Pollination by Fungus Gnats and Associated Floral Characteristics in Five Families of the Japanese Flora

Total Page:16

File Type:pdf, Size:1020Kb

Pollination by Fungus Gnats and Associated Floral Characteristics in Five Families of the Japanese Flora Annals of Botany 121: 651–663, 2018 doi:10.1093/aob/mcx196, available online at www.academic.oup.com/aob Pollination by fungus gnats and associated floral characteristics in five families of the Japanese flora Ko Mochizuki* and Atsushi Kawakita Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan *For correspondence. E-mail: [email protected] Downloaded from https://academic.oup.com/aob/article-abstract/121/4/651/4781678 by guest on 22 May 2020 Received: 6 November 2017 Editorial decision: 13 November 2017 Accepted: 13 December 2017 Published electronically 29 December 2017 • Background and aims Pollination by fungus gnats (Mycetophilidae and Sciaridae) is uncommon, but is nevertheless known to occur in 20 genera among eight angiosperm families. Because many fungus gnat-pollinated plants possess a dark red floral display, we hypothesized that fungus gnat pollination is more widespread among plants with similar floral display than currently known. We thus studied the pollination biology of flowers with dark red pigmentation in five families, focusing particularly on plants having small, flat, actinomorphic flowers with exposed nectaries and short stamens, because these floral characteristics mirror those of a known fungus gnat-pollinated genus (Mitella). • Methods We observed daytime and night-time floral visitors for a total of 194.5 h in Aucuba japonica (Garryaceae), Euonymus spp. (Celastraceae), Disanthus cercidifolius (Hamamelidaceae), Micranthes fusca (Saxifragaceae) and Streptopus streptopoides (Liliaceae). Visitors were categorized into functional groups, and a pollination importance index (PII) was calculated for each functional group based on visitation frequency, pollen load and behaviour on flowers. • Key results Fungus gnats were dominant among the 1762 insects observed (36–92 % depending on the plant species) and were the most important pollinators among all plants studied (PII: 0.529–1). Fungus gnat visits occurred during the daytime and, more frequently, at dusk. Most often, pollen grains became clumped on the ventral side of the head and/or thorax as the short-proboscid fungus gnats foraged on nectar and came into contact with anthers located close to the flower base. • Conclusions Pollination by fungus gnats is probably more common than previously thought, especially in habitats similar to those of the plants studied (moist forest understorey, streamside or subalpine meadow) where fungus gnats are abundant year-round. Our results further suggest that there may be a previously unnoticed association between fungus gnat pollination and dark red coloration, and a shared overall floral architecture among the plants studied. Keywords: Aucuba japonica, dark red flower, Diptera, Disanthus cercidifolius, Euonymus, forest environment, fungus gnat, Micranthes fusca, Mycetophilidae, pollination syndrome, Sciaridae, Streptopus streptopoides. INTRODUCTION on mushrooms, fungal mycelia in rotten wood, decaying plant material and, more rarely, bryophytes or other insects Dipteran insects are among the most common visitors to angio- (Vockeroth, 1981; Steffan, 1981; Søli et al., 2000; Jakovlev, sperm flowers and often play key roles as pollinators in many 2011, 2012). Fungus gnats are usually considered as inef- plant communities (Kearns, 2001; Larson et al., 2001; Ssymank fective pollen carriers due to their small bodies, inconstancy et al., 2008; Lefebvre et al., 2014; Inouye et al., 2015; Orford and weak flight ability (Mesler et al., 1980; Proctor et al., et al., 2015; Ollerton, 2017). However, the importance of dip- 1996; Larson et al., 2001; Willmer, 2011). Nevertheless, teran pollination is possibly still underestimated, because pollination by fungus gnats is known to occur in eight research continues to uncover plants that depend strongly on angiosperm families: Orchidaceae, Liliaceae, Asparagaceae, dipterans for pollination, some of which attract dipteran pollina- Araceae, Aristolochiaceae, Polygonaceae, Apocynaceae and tors by previously unsuspected mechanisms (Stökl et al., 2011; Saxifragaceae (Vogel, 1973; Jones, 1974; Ackerman and Mesler, Ren et al., 2012; Song et al., 2014; Oelschlägel et al., 2014; 1979; Mesler et al., 1980; Sugawara, 1988; Fuller, 1994; Vogel Heiduk et al., 2016). Small dipteran insects, such as fungus and Martens, 2000; Goldblatt et al., 2004; Okuyama et al., 2008; gnats, gall midges and drosophilid flies, are particularly difficult Yamashiro et al., 2008; Barriault et al., 2010; Duque-Buitrago to observe in the field, and thus their roles as pollinators are et al., 2014; Ollerton et al., 2017; Suetsugu and Sueyoshi, 2017). probably not fully appreciated (Larson et al., 2001; Goldblatt Some of these plants are believed to mimic fungal oviposition et al., 2004; Woodcock et al., 2014). sites because pollinator eggs are often observed on the flowers Fungus gnats, or flies in Mycetophilidae, Sciaridae and (Vogel, 1978; Sugawara, 1988; Scanlen, 2006), whereas others related Sciaroidea families, are small, weak-flying insects com- employ sexual deception (Blanco and Barboza, 2005; Phillips mon in moist forest and riparian habitats. Their larvae feed et al., 2014), offer nectar reward (Ackerman and Mesler, 1979; © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: [email protected]. 652 Mochizuki and Kawakita – Fungus gnat pollination and shared floral characters Mesler et al., 1980; Goldblatt et al., 2004; Okuyama et al., and small, with dark red petals (Figs 1B and 2A, B). Aucuba ja- 2004) or even sacrifice developing ovules to seed-feeding pol- ponica is one of the first woody plants to flower in early spring linator larvae to accomplish the pollination (Song et al., 2014). (March–May). Despite the diversity of mechanisms used by these plants to The spindle tree genus Euonymus comprises about 130 spe- attract fungus gnats, several fungus gnat-pollinated plants share cies with a broad distribution range, including North America, a characteristic floral display: petals or spathes with dark red Europe, Asia, Australia and Madagascar (Ma, 2001). Most spe- pigmentation (Supplementary Data, Table S1). Dark red flow- cies are small trees or shrubs growing in a variety of habitats ers are otherwise common in sapromyiophilous plants (Fægri including the forest edge, forest floor and rocky coast. The and van der Pijl, 1979; Willmer, 2011; Johnson and Schiestl, flowers are small and typically greenish or yellowish; how- 2016; Shuttleworth et al., 2017) and are also known in sexu- ever, roughly 30 species have red, purple or chocolate-coloured ally deceptive orchids (Gaskett et al., 2017) and some fly- and flowers (Ma, 2001). To date, 18 Euonymus species have been beetle-pollinated plants (Young, 1985; Sakai and Inoue, 1999; recorded in Japan. These are typically small trees occurring Downloaded from https://academic.oup.com/aob/article-abstract/121/4/651/4781678 by guest on 22 May 2020 Teichert et al., 2012; Policha et al., 2016; Luo et al., 2017); on forest edges or within forests, whereas some are shrubs or however, knowledge of an association between such a floral shrublets on the forest floor. Four endemic species,E. lanceo- display and any particular pollination system remains frag- latus, E. melananthus, E. tricarpus and E. yakushimensis, have mentary. This observation motivated us to examine the floral red flowers and prefer the shaded forest floor or, occasionally, visitors of dark red-flowered Aucuba japonica (Garryaceae) subalpine/boreal meadows. Inflorescences of Euonymus are in 2014. We found that A. japonica flowers were heavily vis- cymes of up to ten flowers, developing on leaf axils. The flower ited by fungus gnats and noticed that the flowers ofAucuba possesses a prominent nectary disc that surrounds the pistils resemble those of the known fungus gnat-pollinated genus and stamens. Filament length varies among species; however, Mitella (Okuyama et al., 2004) in several ways: they are small species with dark red flowers invariably have a very short to (5–8 mm in diameter), flat and actinomorphic, with exposed almost no filament. nectaries, short stamens and dark red floral displays. We thus Euonymus lanceolatus is an evergreen dwarf shrub that grows examined if plants in other families with floral characteris- in shaded forests on the Sea of Japan side of the Japanese main- tics similar to those of Mitella and Aucuba are also fungus land, where there is heavy snow in winter. The plants are 0.5 gnat-pollinated. m high and have flexible stems that are pressed flat against the We searched for plants that share the above set of floral char- ground under snow (Ma, 2001; Fig. 1C). During June and July acteristics in the Japanese flora. Consequently, we studied the (rainy season), each plant produces a few to dozens of flowers pollinators of the following six shrubs and herbs: Aucuba ja- that open downwardly. ponica (Garryaceae), three Euonymus species (Celastraceae), Euonymus melananthus is a small, deciduous shrub (up Disanthus cercidifolius (Hamamelidaceae) and Micranthes to 1 m) growing on the shaded riparian forest floor, having a fusca (Saxifragaceae) (Figs 1 and 2). Additionally, we studied wide distribution in cool–temperate areas of Japan, but occur- Streptopus streptopoides (Liliaceae) because, although its flow- ring only infrequently. The plants resemble lianas, growing ers are mostly greenish and have only small areas of dark red
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Orchidaceae, Diurideae) En Nouvelle-Calédonie
    Diversité du genre Corybas Salisb. (Orchidaceae, Diurideae) en Nouvelle-Calédonie Edouard FARIA 17, rue Victor Hugo, F-70290 Champagney (France) [email protected] Publié le 30 décembre 2016 Faria E. 2016. — Diversité du genre Corybas Salisb. (Orchidaceae, Diurideae) en Nouvelle-Calédonie. Adansonia, sér. 3, 38 (2): 175-198. https://doi.org/10.5252/a2016n2a4 RÉSUMÉ La diversité du genre Corybas Salisb. en Nouvelle-Calédonie est abordée. Le concept de Corybas neoca- ledonicus (Schltr.) Schltr. est révisé et délimité, Corybas aconitifl orus Salisb. est signalé pour la première MOTS CLÉS fois en Nouvelle-Calédonie et trois nouveaux taxons sont décrits : C. echinulus E.Faria, sp. nov., off rant Nouvelle-Calédonie, Province sud, de petites fl eurs, inférieures au centimètre et au sépale dorsal coloré en damier, C. pignalii E.Faria, Mont Mou, sp. nov., la plus grande espèce, dotée d’un labelle aux larges lobes latéraux densément hispidulés et biodiversité, de deux gibbosités glabres à son plancher et C. × halleanus E.Faria, hybr. nat. nov., l’hybride naturel UICN, hybride naturel nouveau, entre ces deux nouvelles espèces. Une clé de détermination pour le genre en Nouvelle-Calédonie ainsi espèces nouvelles. que quelques recommandations pour la conservation de chaque taxon sont proposées. ABSTRACT Diversity in the genus Corybas Salisb. (Orchidaceae, Diurideae) in New Caledonia. Corybas Salisb. diversity in New Caledonia is reassessed, Corybas neocaledonicus (Schltr.) Schltr. con- cept is reviewed and delimited, C. aconitifl orus Salisb. is recorded for the fi rst time in New Caledonia KEY WORDS and three new taxa are described: C. echinulus E.Faria, sp. nov. with a small fl ower, less than one New Caledonia southern province, centimeter, and a dorsal sepal marked with checkerboard pattern, C.
    [Show full text]
  • UV Reflectance but No Evidence for Colour Mimicry in a Putative Brood-Deceptive Orchid Corybas Cheesemanii
    Current Zoology 60 (1): 104–113, 2014 UV reflectance but no evidence for colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii M. M. KELLY, A. C. GASKETT* School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Abstract Rewardless orchids attract pollinators by food, sexual, and brood-site mimicry, but other forms of sensory deception may also operate. Helmet orchids (Corybas, Nematoceras and related genera) are often assumed to be brood-site deceivers that mimic the colours and scents of mushrooms to fool female fungus gnats (Mycetophilidae) into attempting oviposition and polli- nating flowers. We sampled spectral reflectances and volatile odours of an endemic terrestrial New Zealand orchid Corybas cheesemanii, and co-occurring wild mushrooms. The orchid is scentless to humans and SPME GC-MS analyses did not detect any odours, but more sensitive methods may be required. The orchids reflected strongly across all visible wavelengths (300700nm) with peaks in the UV (~320nm), yellow-green (500600 nm) and red regions (650700 nm), whereas mushrooms and surrounding leaf litter reflected predominantly red and no UV. Rather than mimicking mushrooms, these orchids may attract pollinators by exploiting insects’ strong sensory bias for UV. Modelling spectral reflectances into a categorical fly vision model and a generic tetrachromat vision model provided very different results, but neither suggest any mimicry of mushrooms. However, these models require further assessment and data on fly spectral sensitivity to red wavelengths is lacking – a problem given the predominance of red, fly-pollinated flowers worldwide [Current Zoology 60 (1): 104113, 2014]. Keywords Diptera, Colour space, Fly pollination, Orchidaceae, Spectral reflectance, Visual modelling Flowers typically attract pollinators by advertising in the Orchidaceae, in which approximately one-third of rewards such as food (Chittka and Thompson, 2001; species do not reward their pollinators (Jersáková et al., Raguso, 2004).
    [Show full text]
  • Phylogenetic Relationships of Discyphus Scopulariae
    Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony
    [Show full text]
  • The Nestling Diet of Svalbard Snow Buntings Identified by DNA Metabarcoding
    Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology The nestling diet of Svalbard snow buntings identified by DNA metabarcoding — Christian Stolz BIO-3950 Master thesis in Biology, Northern Populations and Ecosystems, May 2019 Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology The nestling diet of Svalbard snow buntings identified by DNA metabarcoding Christian Stolz, UiT The Arctic University of Norway, Tromsø, Norway and The University Centre in Svalbard (UNIS), Longyearbyen, Norway BIO-3950 Master Thesis in Biology, Northern Populations and Ecosystems, May 2018 Supervisors: Frode Fossøy, Norwegian Institute for Nature Research (NINA), Trondheim, Norway Øystein Varpe, The University Centre in Svalbard (UNIS), Longyearbyen, Norway Rolf Anker Ims, UiT The Arctic University of Norway, Tromsø, Norway i Abstract Tundra arthropods have considerable ecological importance as a food source for several bird species that are reproducing in the Arctic. The actual arthropod taxa comprising the chick diet are however rarely known, complicating assessments of ecological interactions. In this study, I identified the nestling diet of Svalbard snow bunting (Plectrophenax nivalis) for the first time. Faecal samples of snow bunting chicks were collected in Adventdalen, Svalbard in the breeding season 2018 and analysed via DNA metabarcoding. Simultaneously, the availability of prey arthropods was measured via pitfall trapping. The occurrence of 32 identified prey taxa in the nestling diet changed according to varying abundances and emergence patterns within the tun- dra arthropod community: Snow buntings provisioned their offspring mainly with the most abundant prey items which were in the early season different Chironomidae (Diptera) taxa and Scathophaga furcata (Diptera: Scathophagidae), followed by Spilogona dorsata (Diptera: Mus- cidae).
    [Show full text]
  • Recent Noteworthy Findings of Fungus Gnats from Finland and Northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae)
    Biodiversity Data Journal 2: e1068 doi: 10.3897/BDJ.2.e1068 Taxonomic paper Recent noteworthy findings of fungus gnats from Finland and northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae) Jevgeni Jakovlev†, Jukka Salmela ‡,§, Alexei Polevoi|, Jouni Penttinen ¶, Noora-Annukka Vartija# † Finnish Environment Insitutute, Helsinki, Finland ‡ Metsähallitus (Natural Heritage Services), Rovaniemi, Finland § Zoological Museum, University of Turku, Turku, Finland | Forest Research Institute KarRC RAS, Petrozavodsk, Russia ¶ Metsähallitus (Natural Heritage Services), Jyväskylä, Finland # Toivakka, Myllyntie, Finland Corresponding author: Jukka Salmela ([email protected]) Academic editor: Vladimir Blagoderov Received: 10 Feb 2014 | Accepted: 01 Apr 2014 | Published: 02 Apr 2014 Citation: Jakovlev J, Salmela J, Polevoi A, Penttinen J, Vartija N (2014) Recent noteworthy findings of fungus gnats from Finland and northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae). Biodiversity Data Journal 2: e1068. doi: 10.3897/BDJ.2.e1068 Abstract New faunistic data on fungus gnats (Diptera: Sciaroidea excluding Sciaridae) from Finland and NW Russia (Karelia and Murmansk Region) are presented. A total of 64 and 34 species are reported for the first time form Finland and Russian Karelia, respectively. Nine of the species are also new for the European fauna: Mycomya shewelli Väisänen, 1984,M. thula Väisänen, 1984, Acnemia trifida Zaitzev, 1982, Coelosia gracilis Johannsen, 1912, Orfelia krivosheinae Zaitzev, 1994, Mycetophila biformis Maximova, 2002, M. monstera Maximova, 2002, M. uschaica Subbotina & Maximova, 2011 and Trichonta palustris Maximova, 2002. Keywords Sciaroidea, Fennoscandia, faunistics © Jakovlev J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Sonoran Joint Venture Bird Conservation Plan Version 1.0
    Sonoran Joint Venture Bird Conservation Plan Version 1.0 Sonoran Joint Venture 738 N. 5th Avenue, Suite 102 Tucson, AZ 85705 520-882-0047 (phone) 520-882-0037 (fax) www.sonoranjv.org May 2006 Sonoran Joint Venture Bird Conservation Plan Version 1.0 ____________________________________________________________________________________________ Acknowledgments We would like to thank all of the members of the Sonoran Joint Venture Technical Committee for their steadfast work at meetings and for reviews of this document. The following Technical Committee meetings were devoted in part or total to working on the Bird Conservation Plan: Tucson, June 11-12, 2004; Guaymas, October 19-20, 2004; Tucson, January 26-27, 2005; El Palmito, June 2-3, 2005, and Tucson, October 27-29, 2005. Another major contribution to the planning process was the completion of the first round of the northwest Mexico Species Assessment Process on May 10-14, 2004. Without the data contributed and generated by those participants we would not have been able to successfully assess and prioritize all bird species in the SJV area. Writing the Conservation Plan was truly a group effort of many people representing a variety of agencies, NGOs, and universities. Primary contributors are recognized at the beginning of each regional chapter in which they participated. The following agencies and organizations were involved in the plan: Arizona Game and Fish Department, Audubon Arizona, Centro de Investigación Cientifica y de Educación Superior de Ensenada (CICESE), Centro de Investigación de Alimentación y Desarrollo (CIAD), Comisión Nacional de Áreas Naturales Protegidas (CONANP), Instituto del Medio Ambiente y el Desarrollo (IMADES), PRBO Conservation Science, Pronatura Noroeste, Proyecto Corredor Colibrí, Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Sonoran Institute, The Hummingbird Monitoring Network, Tucson Audubon Society, U.S.
    [Show full text]
  • OSU Gardening with Oregon Native Plants
    GARDENING WITH OREGON NATIVE PLANTS WEST OF THE CASCADES EC 1577 • Reprinted March 2008 CONTENTS Benefi ts of growing native plants .......................................................................................................................1 Plant selection ....................................................................................................................................................2 Establishment and care ......................................................................................................................................3 Plant combinations ............................................................................................................................................5 Resources ............................................................................................................................................................5 Recommended native plants for home gardens in western Oregon .................................................................8 Trees ...........................................................................................................................................................9 Shrubs ......................................................................................................................................................12 Groundcovers ...........................................................................................................................................19 Herbaceous perennials and ferns ............................................................................................................21
    [Show full text]
  • Meadows Farms Nurseries Japanese Aucuba
    Japanese Aucuba Aucuba japonica Height: 8 feet Spread: 8 feet Sunlight: Hardiness Zone: 6b Other Names: Spotted Laurel Japanese Aucuba foliage Description: Photo courtesy of NetPS Plant Finder An interesting evergreen shrub that solves the problem of the most shaded garden areas; female plants produce berries; ideal as a dense screen; drought tolerant once established Ornamental Features Japanese Aucuba has attractive yellow-spotted dark green foliage. The glossy pointy leaves are highly ornamental and remain dark green throughout the winter. Neither the flowers nor the fruit are ornamentally significant. Landscape Attributes Japanese Aucuba is a dense multi-stemmed evergreen shrub with a more or less rounded form. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub, and can be pruned at anytime. It has no significant negative characteristics. Japanese Aucuba is recommended for the following landscape applications; - Accent - Mass Planting - Hedges/Screening - General Garden Use Planting & Growing Japanese Aucuba will grow to be about 8 feet tall at maturity, with a spread of 8 feet. It has a low canopy, and is suitable for planting under power lines. It grows at a fast rate, and under ideal conditions can be expected to live for approximately 20 years. This shrub does best in partial shade to shade. It does best in average to evenly moist conditions, but will not tolerate standing water. It is not particular as to soil pH, but grows best in rich soils. It is somewhat tolerant of urban pollution, and will benefit from being planted in a relatively sheltered location.
    [Show full text]
  • Zootaxa, the Fungus Gnats (Diptera: Bolitophilidae
    Zootaxa 2318: 450–506 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) The fungus gnats (Diptera: Bolitophilidae, Keroplatidae, Mycetophilidae) of Sardinia, with description of six new species* PETER J. CHANDLER 606B Berryfield Lane, Melksham, Wilts SN12 6EL, United Kingdom. E-mail: [email protected] *In: Cerretti, P., Mason, F., Minelli, A., Nardi, G. & Whitmore, D. (Eds), Research on the Terrestrial Arthropods of Sardinia (Italy). Zootaxa, 2318, 1–602. Table of contents Abstract . .450 Introduction . .451 Study area . .452 Material and methods . .452 Abbreviations . .453 Sampling sites . .454 Faunistic list . .456 Bolitophilidae . .456 Keroplatidae, Keroplatinae, Keroplatini . .456 Orfeliini . .457 Macrocerinae . .462 Mycetophilidae, Gnoristinae . .465 Leiinae . .469 Mycetophilinae, Exechiini . .472 Mycetophilini . .480 Mycomyinae . .492 Sciophilinae . .495 Discussion . .500 Acknowledgements . .501 References . .502 Abstract The fungus gnat fauna of Sardinia is reviewed and data presented for all species recorded. Altogether one species of Bolitophilidae, 16 species of Keroplatidae and 105 species of Mycetophilidae are recognised as occurring in Sardinia. As the bolitophilid and two of the mycetophilid species are represented only by females and are not determined to species level, the total confirmed Sardinian list stands at 119 species. Four species of Keroplatidae and 19 species of Mycetophilidae are new to the total Italian fauna, whereas three species of Keroplatidae and 32 species of Mycetophilidae are newly recorded for the island of Sardinia. Six species are described as new to science: two Keroplatidae (Urytalpa juliae sp. nov., Macrocera nuragica sp. nov.) and four Mycetophilidae (Boletina ichnusa sp. nov., Trichonta sandalyon sp.
    [Show full text]
  • 1996 No. 4 December
    TROPICAL LEPIDOPTERA NEWS December 1996 No.4 LEPIDOPTERORUM CATALOGUS (New Series) The new world catalog of Lepidoptera renews the series title The new series (as edited by J. B. Heppner) began already in first begun in 1911. The original catalog series was published by 1989 with publication of the catalog of Noctuidae, by R. Poole. W. Junk Publishers of Berlin, Germany (later The Hague, E. J. Brill Publishers, of Leiden, Netherlands, published this first Netherlands), continuing until 1939 when the incomplete series fascicle in 3 volumes, covering already about a third of all known was deactivated due to World War II. The original series Lepidoptera. Since ATL took over the series, several families completed a large number of families between 1911 and 1939, have been readied for publication. Already this month, Fascicle totalling about 3 shelf-feet of text. Most Microlepidoptera, 48, on Epermeniidae, was published (authored by R. Gaedike, of however, were not covered, as also several macro families like the Deutsches Entomologisches Institut, Eberswalde, Germany). Noctuidae, and several families are incomplete (e.g., Geometridae In 1997, several other smaller families are expected, including and Pyralidae). Even for what was treated, the older catalogs are Acanthopteroctetidae (Davis), Acrolepiidae (Gaedike), Cecidosi­ now greatly out of date, due to the description of many new dae (Davis), Cercophanidae (Becker), Glyphipterigidae (Heppner), species and many changes in nomenclature over the last 5 to 8 Neotheoridae (Kristensen), Ochsenheimeriidae (Davis), Opostegi­ decades. dae (Davis), and Oxytenidae (Becker). Much of the publication The new series resembles the old series in some ways but it schedule depends on the cooperation of various specialists who will also have features not found in the old work.
    [Show full text]
  • Native Orchid Society of South Australia Inc
    Native Orchid Society of South Australia Inc. Journal Diuris calcicola One of new orchid species named in 2015 Photo: R. Bates June 2016 Volume 40 No. 5 Native Orchid Society of South Australia June 2016 Vol. 40 No. 5 The Native Orchid Society of South Australia promotes the conservation of orchids through preservation of natural habitat and cultivation. Except with the documented official representation of the management committee, no person may represent the Society on any matter. All native President orchids are protected in the wild; their collection without written Vacant Government permit is illegal. Vice President Robert Lawrence Contents Email: [email protected] Title Author Page Secretary Bulletin Board 54 Rosalie Lawrence Vice President’s Report Robert Lawrence 55 Email:[email protected] May Field Trip – From a newbie Vicki Morris 56 Treasurer NOSSA Seed Kits 2016 Les Nesbitt 57 Christine Robertson The Orchid & Mycorrhiza Fungus… Rob Soergel 57 Email: [email protected] Editor Growing Exercise Recall Les Nesbitt 58 Lorraine Badger Diuris Project Report Les Nesbitt 58 Assistant Editor - Rob Soergel May Meeting Review Rob Soergel 58 Email: [email protected] Pterostylis - Reprint 59 Committee Letters to the editor 60 Michael Clark May Orchid Pictures Competition Rosalie Lawrence 62 Bob Bates April Benched Orchids Results Les Nesbitt 63 Kris Kopicki April Benched Orchids Photos Judy & Greg Sara 64 Other Positions Membership Liaison Officer Life Members Robert Lawrence Mr R Hargreaves† Mr G Carne Mrs T Bridle Ph: 8294 8014 Email:[email protected] Mr H Goldsack† Mr R Bates Botanical Advisor Mr R Robjohns† Mr R Shooter Bob Bates Mr J Simmons† Mr W Dear Conservation Officer Mr D Wells† Mrs C Houston Thelma Bridle Ph: 8384 4174 Mr L Nesbitt Mr D Hirst Field Trips Coordinator Michael Clark Patron: Mr L.
    [Show full text]