Evaluation of a Tramway's Track Slab in Conventionally Reinforced
Total Page:16
File Type:pdf, Size:1020Kb
VRANJKOVINA ALIJA & ZIORIS STAVROS ZIORIS & ALIJA VRANJKOVINA DEGREE PROJECT IN CONCRETE STRUCTURES, SECOND LEVEL stockholm, sweden 2015 Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre Concrete Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre Concrete VRANJKOVINA ALIJA ZIORIS STAVROS TRITA-BKN, MASTER THESIS 453 CONCRETE STRUCTURES, 2015 ISSN 1103-4297 ISRN KTH/BKN/EX –453—SE KTH2015 KTH royal insTiTuTe of TecHnology www.kth.se SCHOOL OF ARCHITECTURE AND THE BUILDING ENVIRONMENT Preface This master thesis is the final part of our studies at Royal Institute of Technology of Stockholm in Sweden. Professor Johan Silfwerbrand from KTH and Thomas Johansson from SKANSKA, as our supervisors, gave us the opportunity to transact this thesis on the field of concrete structures and especially on tramway’s track slab and reinforcement design with SFRC and rebars. We would like to express our sincere gratitude to Professor J. Silfwerbrand and Thomas Johansson who guided us so that we gain knowledge of several essential engineering, and not only, aspects. In addition, we would like to thank particularly Simon Skoglund from WSP - Bro & Vattenbyggnad and Peter Mjörnell from Bekaert for the beneficial technical background they offered us and their useful assistance. Last but not least we wish to express our greatest thanks to our families and friends for providing us with all the support we needed through all this time. Stockholm, June 2015 Vranjkovina Alija Zioris Stavros i ii Abstract The dominant reinforcement used widely for concrete structures is conventional steel bars (rebars). Nevertheless, the perpetual effort toward evolution and development could not exclude the engineering field, thus new innovative and sophisticated methods are introduced. It is true that, due to lack of extended regulations and standards, the fibre reinforced concrete (FRC) was limited to non-structural applications. However, the last years the situation is changing rapidly and already the applications of FRC include actual structural members. The subject of the current thesis was a tramway’s track slab from “Spårväg City” project in Stockholm. The aim was to evaluate the track slab, in terms of alternative reinforcing ways. In particular three models were examined; model I – conventional reinforcement, model II – steel fibre reinforced concrete (SFRC) and model III – SFRC with conventional reinforcement. The assessment was performed from structural, regulations – compliance, economic and ergonomic perspective. A static linear analysis of the track slab was performed using Abaqus; a finite element analysis (FEA) software. The track slab was subjected only to mechanical loads (self- weight and traffic actions) and thus, the design internal forces were extracted. Thereafter, Eurocode 2 (EN 1992-1-1, 2004) and Swedish standards for FRC structures (SS 812310:2014) were utilized for the reinforcement design of the models. The design was performed in ultimate limit state (ULS), for bending moment and shear resistance, and in serviceability limit state (SLS), for stress limitation and crack control. Model I and III were successfully designed abiding with the respective regulations and requirements, while “only fibres” model was considered valid only for bending moment resistance according to SS 812310:2014. Consequently only models I and III were compared with each other. From the economic comparison it was obtained that model I was less expensive than model III, but on the other hand its construction time was larger. Furthermore model III contained significantly less total rebars’ mass in comparison to model I. This particularity was crucial for the ergonomic assessment. The human factors, that were relevant to the ergonomic assessment, improved the quality of the comparison and the extracted inferences, but also introduced aspects impossible to be put against economic facts as an equal quantity. Thus, there was not a final proposal as the best solution for the thesis subject. iii Keywords: Steel fibre reinforced concrete (SFRC), conventional reinforcement, finite element analysis (FEA), finite element methods (FEM), tramway track slab, “Spårväg City”, Eurocode 2 (EC 2), SS 812310:2014, economic, ergonomic. iv Sammanfattning Armeringen av betongkonstruktioner domineras av konventionell armering (armeringsjärn). Med den ständiga strävan mot utveckling och förbättring har inom teknikområdet nya innovativa och avancerade metoder introducerats. Det är på grund av bristen på normer, standarder som fiberarmerad betong begränsats till icke- bärande ändamål. Däremot har situationen förändrats under de senaste åren, redan idag kan man se konstruktioner där fiberarmering används till bärande ändamål. Ämnet för den aktuella masterexamen var betongplatta i projektet ”Spårväg City” i Stockholm. Syftet var att utvärdera betongplattan, i form av att undersöka alternativa armeringsmöjligheter. I synnerhet undersöktes tre modeller; modell I- konventionellt armerad platta, modell II- stålfiberarmerad platta och modell III stålfiberarmerad platta kombinerad med konventionell armering. Modellernas möjligheter att uppfylla regelverkens krav undersöktes, men de jämfördes även ur ekonomiskt samt ergonomiskt perspektiv. En statisk linjär analys av betongplattan genomfördes i ett finit element program, Abaqus. Betongplattan utsattes för mekanisk belastning (egenvikt samt trafiklast) för vilken dimensionerande krafter extraherats. Därefter användes Eurocode 2 (EN 1992-1-1, 2004) och den svenska standarden för fiberarmerade betong konstruktioner (SS 812310:2014) för vidare konstruktionsberäkningar. Konstruktionsberäkningarna för betongplattan genomfördes i brottgränstillstånd för böjmoment samt tvärkraft, i brukgränsmotståndet undersöktes betongplattan för spänningsbegränsningar samt sprickkontroll. Konstruktionsberäkningarna kunde genomföras för modell I och III med de existerande föreskrifterna och kraven, men modellen med ”endast fibrer” kunde endast dimensionerna för böjmoment enligt SS 812310:2014. Därför kunde endast modell I och III fortsättningsvis jämföras med varandra. Från den ekonomiska jämförelsen erhölls det att modellen I var billigare än modell III, men att konstruktionstiden var längre. Dessutom var behoven för konventionell armering (armeringsjärn) betydligt mindre för modell III till skillnad från modell I. Modellernas innehåll av konventionell armering var avgörande för den ergonomiska bedömningen. Den mänskliga faktorn, som var relevanta för den ergonomiska bedömningens, gav jämförelsen av modellerna en annan dimension, där de viktiga mänskliga faktorerna v beaktades och inte kunde jämföras eller sättas lika med dem ekonomiska faktorerna. Således, finns det inte något entydlig svar vilken av modellerna som är det bästa alternativet. vi Contents PREFACE ............................................................................................................................ I ABSTRACT ........................................................................................................................ III SAMMANFATTNING .......................................................................................................... V CONTENTS ...................................................................................................................... VII NOTATIONS ..................................................................................................................... IX NOMENCLATURE ............................................................................................................. XI 1 CHAPTER .................................................................................................................... 1 INTRODUCTION ................................................................................................................ 1 1.1 BACKGROUND ................................................................................................................... 1 1.2 PURPOSE AND DEFINITIONS .................................................................................................. 4 1.3 OBJECTIVES ....................................................................................................................... 4 1.4 CONTRIBUTIONS ................................................................................................................. 5 1.5 LIMITATIONS ..................................................................................................................... 6 1.6 METHODS ......................................................................................................................... 6 2 CHAPTER .................................................................................................................... 8 LITERATURE REVIEW ......................................................................................................... 8 2.1 TRAMWAY ........................................................................................................................ 8 2.2 FINITE ELEMENT METHODS ................................................................................................ 11 2.3 FIBRE REINFORCED CONCRETE ............................................................................................. 21 3 CHAPTER .................................................................................................................. 35 METHODOLOGY .............................................................................................................