Psyche Asteroid Mission Frequently Asked Questions What Is Psyche

Total Page:16

File Type:pdf, Size:1020Kb

Psyche Asteroid Mission Frequently Asked Questions What Is Psyche Psyche Asteroid Mission Frequently Asked Questions What is Psyche? Psyche is the name of an asteroid orbiting the Sun between Mars and Jupiter and the name of a NASA space mission to visit that asteroid, led by ASU. Psyche is the first mission to a world made of metal rather than rock or ice. When was the Psyche mission selected? The Psyche mission was chosen by NASA on January 4, 2017. What kind of mission is Psyche? Psyche is the 14th mission selected for NASA’s Discovery Program, a series of relatively low-cost missions to solar system targets. What is the timeline of the Psyche mission? • 2022: Launch of Psyche spacecraft from NASA’s Kennedy Space Center, FL • 2023: Psyche spacecraft flyby of Mars • 2026: Psyche spacecraft arrives in asteroid’s orbit • 2026-2027: Psyche spacecraft orbits the Psyche asteroid for 21 months How will the Psyche spacecraft get to Psyche? The Psyche spacecraft will use solar-electric (low-thrust) propulsion. Solar electric propulsion uses electricity from solar arrays to create electromagnetic fields to accelerate and expel charged atoms (ions) of xenon to create a very low thrust with a very efficient use of propellant.1 This will be the first use of Hall effect thrusters beyond lunar orbit. 1 https://www.nasa.gov/content/how-will-nasas-asteroid-redirect-mission-help-humans-reach-mars Psyche Asteroid Mission Frequently Asked Questions Last Updated 11-29-2017 What kind of propellant will the Psyche spacecraft use? The Psyche spacecraft is using xenon. Xenon is a gas that is in the air we breathe (in very small amounts-- 0.09 parts per million!2). Xenon gas is used in high quality light bulbs, including automobile headlamps and movie projectors. As NASA explains, “The most common propellant used in ion propulsion is xenon, which is easily ionized and has a high atomic mass, thus generating a desirable level of thrust when ions are accelerated. It also is inert and has a high storage density; therefore, it is well suited for storing on spacecraft.”3 How big will the Psyche spacecraft be? The full spacecraft, including the solar panels, is 24.76 meters (~81 feet) long by 7.34 meters (~24 feet) wide. That is about the size of a (singles) tennis court. How big will the Psyche spacecraft bus (body) be? The bus (body) of the spacecraft is 3.1 meters (~10 feet) long by 2.4 meters (almost 8 feet) wide. To help you visualize this, it is slightly bigger than a Smart Car; it about the size of a garden storage shed. It is as tall as a regulation basketball hoop! How much does the Psyche mission cost? The mission costs approximately $850 million (which includes mission development, operations, and science). This amount does not include cost for the launch service, which is procured separately. It does not include the cost for the Deep Space Optical Communications demonstration hardware or operations. When was the Psyche asteroid discovered? The asteroid, Psyche, was discovered in 1852 by by Italian astronomer Annibale de Gasparis. It was the 16th asteroid to be discovered, so is sometimes referred to as (16) Psyche. The asteroid was named for the goddess of the soul in ancient Greek mythology. What is the Psyche asteroid made of? Psyche is likely made almost entirely of nickel-iron metal. Its bulk appears to be metal but its surface appears to have small areas that are rocky. 2 http://www.srh.noaa.gov/jetstream/atmos/atmos_intro.html 3 https://www.nasa.gov/centers/glenn/about/fs21grc.html Psyche Asteroid Mission Frequently Asked Questions Last Updated 11-29-2017 How do we know what the Psyche asteroid is made of? The composition of Psyche has been determined by radar albedo (radar albedo is the “ratio of a target’s radar cross section in a specified polarization to its projected area; hence, a measure of the target’s radar reflectivity”4,5) and by thermal inertia (thermal inertia “refers to the ability of a material to conduct and store heat, and in planetary science, its measure of the subsurface's ability to store heat during the day and reradiate it during the night.”6) When did we find out what Psyche is made of? We have only had good evidence for metal composition since about 2010. What do scientists think the Psyche asteroid is? Scientists think Psyche is the exposed nickel-iron core of an early planet, one of the building blocks of our solar system. Psyche is most likely a survivor of multiple violent hit-and-run collisions, common when the solar system was forming. What can visiting the Psyche asteroid tell us? The asteroid Psyche may be able to tell us how Earth’s core and the cores of the other terrestrial (rocky) planets came to be. (The terrestrial planets are Mercury, Venus, Earth, and Mars.) We can never go to the Earth’s core. Because we cannot see or measure Earth’s core directly, the Psyche asteroid offers a unique window into the violent history of collisions and accretion that created the terrestrial planets. It is the only known place in our solar system where we can examine directly what is almost certainly a metallic core of an early planet. Why can’t we visit Earth’s core? The core of the Earth lies at a depth of 3,000 kilometers, or more than 1,800 miles. We have only drilled to 12 kilometers, or about 7.5 miles, so far because that’s the most our technology allows today. Additionally, Earth’s core lies at about 3 million times the pressure of the atmosphere. The temperature of Earth’s core is about 5,000 Celsius (~9,000 Fahrenheit). 4 Ostro, S. J. (1999). Planetary Radar. Encyclopedia of the Solar System. Available from http://echo.jpl.nasa.gov/asteroids/ostro_1998_encyc_ss.pdf 5 “Radar is an acronym for ‘radio detection and ranging.’ Radar was developed to detect objects and determine their range (or position) by transmitting short bursts of microwaves. The strength and origin of "echoes" received from objects that were hit by the microwaves is then recorded. 6 https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA19357 Psyche Asteroid Mission Frequently Asked Questions Last Updated 11-29-2017 Where is the Psyche asteroid? Psyche lies in the main asteroid belt between Mars and Jupiter. How long is a day on Psyche? A day on Psyche is about 4 hours and 12 minutes.7 This is the sidereal rotation period, or the "amount of time it takes for a [body] to completely spin around and make one full rotation."8 You could live through just under six “days” on Psyche in the same time as one day on Earth! How long is a year on Psyche? A year on Psyche lasts about five Earth years (about 1,828 Earth days).9 How far is the Psyche asteroid from the Sun? Psyche orbits the Sun at an average distance of 3 astronomical units (AU) (about 280 million miles); Earth orbits at 1 AU (about 93 million miles). Because Psyche and Earth orbit at different speeds, the distance from Earth to Psyche varies over a large range! From < 2 AU to > 4 AU. How dense is the Psyche asteroid? Psyche is dense--perhaps as dense as 7,000 kilograms per cubic meter (kg/m3) (similar to the density of a bar of steel).10 Does the Psyche asteroid have gravity? The surface gravity on Psyche is much less than Earth, and even less than the Moon. On Psyche, lifting a car would feel as light as lifting a dog or a 2nd grader! 7 Shepard, M. K., Richardson, J., Taylor, P. A., Rodriguez-Ford, L. A., Conrad, A., de Pater, I., ... & Close, L. M. (2017). Radar observations and shape model of asteroid 16 Psyche. Icarus, 281, 388-403: "sidereal rotation period P = 4.195948 h" 8 https://spaceplace.nasa.gov/days/en/ 9 https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=16 10 Elkins-Tanton, L. T., Asphaug, E., Bell, J. F., Bercovici, D., Bills, B. G., Binzel, R. P., ... & Jun, I. (2017, March). Asteroid (16) Psyche: Visiting a Metal World. In Lunar and Planetary Science Conference (Vol. 48). Psyche Asteroid Mission Frequently Asked Questions Last Updated 11-29-2017 How big is the Psyche asteroid? As asteroids go, Psyche is relatively large and has an irregular shape. It is 279 x 232 x 189 kilometers (173 x 144 x 117 miles).11 If Psyche were a perfect sphere, it would have a diameter of 226 kilometers (140 miles). That is about the length of the state of Massachusetts (leaving out Cape Cod). If it were in Arizona it would stretch between Phoenix and Flagstaff! The Psyche asteroid has a surface area of about 641,800 square kilometers (246,300 square miles), making it just smaller than the area of the state of Texas and quite a bit larger than the area of California. What does the Psyche asteroid look like? Scientists have combined radar and optical observations to generate a 3D shape model of Psyche.12 This model shows evidence for two crater-like depressions. It suggests that there is significant variation in the metal content and color of the asteroid over the surface. But remember, no one has seen the Psyche asteroid yet, so we will not know what it actually looks like until the spacecraft arrives. This is the best look we have from radar observations: What are the Psyche mission science goals? The Psyche mission science goals are to: • Understand a previously unexplored building block of planet formation: iron cores.
Recommended publications
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • 7'Tie;T;E ~;&H ~ T,#T1tmftllsieotog
    7'tie;T;e ~;&H ~ t,#t1tMftllSieotOg, UCLA VOLUME 3 1986 EDITORIAL BOARD Mark E. Forry Anne Rasmussen Daniel Atesh Sonneborn Jane Sugarman Elizabeth Tolbert The Pacific Review of Ethnomusicology is an annual publication of the UCLA Ethnomusicology Students Association and is funded in part by the UCLA Graduate Student Association. Single issues are available for $6.00 (individuals) or $8.00 (institutions). Please address correspondence to: Pacific Review of Ethnomusicology Department of Music Schoenberg Hall University of California Los Angeles, CA 90024 USA Standing orders and agencies receive a 20% discount. Subscribers residing outside the U.S.A., Canada, and Mexico, please add $2.00 per order. Orders are payable in US dollars. Copyright © 1986 by the Regents of the University of California VOLUME 3 1986 CONTENTS Articles Ethnomusicologists Vis-a-Vis the Fallacies of Contemporary Musical Life ........................................ Stephen Blum 1 Responses to Blum................. ....................................... 20 The Construction, Technique, and Image of the Central Javanese Rebab in Relation to its Role in the Gamelan ... ................... Colin Quigley 42 Research Models in Ethnomusicology Applied to the RadifPhenomenon in Iranian Classical Music........................ Hafez Modir 63 New Theory for Traditional Music in Banyumas, West Central Java ......... R. Anderson Sutton 79 An Ethnomusicological Index to The New Grove Dictionary of Music and Musicians, Part Two ............ Kenneth Culley 102 Review Irene V. Jackson. More Than Drumming: Essays on African and Afro-Latin American Music and Musicians ....................... Norman Weinstein 126 Briefly Noted Echology ..................................................................... 129 Contributors to this Issue From the Editors The third issue of the Pacific Review of Ethnomusicology continues the tradition of representing the diversity inherent in our field.
    [Show full text]
  • Volume 16 –Number 3 National Park Service • U.S
    PARKARK P CIENCECIENCE SS Integrating Research and Resource Management Volume 16 –Number 3 National Park Service • U.S. Department of the Interior Summer 1996 THE NATURAL RESOURCE TRAINEE PROGRAM: PROFESSIONALIZATION TRIUMPH OF THE 1980S AND EARLY 1990S Who are they and where are they now? See the key on page 17 to identify these participants of the first Natural Resource Trainee Program and learn what they are up to now. BY THE EDITOR imparting the skills. Regional office funding allowed parks to HE NEED TO ESTABLISH AND PROFES- send staff to the training and backfill behind them to take care sionalize science and resource management func- of unfinished park work. Other superintendents soon heard tions and apply them in the management of na- about the training opportunity and wanted to be a part of it. tional parks was recognized as early as the 1930s. Wauer then prioritized individual park needs, opting for placing Then, biologist George Wright published several resource management trainees at parks that formerly didn’t have Tpapers on wildlife management and made the clear connection any resource management expertise. between science and informed park resource management ac- The program went national in the early 1980s following pub- tivities. Yet, for the next 5 decades, resource management work lication of two different conservation organization reports on continued to be done mostly by park rangers who were trained threats to national parks and a response by the National Park primarily in law enforcement and other operational areas, not Service in the form of a state-of-the-parks report.
    [Show full text]
  • An Approach to Magnetic Cleanliness for the Psyche Mission M
    An Approach to Magnetic Cleanliness for the Psyche Mission M. de Soria-Santacruz J. Ream K. Ascrizzi ([email protected]), ([email protected]), ([email protected]) M. Soriano R. Oran University of Michigan Ann Arbor ([email protected]), ([email protected]), 500 S State St O. Quintero B. P. Weiss Ann Arbor, MI 48109 ([email protected]), ([email protected]) F. Wong Department of Earth, Atmospheric, ([email protected]), and Planetary Sciences S. Hart Massachusetts Institute of Technology ([email protected]), 77 Massachusetts Avenue M. Kokorowski Cambridge, MA 02139 ([email protected]) B. Bone ([email protected]), B. Solish ([email protected]), D. Trofimov ([email protected]), E. Bradford ([email protected]), C. Raymond ([email protected]), P. Narvaez ([email protected]) Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 C. Keys C. Russell L. Elkins-Tanton ([email protected]), ([email protected]), ([email protected]) P. Lord University of California Los Angeles Arizona State University ([email protected]) 405 Hilgard Avenue PO Box 871404 Maxar Technologies Inc. Los Angeles, CA 90095 Tempe, AZ 85287 3825 Fabian Avenue Palo Alto, CA 94303 Abstract— Psyche is a Discovery mission that will visit the fields. Limiting and characterizing spacecraft-generated asteroid (16) Psyche to determine if it is the metallic core of a magnetic fields is therefore essential to the mission. This is the once larger differentiated body or otherwise was formed from objective of the Psyche’s magnetics control program described accretion of unmelted metal-rich material.
    [Show full text]
  • Group Icon 2019 Speaker Biographies
    A University Symposium: Promoting Credibility, Reproducibility and Integrity in Research March 29, 2019 | Columbia University | Speaker Biographies Speaker Biographies* Howard Bauchner, MD was appointed the 16th Editor in Chief of JAMA and The JAMA Network in 2011. Prior to coming to JAMA, Howard was a Professor of Pediatrics and Public Health at Boston University School of Medicine and Editor in Chief of Archives of Disease in Childhood (2003- 2011). At BUSM he was Vice-Chair of Research for the Department of Pediatrics and Chief, Division of General Pediatrics. He is a member of the National Academy of Medicine (formerly the Institute of Medicine) and an honorary fellow of the Royal College of Paediatrics and Child Health, United Kingdom. At JAMA Howard has focused on improving and expanding clinical content, using electronic/digital approaches to enhance communication, and ensuring a commitment to innovation. Since his arrival in 2011 followers on social medical (twitter and Facebook) have increased from 13,000 to approximately 700,000 and the electronic table of contents is now distributed to close to 750,000 individuals each week. In print, via eTOC, and social media JAMA now reaches over 1.5M physicians each week worldwide. Views (PDF and HTML) have increased from 10M in 2011 to 32M in 2017 (50% from outside the U.S.) and podcast downloads have increased from 300,000 in 2014 to 2.2M in 2017. The print journal was redesigned for the first time in over 20 years and website has been updated twice. All 9 of the specialty journals were renamed (Archives of Pediatrics became JAMA Pediatrics), and 3 new journals have been launched – JAMA Oncology (2015), JAMA Cardiology (2016), and JAMA Network Open (2018).
    [Show full text]
  • Gao-21-306, Nasa
    United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability.
    [Show full text]
  • Overview of the Spacecraft Design for the Psyche Mission Concept William Hart1, G
    Overview of the Spacecraft Design for the Psyche Mission Concept William Hart1, G. Mark Linda T. Elkins-Tanton12, David J. Lawrence14 Peter Lord15, Zachary Brown2, Steven M. Collins3, James F. Bell III13 Applied Physics Pirkl16 Maria De Soria-Santacruz Arizona State University Laboratory Space Systems/Loral, LLC Pich4, Paul Fieseler5, Dan PO Box 871404 Johns Hopkins University 3825 Fabian Avenue Goebel6, Danielle Marsh7, Tempe, AZ 85287 11100 Johns Hopkins Road Palo Alto, CA 94303 David Y. Oh8, Steve Laurel, Maryland 20723 Snyder9, Noah Warner10 and Gregory Whiffen11 Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 Abstract — In January 2017, Psyche and a second mission 1. INTRODUCTION concept were selected by NASA for flight as part of the 14th Discovery mission competition. Assigned for an initial launch Started in 1992, NASA’s Discovery program has date in 2023, the Psyche team was given direction shortly after demonstrated the science benefits that may be attained selection to research the possibility for earlier opportunities. Ultimately, the team was able to identify a launch opportunity through cost-capped, competitively awarded exploration in 2022 with a reduced flight time to its destination. This was missions beyond Earth orbit. In over twenty years since the accomplished in large part to crosscutting trades centered on launch of the first mission, NEAR Pathfinder, there have the electrical power subsystem. These trades were facilitated been a compelling list of successes, such as Mars through the Psyche mission's planned use of Solar Electric Pathfinder, Lunar Prospector, Genesis, Deep Impact, Propulsion (SEP), which enables substantial flexibility with Stardust, Kepler, GRAIL and MESSENGER [1].
    [Show full text]
  • NASA's Planetary Science Lunar Activities and Plans
    NASA Lunar Science Activities James L. Green Planetary Science Division NASA Headquarters Washington DC 20546 [email protected] NASA’s Planetary Science Division (PSD) program encompasses a broad range of missions to many destinations in the solar system but the Earth’s Moon holds a special place in these efforts. Our planetary science missions are either strategic or openly competed through announcements of opportunity and are led by a principal investigator (PI). In exploring any particular solar system object, NASA has followed a general paradigm of “flyby, orbit, land, rove, and return.” This prescription has been followed most completely for investigations of the Moon and Mars. The Exploration Systems Mission Directorate (ESMD) will be launching the Lunar Reconnaissance Orbiter (LRO) in 2008 in preparation for manned missions to the Moon. LRO is a strategic mission with competed instrumentation to support exploration goals. After one year of LRO observations, ESMD will transition the spacecraft operations to the PSD for its prime science mission phase. The two competitive PI mission lines in the Planetary Science Division are called Discovery and New Frontiers, both of which have the potential to support Lunar missions. Currently there are three Phase-A studies in competition in the Discovery program which includes the Gravity Recovery and Interior Laboratory (GRAIL) mission by Maria Zuber (PI), MIT. The down-selection for Discovery will be announced later this year. GRAIL proposes to use high-quality gravity field mapping of the Moon to determine its interior structure. The New Frontiers program will next be in competition by late 2008 providing a potential opportunity for a sample return mission from the South Pole-Aitken basin.
    [Show full text]
  • The 24 Million Km Link with the Mercury Laser Altimeter
    Te 24 Milion Km Link wit te Mercury Laser Altmetr Jay Steigelman Dave Skillman Barry Coyle John F. Cavanaugh Jan F. McGarry Gregory A. Neumann Xiaoli Sun Thomas W. Zagwodzki Dave Smith Maria Zuber MOLA Science Team Meeting Bishop’s Lodge, Santa Fe, NM August 24-25, 2005 Test Objectives Messenger: MErcury Surface, Space ENvironment, GEochemistry and Ranging 6.6 year travel time to Mercury... There’s not a whole lot to do during this time. Dave Smith called a meeting and asked, “What about a transponder experiment?” Official goals were: ➡ Verify laser performance; verify laser pointing and receiver boresight with respect to MESSENGER spacecraft coordinates. ➡ Verify MLA ranging function and performance using a ground laser to simulate backscattered pulses. ➡ Calibrate MLA boresight offset with Mercury Dual Image System (MDIS). Recent Publications BREVIA the received pulse shapes. Sixteen consecutive pulses were recorded at 19:47:24 UTC on 27 and 24 May; more were recorded at 19:42:02 Two-Way Laser Link over UTC on 31 May. Simultaneously, a laser at GGAO was beamed upward toward MLA. The uplink pulses, along Interplanetary Distance with noise triggers from the sunlit Earth, were received within a 15-ms range window during David E. Smith,1* Maria T. Zuber,1,2 Xiaoli Sun,1 Gregory A. Neumann,1,2 1 1 1 each 125-ms shot interval. Inspection of the John F. Cavanaugh, Jan F. McGarry, Thomas W. Zagwodzki stored instrument data revealed 90 pulses over a 30-min time frame, 17 on multiple channels, he detection and precise timing of low- Geophysical and Astronomical Observatory whose timing matched the GGAO fire times.
    [Show full text]
  • Reconstructing the History of El Niño from Galapagos Lakes Julian Sachs and Rienk Smittenberg
    Also in this issue: 3 MER Experience 5 The Journey To The Deep Interior Of The Earth From MIT 10 Seminar Honors Nafi Toksoz EAPSpeaks Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Reconstructing the History of El Niño from Galapagos Lakes Julian Sachs and Rienk Smittenberg The largest perturbation to global climate on an inter- cial conditions. Focusing on Holocene variability of ENSO annual time scale is the El Niño-Southern Oscillation provides a similarly contradictory set of conclusions. (ENSO). Surface water temperatures (SST) rise in the Straddling 0° latitude in the cold tongue of the EEP, Eastern Equatorial Pacifi c (EEP) when the upwelling of the Galapagos are ideally positioned to record varia- cool, nutrient-rich water diminishes. Fish stocks plum- tions in ENSO through time. Lakes on the islands serve met and birds and mammals perish, causing widespread as fi xed sampling stations of the eastern Pacifi c marine ecologic and economic disruptions. Global precipitation climate. Aridity of the Galapagos is caused by the atmo- patterns are altered, causing drought in normally wet spheric inversion that results from upwelling of cold wa- locations and torrential rains in desert regions. Will El ter. This prevents the establishment of convection cells that should otherwise bring rain to a tropical oceanic island. Only in the December to February period, when the “meteorological equator” moves to its most souther- ly position, does the inversion collapse, bringing rain. In some years, however, the encroachment of surface water from the west thickens the surface layer and removes deeper cold water from the upwelling system, SSTs rise, intensifying tropical convection cells.
    [Show full text]
  • Precise Astrometry and Diameters of Asteroids from Occultations – a Data-Set of Observations and Their Interpretation
    MNRAS 000,1–22 (2020) Preprint 14 October 2020 Compiled using MNRAS LATEX style file v3.0 Precise astrometry and diameters of asteroids from occultations – a data-set of observations and their interpretation David Herald 1¢, David Gault2, Robert Anderson3, David Dunham4, Eric Frappa5, Tsutomu Hayamizu6, Steve Kerr7, Kazuhisa Miyashita8, John Moore9, Hristo Pavlov10, Steve Preston11, John Talbot12, Brad Timerson (deceased)13 1Trans Tasman Occultation Alliance, [email protected] 2Trans Tasman Occultation Alliance, [email protected] 3International Occultation Timing Association, [email protected] 4International Occultation Timing Association, [email protected] 5Euraster, [email protected] 6Japanese Occultation Information Network, [email protected] 7Trans Tasman Occultation Alliance, [email protected] 8Japanese Occultation Information Network, [email protected] 9International Occultation Timing Association, [email protected] 10International Occultation Timing Association – European Section, [email protected] 11International Occultation Timing Association, [email protected] 12Trans Tasman Occultation Alliance, [email protected] 13International Occultation Timing Association, deceased Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Occultations of stars by asteroids have been observed since 1961, increasing from a very small number to now over 500 annually. We have created and regularly maintain a growing data-set of more than 5,000 observed asteroidal occultations. The data-set includes: the raw observations; astrometry at the 1 mas level based on centre of mass or figure (not illumination); where possible the asteroid’s diameter to 5 km or better, and fits to shape models; the separation and diameters of asteroidal satellites; and double star discoveries with typical separations being in the tens of mas or less.
    [Show full text]
  • A Strategy for Exploring the Asteroid Belt with Ion Propulsion C
    Geophysical Research Abstracts, Vol. 8, 05272, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05272 © European Geosciences Union 2006 A strategy for exploring the Asteroid Belt with Ion propulsion C. T. Russell, and the Dawn Science Team Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA. (Email: [email protected]/Fax: 310-206-3051 The largest asteroids are survivors from the earliest days of the formation of the solar system and by and large have escaped the heavy bombardment period largely un- scathed. Moreover, these largest bodies should have remained closest to their points of origin. Thus a strategy of visiting the largest bodies in the main belt could tell us much about the original compositional gradient in the solar system and hence the tem- perature and pressure gradient that produced it. The Dawn mission explores the two most massive main belt asteroids 4 Vesta and 1 Ceres at 2.34 and 2.77 AU respectively. These bodies are very different. Vesta has an equatorial diameter of about 520 km and is covered with basaltic flows whereas Ceres is close to 1000 km in diameter and has a shape and density consistent with a rocky core covered by a thick ice (˜100 km) shell. The third most massive main belt asteroid, 2 Pallas, lies at the same distance as Ceres with the same size of Vesta but a much lower density. However, since it orbits at a high inclination it is quite inaccessible. The fourth most massive asteroid is 10 Hygiea at 3.12 AU.
    [Show full text]