone libraries, DNA sequence analysis and writing of two manuscripts. Zara W. Haimberger helped in the screening and mantainance of the culture collection, and in the DNA sequencing. Harry Winfield, Nanci Adair, JUrgen Ströbel helped in the isolation and screening of the culture collection. TABLE OF CONTENTS Page Introduction 1 Bacterioplankton Community Structure 1 Controls of Bacterioplankton Biomass 5 Controls of Bacterioplankton Production 8 Bacterioplankton Diversity 10 Molecular Methods for the Study of Bacterioplankton Taxonomic Community Structure 13 Environmental Clone Libraries of Small Subunit Ribosomal RNA genes 13 Oligonucleotide Hybridization 14 PCR-Based Methods 15 Controls of Bacterioplankton Diversity 18 Chapter 1. Bacterial Diversity Among SSU rDNA Gene Clones and Cellular Isolates from the Same Seawater Sample 21 Abstract Introduction 23 Material and Methods 25 Water samples 25 Isolation of cellular clones 25 Cell counts 27 SSU rRNA gene clone library 27 RFLP patterns: cellular clones 29 RFLP patterns: gene clones 30 TABLE OF CONTENTS (Continued) Page Sequencing: cellular clones 30 Sequencing: gene clones 31 Phylogenetic analyses 31 Accession numbers 32 Results 32 Discussion 44 Acknowledgments 47 References 47 Chapter 2. Bias Caused by Template Annealing in the Amplification of Mixtures of 16S rRNA Genes by PCR 52 Abstract 53 Introduction 54 Material and methods 57 Templates 57 PCR reaction conditions 59 PCR primers 59 Detection of PCR products 60 Kinetic models 61 Effect of the number of cycles 61 Results 61 519F11406R-HEX primer pair 62 27F-FAM/338R primer pair 63 Kinetic models 65 TABLE OF CONTENTS (Continued) Page Calculating the values of f and k 67 Discusssion 71 Acknowledgments 76 References 77 Chapter 3. Estimating Coastal Picoplankton Community Structure by LH- PCR 80 Abstract 81 Introduction 82 Material and Methods 84 Water samples 84 LH-PCR Clone library and Culture Collection 86 Length heterogeneity analysis of published sequences 87 Bias by PCR 87 Results 88 Predicted Length Heterogeneity of the 5' regions of 16S rRNAs 88 Analyses of Coastal Bacterioplankton Diversity 100 Kinetic bias in gene frequencies 105 LH-PCR 105 Discussion 107 Acknowledgments 110 References 110 TABLE OF CONTENTS (Continued) Page Chapter 4. The Effect of Protistan Bacterivory on Bacterioplankton Community Structure 113 Abstract 114 Introduction 115 Material and methods 117 Water samples 117 Protist Exclusion Experiment 1 118 Protist Exclusion Experiment 2 118 Protist Exclusion Experiment 3 and 4 119 Cell Counts 119 LH-PCR 120 Results 121 Cell Counts 121 LH-PCR 122 Discusssion 135 Acknowledgments 139 Literature cited 139 Conclusions Bias by PCR 144 LH-PCR 146 Bacterioplankton diversity 147 Controls of Bacterioplankton Community Structure 150 Bibliography 154 TABLE OF CONTENTS (Continued) Page Appendix 191 List of bacterial strains isolated from seawater and their SSU rDNA sequences. 192 WWW addresses of online databases searched 193 Culture collections-databases 193 Gene sequence databases 193 Abbreviations 193 LiST OF FIGURES Figure Page 1.1 HaellIRFLPpatterns common to cellular isolates and environmental geneclone SSU rDNAs ...................................................................................... 35 1.2. Taxonomic grouping of Oregon coast cellular clones A) and gene clones B), obtained by a comparison of partial (5' end) SSU rDNA sequences to sequences available through the RDP using the program SIMILARITY_RANK......................................................................................... 37 1.3. Phylogenetic tree generated by the neighbor-joining method from a mask of Ca. 200 nucleotide positions, showing the relationships between Oregon coast cellular clones (R2A) and gene clones (OCS) related to the gammaProteobacteria ........................................................................................ 41 1.4. Phylogenetic tree generated by the neighbor-joining method from a mask of Ca. 200 nucleotide positions, showing the phylogenetic relationships among Oregon coast cellular and gene clones within the alpha subdivision of the Proteobacteria.........................................................42 2.1. Locations of PCR primers and cleavage sites of the
Recommended publications
  • Catalogue of Bacteria Shapes
    We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Novel Methanotrophs of the Family Methylococcaceae from Different Geographical Regions and Habitats
    Microorganisms 2015, 3, 484-499; doi:10.3390/microorganisms3030484 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article Novel Methanotrophs of the Family Methylococcaceae from Different Geographical Regions and Habitats Tajul Islam 1,*, Øivind Larsen 2, Vigdis Torsvik 1, Lise Øvreås 1, Hovik Panosyan 3, J. Colin Murrell 4, Nils-Kåre Birkeland 1 and Levente Bodrossy 5 1 Department of Biology, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006 Bergen, Norway; E-Mails: [email protected] (V.T.); [email protected] (L.Ø.); [email protected] (N.-K.B.) 2 Uni Research Environment, Thormøhlensgate 49B, 5006 Bergen, Norway; E-Mail: [email protected] 3 Department of Microbiology, Plant and Microbe Biotechnology, Yerevan State University, A. Manoogian 1, 0025 Yarevan, Armenia; E-Mail: [email protected] 4 School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; E-Mail: [email protected] 5 Commonwealth Scientific and Industrial Research Organization (CSIRO), Marine and Atmospheric Research and Wealth from Oceans National Research Flagship, Hobart, TAS 7004, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +47-5558-4400. Academic Editors: Ricardo Amils and Elena González Toril Received: 10 July 2015 / Accepted: 7 August 2015 / Published: 21 August 2015 Abstract: Terrestrial methane seeps and rice paddy fields are important ecosystems in the methane cycle. Methanotrophic bacteria in these ecosystems play a key role in reducing methane emission into the atmosphere. Here, we describe three novel methanotrophs, designated BRS-K6, GFS-K6 and AK-K6, which were recovered from three different habitats in contrasting geographic regions and ecosystems: waterlogged rice-field soil and methane seep pond sediments from Bangladesh; and warm spring sediments from Armenia.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Genomics and Epigenomics of Sporosarcina ureae A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Biology By Andrew Oliver August 2016 The thesis of Andrew Oliver is approved by: _________________________________________ ____________ Sean Murray, Ph.D. Date _________________________________________ ____________ Gilberto Flores, Ph.D. Date _________________________________________ ____________ Kerry Cooper, Ph.D., Chair Date California State University, Northridge ii Acknowledgments First and foremost, a special thanks to my advisor, Dr. Kerry Cooper, for his advice and, above all, his patience. If I can be half the scientist you are someday, I would be thrilled. I would like to also thank everyone in the Cooper lab, especially my colleagues Courtney Sams and Tabitha Bayangnos. It was a privilege to work along side you. More thanks to my committee members, Dr. Gilberto Flores and Dr. Sean Murray. Dr. Flores, you were instrumental in guiding me to ask the right questions regarding bacterial taxonomy. Dr. Murray, your contributions to my graduate studies would make this section run on for pages. I thank you for taking me under your wing from the beginning. Acknowledgement and thanks to the Baresi lab, especially Dr. Larry Baresi and Tania Kurbessoian for their partnership in this research. Also to Bernardine Pregerson for all the work that lays at the foundation of this study. This research would not be what it is without the help of my childhood friend, Matthew Kay. You wrote programs, taught me coding languages, and challenged me to go digging for answers to very difficult questions.
    [Show full text]
  • Downloaded from the Fungene Database (
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307504; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers Jin Chang,a,b Daehyun Daniel Kim,a Jeremy D. Semrau,b Juyong Lee,a Hokwan Heo,a Wenyu Gu,b* Sukhwan Yoona# aDepartment of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea bDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109 Running Title: Methanotrophic influence on N2O emissions #Address correspondence to Sukhwan Yoon, [email protected]. *Present address: Department of Civil & Environmental Engineering, Stanford University, Palo Alto CA, 94305 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307504; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content.
    [Show full text]
  • Sporosarcina Aquimarina Sjam16103 Isolated from the Pneumatophores of Avicennia Marina L
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2012, Article ID 532060, 10 pages doi:10.1155/2012/532060 Research Article Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L. S. Rylo Sona Janarthine1 and P. Eganathan2 1 Faculty of Marine Science, Annamalai University, Chidambaram 608 502, India 2 Biotechnology Division, M S Swaminathan Research Foundation, Chennai 600 113, India Correspondence should be addressed to S. Rylo Sona Janarthine, jana [email protected] Received 17 October 2011; Revised 12 January 2012; Accepted 20 April 2012 AcademicEditor:A.J.M.Stams Copyright © 2012 S. R. S. Janarthine and P. Eganathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26◦C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants.
    [Show full text]
  • Large Scale Biogeography and Environmental Regulation of 2 Methanotrophic Bacteria Across Boreal Inland Waters
    1 Large scale biogeography and environmental regulation of 2 methanotrophic bacteria across boreal inland waters 3 running title : Methanotrophs in boreal inland waters 4 Sophie Crevecoeura,†, Clara Ruiz-Gonzálezb, Yves T. Prairiea and Paul A. del Giorgioa 5 aGroupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), 6 Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada 7 bDepartment of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, 8 Catalunya, Spain 9 Correspondence: Sophie Crevecoeur, Canada Centre for Inland Waters, Water Science and Technology - 10 Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Burlington, Ontario, Canada, e-mail: [email protected] 12 † Current address: Canada Centre for Inland Waters, Water Science and Technology - Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada 1 13 Abstract 14 Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby 15 mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and 16 phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain 17 the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here we used high 18 throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic 19 community composition and the environmental factors that influence their distribution and relative 20 abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal 21 landscape. Within one region, soil and soil water samples were additionally taken from the surrounding 22 watersheds in order to cover the full terrestrial-aquatic continuum.
    [Show full text]
  • The Methanol Dehydrogenase Gene, Mxaf, As a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments
    The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lau, Evan, Meredith C. Fisher, Paul A. Steudler, and Colleen Marie Cavanaugh. 2013. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 8(2): e56993. Published Version doi:10.1371/journal.pone.0056993 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Methanol Dehydrogenase Gene, mxaF,asa Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2 1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America Abstract The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera.
    [Show full text]
  • Antibus Revised Thesis 11-16 For
    Molecular and Cultivation-based Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Doug Antibus December, 2009 Thesis written by Doug Antibus B.S., Kent State University, 2007 M.S., Kent State University, 2009 Approved by Dr. Christopher B. Blackwood Advisor Dr. James L. Blank Chair, Department of Biological Sciences Dr. Timothy Moerland Dean, College of Arts and Sciences iii TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………..iv LIST OF FIGURES ……………………………………………………………………...vi ACKNOWLEDGEMENTS…………………………………………………………......viii CHAPTER I: General Introduction……………………………………………………….1 CHAPTER II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity Introduction……………………………………………………………....22 Results and Discussion……………………………………………..……27 Methods…………………………………………………………………..51 Literature Cited…………………………………………………………..59 CHAPTER III: Recovery of Viable Bacteria from Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica Introduction………………………………………………..……………..78 Methods…………………………………………………………………..80 Results……………………………………………………………...…….88 Discussion…………………………………………………………...….106 Literature Cited………………………………………………………....109 CHAPTER IV: General Discussion…………………………………………………….120 iii LIST OF TABLES Chapter II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity
    [Show full text]
  • Microbial Community Composition and Functional Potential in Bothnian Sea Sediments Is Linked to Fe and S Dynamics and the Quality of Organic Matter
    Limnol. Oceanogr. 65, 2020, S113–S133 © 2019 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11371 Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter Olivia Rasigraf ,1,2,3* Niels A. G. M. van Helmond,2,4 Jeroen Frank,1,5 Wytze K. Lenstra ,2,4 † Matthias Egger,4, Caroline P. Slomp,2,4 Mike S. M. Jetten1,2,5 1Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands 2Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands 3German Research Centre for Geosciences (GFZ), Geomicrobiology, Potsdam, Germany 4Department of Earth Sciences, Utrecht University, The Netherlands 5Soehngen Institute of Anaerobic Microbiology (SIAM), Radboud University Nijmegen, Nijmegen, The Netherlands Abstract The Bothnian Sea is an oligotrophic brackish basin characterized by low salinity and high concentrations of reactive iron, methane, and ammonium in its sediments, enabling the activity and interactions of many micro- bial guilds. Here, we studied the microbial network in these sediments by analyzing geochemical and microbial community depth profiles at one offshore and two near coastal sites. Analysis of 16S rRNA gene amplicons rev- ealed a distinct depth stratification of both archaeal and bacterial taxa. The microbial communities at the two near coastal sites were more similar to each other than the offshore site, which is likely due to differences in the quality and rate of organic matter degradation. The abundance of methanotrophic archaea of the ANME-2a clade was shown to be related to the presence of methane and varied with sediment iron content.
    [Show full text]
  • Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 2010, p. 6412–6422 Vol. 76, No. 19 0099-2240/10/$12.00 doi:10.1128/AEM.00271-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probingᰔ† Molly C. Redmond,1,2 David L. Valentine,2,3* and Alex L. Sessions4 Graduate Program in Marine Science, University of California, Santa Barbara, California 931061; Department of Earth Science, University of California, Santa Barbara, California 931062; Marine Science Institute, University of California, Santa Barbara, California 931063; and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 911254 Received 1 February 2010/Accepted 22 July 2010 Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylo- phaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days.
    [Show full text]