Streptococcus Anginosus Group

Total Page:16

File Type:pdf, Size:1020Kb

Streptococcus Anginosus Group The Streptococcus anginosus group Often underestimated, unrecognized, and misidentified lassification, C, F or G and collectively nomenclature and referred to as the “Streptococcus Cidentification of the milleri” group. Unification of Streptococcus anginosus group these streptococci into a single (SAG) have been historically species, Streptococcus problematic and unreliable, anginosus, was later proposed, By Kerry Pierce, MS mainly due to variability in as this is the oldest approved bacteriological characteristics name for members in this group and clinical presentations. and, therefore, took precedence over the name “milleri.” Kerry Pierce is a Technical SAG was first discovered in Support Representative at 1956 by Guthof, when More recent molecular analysis Hardy Diagnostics. examining non-hemolytic shows three discrete DNA streptococcal species isolated homologies within SAG, She earned her Bachelor’s and Master’s Degrees at from oral infections. This group corresponding to three distinct Florida State University in included an assortment of strains: StreptococcusTallahassee. anginosusHer studies streptococci associated with were focused on molecular serious pathogenic infections. □ Streptococcus constellatus microbiology.Classification, nomenclature □ Streptococcus intermedius and identification of the Lancefield group reaction, along □ Streptococcus anginosus StreptococcusBefore joining anginosus Hardy, Kerry group with other common laboratory (SAG)held severalhave been college historically level techniques used problematicteaching positions and unreliable, for to identify “In general, members of SAG have a biology and microbiology. mainly due to variability in bacteria, are propensity to form abscesses and cause bacteriological characteristics inconsistent Kerry takes pride in serving invasive pyogenic infection, including head andand clinical assisting presentations. customers Thisat throughout the S. groupHardy was Diagnostics first discovered and has in anginosus group, and neck infection, brain abscesses, intra‐ 1956become by Guthof, involved in inreference various to making it thoracic and intra‐abdominal infections.” non-hemolyticwriting and training streptococcal difficult to assignments. classify these microorganisms. The species Members of this group are name, “milleri,” was chosen in phenotypically characterized honor of the microbiologist, by their microaerophilic or W.D. Miller, but was later anaerobic growth amended to include small beta- requirement, the formation of hemolytic, along with non- pin-point or “minute” sized hemolytic streptococci in groups colonies, and the frequent presence of a distinctive produce extracellular enzymes Head and neck infection by caramel-like smell when capable of degrading connective SAG is generally associated cultured on a solid agar tissue, including hyaluronidase, with dental origin and the medium. deoxyribonuclease, majority of these patients ribonuclease, gelatinase and usually require surgical Members of SAG are collagenase, may contribute intervention. Consequently, considered normal commensal greatly to their overall odontogenic infection cannot be flora in humans and are pathogenicity. ruled out in patients with SAG commonly isolated from the bacteremia of unknown source, oral cavity, oropharynx, The Streptococcus anginosus especially in patients with poor gastrointestinal tract and vagina. group is also known to release dental hygiene. However, these bacteria possess extracellular products that have the potential to cause a variety an immunosuppressive effect, of multiple body site infections further permitting them to in both human and animal hosts. survive and flourish within the confines of an abscess. After their initial isolation from oral infections, subsequent research on SAG confirmed their role in pathogenic oral and teeth infections, as well as their carcinogenic potential. Studies investigating the bacteriology of dental caries and abscesses show that members of SAG Figure 3: A CT scan of a SAG Figure 1: Streptococcus have been isolated from dental brain abscess from an 8 year old constellatus is a Group C beta aspirates, with some patients presenting with fever and hemolytic strep forming small showing nearly pure colony headache for one month. colonies on Blood Agar. It is a growth of SAG, while others member of the Streptococcus have a majority of SAG mixed anginosus group (SAG). Chronic alcohol consumption is with other oral anaerobes. a major risk factor for cancers Unlike other types of viridans of the upper digestive tract. In streptococci, members of SAG fact, the incidence of esophageal are oftentimes associated with cancer in alcoholics is bacteremia and abscess reportedly much higher than as formation; in general, treatment seen in the general population, of abscesses requires surgical suggesting the presence of intervention and drainage. The certain risk factors in chronic pathogenic mechanisms of this alcohol consumption-related group are not well known or carcinogenesis. Recent research completely understood, but it is into the concentration of S. widely believed that the anginosus present in the saliva presence of a polysaccharide of alcoholics compared to capsule helps these healthy patients or patients with opportunistic pathogens evade other types of chronic the body’s natural defense oral/digestive diagnoses systems and escape (esophageal cancer, phagocytosis prior to infection. periodontitis, gastritis, etc.) In addition, their ability to Figure 2: SAG is a common cause shows elevated levels of S. of dental abscesses. anginosus in the saliva of alcoholics, suggesting they have were recovered from blood. S. a higher than average risk for S. intermedius and S. constellatus anginosus infection. are more likely to cause abscesses than S. anginosus, In general, members of SAG while S. constellatus and S. have a propensity to form anginosus appear more likely to abscesses and cause invasive be polymicrobial. Previous pyogenic infection, including research also suggests that, head and neck infection, brain although S. intermedius is the abscesses, intra-thoracic and least commonly isolated intra-abdominal infections. species, it appears to be the Predisposing or underlying most pathogenic in terms of the conditions noted with infection etiology of disease. by SAG include previous surgery, trauma, diabetes, Other than pyogenic infection, immunodeficiency, and infective endocarditis has been In conclusion, members of malignancy, but may also be reported in a significant number SAG have a tendency to cause related to hygiene or the of patients with SAG abscess formation, but patient’s overall general health bacteremia; however, the condition as outlined above. incidence of infective different species have a endocarditis appears to be different propensity for declining. Current literature pyogenic infection. Therefore, suggests that endocarditis since the three species of SAG caused by beta-hemolytic are associated with different streptococci and SAG show that clinical manifestations and the majority of patients with symptoms, it is useful to SAG endocarditis also appear to identify these microorganisms in order to further investigate have underlying complications the etiology of disease and due to pre-existing heart optimize patient outcomes. diseases. Among the species of streptococci in the Streptococcus anginosus group, it is believed that S. anginosus is the most likely member to cause endocarditis. Studies using mouse models support the Figure 4: A gingival abscess finding that S. anginosus is more likely to cause Different species of SAG appear endocarditis, because this at differing rates and of different species is generally found in Figure 5: Hardy’s Rapid degrees of pathogenicity. higher cell densities within Anginosis ID Kit performs an Research shows that S. infected tissue. arginine decarboxylase (positive constellatus and S. anginosus seen in the second tube) and a are isolated at roughly the same Voges-Proskauer test (positive frequency from clinical seen in the fourth tube) to quickly specimens, but at a rate four place a strep within the anginosus times more often than S. group. intermedius. The majority of isolates were recovered from Consequently, Hardy exudates, aspirate or fluid Diagnostics has developed the samples, and additional isolates Rapid Anginosus Kit (Cat. no. identification of streptococcal usually harmless members of Z14) which can be used to isolates suspected of belonging the viridans streptococci. detect arginine decarboxylase to the anginosus group. This kit activity and perform the Voges- offers a simple method to Kerry Pierce, MS Proskauer test in as little as four quickly distinguish the possibly Santa Maria, California hours, to assist in the pathogenic SAG from the other .
Recommended publications
  • Biofire Blood Culture Identification System (BCID) Fact Sheet
    BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported.
    [Show full text]
  • Goals of This Review Testable Concepts Fundamentals: Host
    41a –Infections in the Neutropenic Cancer Patient and Hematopoietic Stem Cell Recipients Speaker: Kieren Marr, MD Disclosures of Financial Relationships with Relevant Commercial Interests • Consultant – Amplyx, Cidara, Merck and Company, Infections in the Neutropenic Cancer Patient and Sfunga Therapeutics Hematopoietic Stem Cell Recipients • Ownership Interests – MycoMed Technologies Kieren Marr, MD Professor of Medicine and Oncology John Hopkins University School of Medicine Director, Transplant and Oncology Infectious Diseases John Hopkins University School of Medicine Goals of This Review Testable Concepts • Immune compromised people develop “typical” • Think about the patient infections and those specific to their underlying risks – How does underlying disease impact risks? • Focus here on testable complications specific to the • Think about the treatment received host – What type of immune suppression? – Types of immune – suppressing drugs and diseases • Think about infections breaking through preventative – Recognition of specific “neutropenic syndromes” therapies • Skin lesions – A good context to test resistance and differentials • Invasive fungal infections • Think about common non‐infectious syndromes • Neutropenic colitis Fundamentals: Host Immune Risks Classic Immunologic risks • Immune defects associated with underlying • Neutropenia malignancy (and prior therapies) – Prolonged (>10 days) and profound (< 500 cells / mm3) – AML and myelodysplastic syndromes (MDS) associated with high risks for severe bacterial and fungal •
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • Common Commensals
    Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • New Guidelines for the Antibiotic Treatment of Streptococcal, Enterococcal and Staphylococcal Endocarditis
    Journal of Antimicrobial Chemotherapy (1998) 42, 292–296 JAC New guidelines for the antibiotic treatment of streptococcal, enterococcal and staphylococcal endocarditis D. C. Shanson Microbiology Department, Unilabs Clinical Trials International Central Laboratory Services, Bewlay House, 32 Jamestown Road, London NW1 7BY, UK Revised guidelines for the treatment of bacterial endo- mended in the USA during the last 20 years but were not carditis have recently been issued by the BSAC Working previously advocated in the UK.2,6 Many reports indicate Party,1 complementing previous recommendations from that a combination of penicillin plus an aminoglycoside the American Heart Association (AHA).2 The AHA kills penicillin-sensitive viridans streptococci more rapidly guidelines do not include empirical treatment recommen- than penicillin alone, and that a 2-week course of penicillin dations, perhaps implying that the results of blood cultures plus streptomycin is effective clinically.2,6 Gentamicin is, should be awaited, which is not usually the policy in the however, generally the preferred aminoglycoside as it is UK. Apart from these differences, the two reports, which much more often used in general clinical practice than were initiated by independent working groups, include streptomycin, convenient to give by the intravenous route, broadly similar recommendations. In both publications, and more readily assayed than streptomycin. In-vitro and antibiotic treatment is indicated for patients with a in-vivo experimental data support the use of gentamicin diagnosis of infective endocarditis based on the Duke as an alternative to streptomycin for short-course treat- diagnostic criteria,3,4 and early surgical intervention is ment;2,7 there is a relative lack of clinical reports on emphasized for some patients, especially if their 2-week treatment courses using gentamicin instead of haemodynamic condition deteriorates.
    [Show full text]
  • Streptococci
    STREPTOCOCCI Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Older cultures may lose their Gram-positive character. Most streptococci are facultative anaerobes, and some are obligate (strict) anaerobes. Most require enriched media (blood agar). Streptococci are subdivided into groups by antibodies that recognize surface antigens (Fig. 11). These groups may include one or more species. Serologic grouping is based on antigenic differences in cell wall carbohydrates (groups A to V), in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. Rebecca Lancefield developed the serologic classification scheme in 1933. β-hemolytic strains possess group-specific cell wall antigens, most of which are carbohydrates. These antigens can be detected by immunologic assays and have been useful for the rapid identification of some important streptococcal pathogens. The most important groupable streptococci are A, B and D. Among the groupable streptococci, infectious disease (particularly pharyngitis) is caused by group A. Group A streptococci have a hyaluronic acid capsule. Streptococcus pneumoniae (a major cause of human pneumonia) and Streptococcus mutans and other so-called viridans streptococci (among the causes of dental caries) do not possess group antigen. Streptococcus pneumoniae has a polysaccharide capsule that acts as a virulence factor for the organism; more than 90 different serotypes are known, and these types differ in virulence. Fig. 1 Streptococci - clasiffication. Group A streptococci causes: Strep throat - a sore, red throat, sometimes with white spots on the tonsils Scarlet fever - an illness that follows strep throat. It causes a red rash on the body.
    [Show full text]
  • Bacteriology
    SECTION 1 High Yield Microbiology 1 Bacteriology MORGAN A. PENCE Definitions Obligate/strict anaerobe: an organism that grows only in the absence of oxygen (e.g., Bacteroides fragilis). Spirochete Aerobe: an organism that lives and grows in the presence : spiral-shaped bacterium; neither gram-positive of oxygen. nor gram-negative. Aerotolerant anaerobe: an organism that shows signifi- cantly better growth in the absence of oxygen but may Gram Stain show limited growth in the presence of oxygen (e.g., • Principal stain used in bacteriology. Clostridium tertium, many Actinomyces spp.). • Distinguishes gram-positive bacteria from gram-negative Anaerobe : an organism that can live in the absence of oxy- bacteria. gen. Bacillus/bacilli: rod-shaped bacteria (e.g., gram-negative Method bacilli); not to be confused with the genus Bacillus. • A portion of a specimen or bacterial growth is applied to Coccus/cocci: spherical/round bacteria. a slide and dried. Coryneform: “club-shaped” or resembling Chinese letters; • Specimen is fixed to slide by methanol (preferred) or heat description of a Gram stain morphology consistent with (can distort morphology). Corynebacterium and related genera. • Crystal violet is added to the slide. Diphtheroid: clinical microbiology-speak for coryneform • Iodine is added and forms a complex with crystal violet gram-positive rods (Corynebacterium and related genera). that binds to the thick peptidoglycan layer of gram-posi- Gram-negative: bacteria that do not retain the purple color tive cell walls. of the crystal violet in the Gram stain due to the presence • Acetone-alcohol solution is added, which washes away of a thin peptidoglycan cell wall; gram-negative bacteria the crystal violet–iodine complexes in gram-negative appear pink due to the safranin counter stain.
    [Show full text]
  • Rapid Differentiation of Pneumococci
    Department of Microbiology University of Helsinki Helsinki, Finland RAPID DIFFERENTIATION OF PNEUMOCOCCI AND VIRIDANS GROUP STREPTOCOCCI BY MALDI-TOF MASS SPECTROMETRY AND A RAPID NUCLEIC ACID AMPLIFICATION TEST IN A CLINICAL MICROBIOLOGY LABORATORY Inka Harju ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Agriculture and Forestry, the University of Helsinki, for public examination in Lecture hall 2 (235), Infocenter Corona, Viikinkaari 11, on 14 June 2019, at 12 noon. Helsinki 2019 ISBN 978-951-51-5272-5 (print) ISBN 978-951-51-5273-2 (PDF) Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae 13/2019 ISSN 2342-5423 (print) ISSN 2342-5431 (Online). Unigrafia Helsinki 2019 ABSTRACT Streptococcus pneumoniae is one of the most significant human bacterial pathogens. It is a major causative agent of community-acquired pneumonia. It is also the most common cause of bacterial otitis media and among most common bacteria causing meningitis in children. The close relatives of S. pneumoniae, the Viridans group streptococci form a central part of the human oral microbiome, but they are also a leading cause of endocarditis. The fast and reliable identification of these bacteria from clinical specimens would therefore be of prime importance for a clinical microbiology laboratory, allowing for the laboratory to provide helpful information to clinicians for identifying the infection focus and targeting antibiotic treatment. The close relationship between S. pneumoniae and Viridans group streptococci, especially their subgroup Mitis group streptococci, complicates the reliable species level identification of these bacteria. The identification of streptococci by the traditional biochemical methods is both unreliable and time-consuming: the identification takes 1-2 days after bacterial growth has been detected on a plate or in a blood culture bottle.
    [Show full text]
  • Identification of Clinically Relevant Streptococcus and Enterococcus
    pathogens Article Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing Maja Kosecka-Strojek 1,* , Mariola Wolska 1, Dorota Zabicka˙ 2 , Ewa Sadowy 3 and Jacek Mi˛edzobrodzki 1 1 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; [email protected] (M.W.); [email protected] (J.M.) 2 Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] 3 Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-6365 Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: Streptococci and enterococci are significant opportunistic pathogens in epidemiology and infectious medicine. High genetic and taxonomic similarities and several reclassifications within genera are the most challenging in species identification. The aim of this study was to identify Streptococcus and Enterococcus species using genetic and phenotypic methods and to determine the most discriminatory identification method. Thirty strains recovered from clinical samples representing 15 streptococcal species, five enterococcal species, and four nonstreptococcal species were subjected to bacterial identification by the Vitek® 2 system and Sanger-based sequencing methods targeting the 16S rRNA, sodA, tuf, rpoB, and recA genes. Phenotypic methods allowed the identification of 10 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains (Leuconostoc, Granulicatella, and Globicatella genera). The combination of sequencing methods allowed the identification of 21 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains.
    [Show full text]
  • Poster #14-Streptococcus Anginosus Infections
    Streptococcus anginosus Infections Clinical and Bacteriologic Characteristics A 6-year Retrospective Study of Adult Patients in Qatar Adila Shaukat, CABM, MRCP, Hussam Al Soub, CABM, FACP, Muna Al Maslamani, CABM, Kadavil Chako, MBBS, Mohammad Abu Khattab, CABM, Samar Hasham, CABM, Faraj Howaidy, CABM, Yasir Al deeb, CABM, Anand Deshmukh, MD, ABMM, Manal Mahmoud, MD, Mariama Abraham, and Abdul Latif Al-Khal, ABIM Background The aim of this study was to assess clinical presentation and antimicrobial mean age 44+- 17 SPECIMEN details susceptibility of Streptococcus (S.) anginosus group in- fections in Hamad General M/F ratio 3:01 blood 51 (50%) Hospital, a tertiary care hospital in the state of Qatar, which is a multinational nationality 78% NQ * pus 22 (21.8%) community. The S. anginosus group is a subgroup of viridans streptococci that 22% Q ** wound swab 14 (13.9%) consist of 3 different species: S. anginosus, S. constellatus,andS. intermedius. H/O previous surgery 18 (17.8%) tissue 8 (7.9%) Although a part of the human bacterial flora, they have potential to cause Co-morbidities 50.00% CSF 2 (2%) suppurative infections. DM 25.00% pleural fluid 2 (2%) HTN 13.00% sputum 1 (1%) Method Malignancy 4.00% peritoneal fluid 1 (1%) We studied a total of 101 patients with S.anginosus group infec tions from CVA 2.00% SENSITIVITY January 2006 until March 2012 by reviewing medical records and identification cirrhosis 2.00% Pencillins 100% of organisms by VITEK 2 and MALDI-TOF. CKD 2.00% Erythromycin 91.10% Others 20.00% clindamycin 95% Results Site of infection ceftrioxone 100% SSTI 29/101 (28.7%) vancomycin 100% The most common sites of infection were skin and soft tissue, intra-abdominal, intraabdominal significant co-organisms 43.60% and bacteremia (28.7%, 24.8%, and 22.7%, respectively).
    [Show full text]
  • Molecular Analysis of Streptococcus Anginosus -Derived Saga Peptides
    ANTICANCER RESEARCH 34: 4627-4632 (2014) Molecular Analysis of Streptococcus anginosus -derived SagA Peptides YUKI KAWAGUCHI1, ATSUSHI TABATA2, HIDEAKI NAGAMUNE2 and KAZUTO OHKURA1,3* 1Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, Japan; 2Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan; 3Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science Graduate School, Suzuka, Mie, Japan Abstract. Background: SagA1 and SagA2 molecules and gastrointestinal tract (4). It is generally considered that produced from beta-hemolytic Streptococcus anginosus they have relatively low pathogenic potential compared to subsp. anginosus are composed of a leader peptide and a other streptococci, in particular members of the Pyogenic propeptide, and their mature form has hemolytic activity as a group streptococci (PGS) such as S. pyogenes (SPy, also well-known Streptococcal peptide toxin, streptolysin. The designated as Group A streptococci, GAS). However, SAA function of these SagA molecules is thought to be dependent is being increasingly recognized as a pathogen that is able to on intra-molecular heterocycle formation. In this study, we cause a wide range of purulent infections that commonly examined the heterocycle-involved molecular features of manifest as abscess formation, and SAA presence has been SagA1, SagA2, and S. pyogenes SagA (SPySagA), focusing detected in esophageal cancer (5, 6). The awareness of the on their heterocycle formation. Materials and Methods: clinical importance of SAA has increased, but the molecular Molecular models of SagA1, SagA2, and SPySagA were basis of the pathogenicity of this species has not been clearly constructed using a molecular modeling technique.
    [Show full text]