NIST Standard Reference Materials 2021 Catalog

Total Page:16

File Type:pdf, Size:1020Kb

NIST Standard Reference Materials 2021 Catalog NIST Standard Reference Materials® Materials® Reference NIST Standard Food & Agriculture High Purity Materials Industrial Materials Radioactivity Clinical & Industrial Hygiene 2021 Catalog NIST SP 260-176 Catalog 2021 Environmental Physical Properties Environmental SRM Forensics NIST Standard Reference Materials® Engineering 2021 Catalog Materials NIST SP 260-176 January 2021 www.nist.gov Phone: (301) 975-2200 Email: [email protected] Mail Orders Mail Orders (in English) for all NIST SRMs/RMs should be directed to: Standard Reference Materials Program National Institute of Standards and Technology 100 Bureau Drive, Stop 2300 Gaithersburg, MD 20899-2300 USA Telephone: (301) 975-2200 E-Mail: [email protected] www.nist.gov/srm Each purchase order should give the number of units, SRM number, and name of each reference material requested. Example: 1 unit, SRM 930e Glass Filters for Spectrophotometry The following information must be included with each order: end user contact information name of customer shipping address billing address telephone number fax number purchase order number a customer identification number, i.e., a social security number (SSN) for consumer customers, tax identification number (TIN) for commercial customers, or agency code (ALC) for U.S. Government customers Note: NIST SRMs/RMs are only distributed in the units of issue listed in this catalog and its supplement (price list). All purchase orders must be in English. Receipt of an order does not imply acceptance of provisions set forth in the order that are contrary to the policies, practices, or regulations of the National Institute of Standards and Technology or the United States Government. Table of Contents NIST SP 260-176 Standard Reference Materials® Catalog January 2021 Editors: Regina R. Montgomery and Mary D. Crivellone Office of Reference Materials National Institute of Standards and Technology Gaithersburg, MD 20899-2300 Steven J. Choquette, Director U.S. Department of Commerce Wynn Coggins, Acting Secretary National Institute of Standards and Technology James K. Olthoff, Acting NIST Director and Acting Under Secretary of Commerce for Standards and Technology Please visit our website www.nist.gov/srm i www.nist.gov/srm | Phone: 301.975.2200 | Email: [email protected] Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 260-176 Supersedes NIST SP 260-176, 2020 114 pages (January 2021) CODEN: NSPUE2 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2021 ii www.nist.gov/srm | Phone: 301.975.2200 | Email: [email protected] IST Standard Reference Materials® (SRMs) are used by industry, government, and academia to ensure the highest quality measurements. This catalog lists over 1200 individual reference materials produced and sold by NIST, each with carefully assigned values for chemical composition and physical properties. N SRMs find use in calibrating instruments and in assuring the long-term integrity of quality assurance programs. They are also key mechanisms for verifying important measurement results and in developing new measurement methods. SRMs provide users with tools to assist in establishing traceability of measurement results to the International System of Units (SI). Each SRM comes carefully packaged with documentation containing assigned values with stated uncertainties and a material safety data sheet, if applicable. Details on use, stability, and NIST analytical methods are also included. For further information and prices, contact us at: Telephone: (301) 975-2200 E-mail: [email protected] www.nist.gov/srm PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. The data given in this catalog is constantly being revised. For the most up-to-date information, please consult our website at https://www.nist.gov/srm. iii www.nist.gov/srm | Phone: 301.975.2200 | Email: [email protected] iv www.nist.gov/srm | Phone: 301.975.2200 | Email: [email protected] Table of Contents Chemical Composition Health & Clinical Organics .....................................................39 Industrial Hygiene ...............................19 Organics ................................................ 40 Ferrous Metals .............................................1 Clinical Laboratory Materials ................ 20 EPA: Organic Compounds Related to Plain Carbon Steels ..................................2 Serum and Plasma Materials ................21 Water Analysis .................................41 Special Low Alloy Steels ...........................2 Ethanol Solutions ..................................21 Perfluorinated and Polyfluorinated Alkyl Low Alloy Steels (chip) ..............................2 Toxic Substances in Urine ......................21 Substances (PFAS) ..........................41 Low Alloy Steels (disk and rod) ................3 Drugs of Abuse ...................................... 22 Crime Scene Investigations ...................41 High Alloy Steels ......................................3 Biomaterials........................................... 22 Food & Agriculture ....................................43 High Temperature Alloys ..........................3 Respirable Materials Foods and Beverages ........................... 44 Stainless Steels (chip and powder) ........4 on Filter Media ............................... 22 Food Contaminants and Allergens ....... 44 Stainless Steels (disk) ..............................4 Respirable Materials ............................. 22 Agricultural Materials ............................ 45 Tool Steels.................................................4 DNA Profiling, Nucleic Acid Materials and Fertilizers ............................................... 45 Monoclonal Antibody ...................... 23 Specialty Steels ........................................4 Wheat Hardness .................................... 45 Lead in Paint, Dust, and Soil .................24 Steelmaking Alloys ...................................4 Dietary Supplement Materials ............. 45 Gases in Ferrous Metals ..........................5 Inorganics ..................................................25 Tobacco Related Materials ................... 45 Cast Steels, White Cast Irons, and Metal (Inorganics) Constituents Geological Materials Ductile Irons .......................................5 in Natural Matrices ......................... 26 & Ores .................................................47 Mercury in Activated Carbon .................27 Cast Irons ..................................................5 Ores ........................................................ 48 Nonferrous Metals ....................................... 7 Environmental Matrices with Carbon Values .................................27 Ore Bioleaching Substrate .................... 48 Aluminum Base Alloys ..............................8 Used Auto Catalysts ...............................27 Clays ....................................................... 48 Cobalt Base Alloys ....................................8 Zeolites ...................................................27 Rock and Minerals ................................ 48 Copper Base Alloys (chip, granule Refractories ........................................... 48 Primary Gas Mixtures ...............................29 and rod) ..............................................8 Soils, Sediments, and Sludges ............. 49 Carbon Monoxide in Air ......................... 30 Copper “Benchmark” ...............................8 Ceramics & Glasses ....................................51 Carbon Monoxide in Nitrogen ............... 30 Copper Base Alloys (block and disk) .......9 Carbon Dioxide in Nitrogen ....................31 Nitrides ................................................... 52 Lead Base Alloys ......................................9 Continental and Oceanic Air ..................31 Cemented Carbides .............................. 52 Nickel Base Alloys ....................................9 Hydrogen Sulfide in Nitrogen .................31 Glasses .................................................. 52 Tin Base Alloys ....................................... 10 Methane in Air ........................................31 Trace Elements ...................................... 52 Titanium Base Alloys ............................. 10 Propane in Air ........................................ 32 Cement .......................................................53 Zinc Base Alloys ..................................... 10 Propane in Nitrogen .............................. 32 Cements and Related Materials ........... 54 Zirconium Base Alloy ............................. 10 Organic Mixtures in Air or Nitrogen ...... 32 Portland Cement Clinkers Microanalysis ...............................................11 Nitrogen Oxides in Air or Nitrogen ........ 32 (solid form) ..................................... 54 Metals .................................................... 12 Oxygen in Nitrogen ................................ 33 Engine Wear Materials ..............................55
Recommended publications
  • Fortificants
    GFF5.qxd 14/11/06 16:44 Page 93 PA RT I I I Fortificants: physical characteristics, selection and use with specific food vehicles GFF5.qxd 14/11/06 16:44 Page 94 GFF5.qxd 14/11/06 16:44 Page 95 Introduction By providing a critical review of the fortificants that are currently available for fortification purposes, Part III of these guidelines is intended to assist pro- gramme managers in their choice of firstly, a suitable food vehicle and secondly, a compatible fortificant. Having established – through the application of appro- priate criteria – that the nature of the public health risk posed by a micronutri- ent deficiency justifies intervention in the form of food fortification, the selection of a suitable combination of food vehicle and fortificant(s), or more specifically, the chemical form of the micronutrient(s) that will added to the chosen food vehicle, is fundamental to any food fortification programme. Subsequent chap- ters (Part IV) cover other important aspects of food fortification programme planning, including how to calculate how much fortificant to add to the chosen food vehicle in order to achieve a predetermined public health benefit (Chapter 7), monitoring and impact evaluation (Chapters 8 and 9), marketing (Chapter 10) and regulatory issues (Chapter 11). In practice, the selection of a food vehicle–fortificant combination is governed by range of factors, both technological and regulatory. Foods such as cereals, oils, dairy products, beverages and various condiments such as salt, sauces (e.g. soy sauce) and sugar are particularly well suited to mandatory mass fortifica- tion. These foods share some or all of the following characteristics: • They are consumed by a large proportion of the population, including (or especially) the population groups at greatest risk of deficiency.
    [Show full text]
  • Standard Reference Materials Price and Availability List IMPORTANT NOTICE to PURCHASERS and USERS of NBS STANDARD REFERENCE MATERIALS
    o A UNITED STATES NBS SPECIAL PUBLICATION DEPARTMENTucrnn 1 ivitii 1 urOF COMMERCE PUBLICATION 260 [ A SUPPLEMENT JANUARY, 1972 Standard Reference Materials Price and Availability List IMPORTANT NOTICE TO PURCHASERS AND USERS OF NBS STANDARD REFERENCE MATERIALS The Office of Standard Reference Materials no longer issues the Quarterly Insert Sheets to update the current issue of the SRM Catalog. Instead a Standard Reference Material Availability and Price List is issued semiannually. The format has been changed to improve readability and the List is organized as follows: Section I - A list of all classes of materials currently available arranged by Standard Reference Material (SRM), Research Material (RM), and General Material (GM) numbers, together with type, unit of issue, and current price. Section Ila — A list of all classes of materials that have been issued since the Catalog (July 1970) was published, arranged by SRM, RM, and GM numbers together with catalog category. Section lib — A short description, arranged by catalog category, of all SRM's issued since the Catalog (July 1970) was published and therefore not contained therein. For ease of reproduction, tables have been condensed and are, in general, not in the same format used in the catalog. (Please note that the values shown are nominal values. The actual values certified are given on the Certificate which accompanies the material.) The unit of issue and price are given after the description of each SRM. Section llla — A list, arranged by SRM numbers, of recently issued certificates (final or revised versions). Section Illb — A list, arranged by SRM, RM, and GM numbers, of all items that have gone out of stock since the effective date of the current catalog.
    [Show full text]
  • Electrolytic Iron
    ELECTROLYTIC IRON ; DEPOSITED BY T H E COMMI T T E E O N (Brafcmate StuMes. 1 x ACC. No DATE ELECTROLYTIC IRON.. A STUDY OF THE PRODUCTION OF IRON BY ELECTROLYSIS, WITH SPECIAL REFERENCE TO ITS RECOVERY FROM SULPHIDE ORES.. THESIS Submitted by WILLIAM RAYMOND MoCLELLAND As Part of the Requirements for the Degree of Master of Soienoe. MAY L925. MoOILL UNIVERSITY, MONTREAL, CANADA. ELECTROLYTIC IRON. A Study of the Production of Iron by Electrolysis, with Special: Reference to its Recovery from Sulphide Ores.- PART I. Introduction Historical Outline and Descriptive* Physical Properties of Electrolytic Iron. PART II Theoretioal Considerations. A. Leaohing. B. Electrolysis. PART III. Experimental Research. A. Ore Body and Treatment of Ore. B. Leaching. C. Electro-deposition. General Summary and Conclusion. PART IV. Appendix. References. Sample Calculations. Bibliography. (1) PART I. INTRODUCTION. Iron, is the oommonest, most widely used, and at the same time the most vitally important of all the base metals. In the growth and developementr of modern civilization it assumes a dominant position.. Iron was not unknown to the anoients,nor were they unaware of its uses. As early as 1500 B.C.. the inhabitants of India; fashioned swords and spear heads. They even recognized, its qualities: for purpose* of construotion. Wrought1: iron beams measuring twenty feet in length have been found in the temple of Kanaruk dating from 1250 B.C. The metallurgy of iron at this period was extremely primative and continued so for many hundreds of year.s. It v;as notr until the sixteenth century that the introduction of-the air blast into the furnaoff made the progress of iron manufacture comparatively rapid.From thi'a period on, tha production increase-d.
    [Show full text]
  • The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining
    materials Article The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining Bin Li 1,2, Guanyong Sun 1,2, Shaoying Li 1,2, Hanjie Guo 1,2,* and Jing Guo 1,2 1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (B.L.); [email protected] (G.S.); [email protected] (S.L.); [email protected] (J.G.) 2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-138-0136-9943 Received: 9 March 2020; Accepted: 9 April 2020; Published: 14 April 2020 Abstract: In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in this step and other impurities such as silicon, manganese, titanium and aluminum were excluded from metallic iron. Dephosphorization was implemented simultaneously during the melting separation step by making use of the ferrous oxide (FeO) contained in DRI. The problem of deoxidization for pure iron was solved, and the oxygen content of pure iron was reduced to 10 ppm by refining with a high basicity slag. Compared with electrolytic iron, the pure iron prepared by this method has tremendous advantages in cost and scale and has more outstanding quality than technically pure iron, making it possible to produce high-purity iron in a short-flow, large-scale, low-cost and environmentally friendly way.
    [Show full text]
  • Preparation of Pure Iron and Iron-Carbon Alloys
    . PREPARATION OF PURE IRON AND IRON-CARBON ALLOYS By J. R. Cain, E. Schramm, and H. E. Cleaves CONTENTS Page I. Introduction 2 II. Making the electrolytic iron 4 III. Melting the electrolytic iron 7 1. Ftimaces 8 (a) Electric furnaces 8 (6) Gas furnaces 11 2. Crucibles 13 IV. Procedure in making alloys 16 V. Discussion of the sources of contamination 19 1. Silicon 19 2. Sulphur 20 3 Manganese and phosphorus 20 4. Copper 21 5 Nickel and cobalt 21 6. Magnesium 21 7. Oxygen 21 VI. Spectroscopic examination 22 VII. Methods of chemical analysis 22 1. Carbon 23 2. Sulphtir 23 3. Silicon 23 4. Phosphorus 24 5. Manganese 24 6. Copper 24 7. Magnesium 24 8. Nickel and cobalt 25 VIII. Summary '. 25 Bibliography 26 I 2 Bulletin of the Bureau of Standards [Voi 13 I. INTRODUCTION The fundamental importance of the iron-carbon thermal equi- librium diagram in the scientific metallurgy of iron and steel and its utility to practical workers have long been realized, and accord- ingly this subject has received attention from many points of view and from many investigators during the past two decades. In view of this fact, it might seem superfluous to add to the existing literature except for the following considerations : Earlier workers have for the most part confined their attention to special portions of the diagram or to disputed questions of theory. Their thermal studies have not been carried out with the degree of accuracy now attainable. They have practically without ex- ception employed commercial materials of varying degrees of purity.
    [Show full text]
  • PDF File Generated From
    OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. DISCLAIMER This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. CONTACT Please contact [email protected] for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Tel: (+43-1) 26026-0 · www.unido.org · [email protected] UNITED NATIONS INDUSTRIAL DEVELOPMENT C'riG,.\NIZATION Advances in Materials Techno!ogy: MONITOR Issue Number 4 Hay l9b) LJear Reader, This is the fourth issue of UNIDu's state-of-the-art series in the field ot materials entitled Advances in Hat~rials Iechnology: Monitor.
    [Show full text]
  • Magnetic and Other Properties of Electrolytic Iron Melted in Vacuo, by Trygve D
    H I LLIN S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. B<, <~: SIk 1g xS 1,·' ~FS I K; -S- 'A· -i 3· - C:55 I UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION BULLETIN NO. 72 MARCH, 1914 MAGNETIC AND OTHER PROPERTIES OF ELECTROLYTIC IRON MELTED IN VACUO BY TRYGVE D. YENSEN, ASSISTANT, ELECTRICAL ENGINEERING DEPART- MENT, ENGINEERING EXPERIMENT STATION CONTENTS PAGE I. INTRODUCTION ....................................... 3 1. Scope of Bulletin ............................ 3 2. Historical Review .................. ......... 4 3. Early Experiences ........................... 11 4. Acknowledgments ............................ 12 II. MATERIAL AND APPARATUS ............................. 13 5. Electrolytic Iron ............................. 13 6. Crucibles ................................... 13 7. Vacuum Furnace ............................ 13 8. Reheating Furnace ........................... 13 9. Pyrom eter .................................. 14 10. Permeameter ................................ 14 11. Conductivity Bridge ......................... 17 III. DETAILS OF TIE EXPERIMENTS .......................... 17 12. Cleaning the Iron................... ......... 17 13. M elting the Iron ............................. 17 14. Forging the Ingots into Rods................... 18 15. Preparing the Test-pieces ..................... 18 16. Annealing and Quenching..................... 19 17. M agnetic Tests .............................. 20 18.
    [Show full text]
  • Calorimetry of 4-Aminopyridine Alan Everett Av N Til Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Calorimetry of 4-aminopyridine Alan Everett aV n Til Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Van Til, Alan Everett, "Calorimetry of 4-aminopyridine " (1976). Retrospective Theses and Dissertations. 6229. https://lib.dr.iastate.edu/rtd/6229 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Lecture 10. Analytical Chemistry
    Lecture 10. Analytical Chemistry Basic concepts 1 What is Analytical Chemistry ? It deals with: • separation • identification • determination of components in a sample. It includes coverage of chemical equilibrium and statistical treatment of data. It encompasses any type of tests that provide information relating to the chemical composition of a sample. 2 • Analytical chemistry is divided into two areas of analysis: • Qualitative – recognizes the particles which are present in a sample. • Quantitative – identifies how much of particles is present in a sample. 3 • The substance to be analyzed within a sample is known as an analyte, whereas the substances which may cause incorrect or inaccurate results are known as chemical interferents. 4 Qualitative analysis 5 Qualitative analysis is used to separate an analyte from interferents existing in a sample and to detect the previous one. ➢It gives negative, positive, or yes/no types of data. ➢It informs whether or not the analyte is present in a sample. 6 Examples of qualitative analysis 7 8 9 Analysis of an inorganic sample The classical procedure for systematic analysis of an inorganic sample consists of several parts: ➢preliminary tests (heating, solubility in water, appearance of moisture) ➢ more complicated tests e.g. ✓introducing the sample into a flame and noting the colour produced; ➢determination of anionic or cationic constituents of solute dissolved in water 10 Flame test Solutions of ions, when mixed with concentrated HCl and heated on a nickel/chromium wire in a flame, cause the
    [Show full text]
  • Atomic Absorption Spectroscopy
    ATOMIC ABSORPTION SPECTROSCOPY Edited by Muhammad Akhyar Farrukh Atomic Absorption Spectroscopy Edited by Muhammad Akhyar Farrukh Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Anja Filipovic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright kjpargeter, 2011. DepositPhotos First published January, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Atomic Absorption Spectroscopy, Edited by Muhammad Akhyar Farrukh p.
    [Show full text]
  • Quantitative NMR As a Versatile Tool for the Reference Material Preparation
    magnetochemistry Review Quantitative NMR as a Versatile Tool for the Reference Material Preparation Kihwan Choi 1,* , Sangki Myoung 2, Yejin Seo 2 and Sangdoo Ahn 2,* 1 Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea 2 Department of Chemistry, Chung-Ang University, Seoul 06974, Korea; [email protected] (S.M.); [email protected] (Y.S.) * Correspondence: [email protected] (K.C.); [email protected] (S.A.); Tel.: +82-42-868-5557 (K.C.); +82-2-820-5230 (S.A.) Abstract: The assessment of primary calibrator purity is critical for establishing traceability to the International System of Units (SI). Recently, quantitative nuclear magnetic resonance (qNMR) has been used as a purity determination method for reference material development, and many related measurement techniques have been designed to acquire accurate and reliable results. This review introduces the recent advances in these techniques (including multidimensional methods), focusing on the application of qNMR to reference material preparation. Keywords: qNMR; reference material; purity assay 1. Introduction The establishment of metrological traceability is important for achieving the compa- Citation: Choi, K.; Myoung, S.; Seo, Y.; rability of measurement results [1]. In regard to chemical measurements, traceability to Ahn, S. Quantitative NMR as a the International System of Units (SI) is realized through the use of calibration standards Versatile Tool for the Reference having certified purity values [2]. The purity of primary calibrators has been traditionally Material Preparation. determined by the mass balance method, that is, by subtracting the total amount of im- Magnetochemistry 2021, 7, 15.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) first Quarterly Technical Nar y eve Report r^gust 25 Through November 30, 1980 CAST Fe-EASE CYLINDER/FEE ENEHATOR HOUSING ALLOY PO-17602 lr^ December 10, 1980 (NASA -CR-1(,9474) CA I FF.- IAEE CYLI '^ ;,1^ b /hcGEi^cFA;(;' ti.^^J ^ll(. ALLCY -Ic4, kjurti rIy I. - "L''Lc^l n ^cra*iv. [eECCt, 2 Aug;. - 3C ^ ;.CV. 1 )"?G (nih: ^^,iich ''a_tiu^ Co. ) 3) P If A,.3^,;I A11 U'LCiaa CSC[ I IF G3 u J o 2 Preparamv: F. LArson . Kindlimann Prepared for SA search Center CI !H 414135 Contract No. DEN 3-234 A!7 AIRESEARCN CASTING COMPANY TORQ.ANCE Cn' 1FnoIVIA. First Quarterly Technical Narrative Report August 25 Through November 30, 1980 CAST Fe-BASE CYLINDER / R EG E N E RATO R HOUSING ALLOY 80-17602 December 10, 1980 Prepared by: fl F.
    [Show full text]