Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level Lucie Cˇ erna´ 1, Zuzana Mu¨ nzbergova´ 1,2* 1 Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic, 2 Institute of Botany, Academy of Sciences, Pru˚honice, Czech Republic Abstract Background: Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. Methodology and Principal Findings: We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. Conclusions: Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species. Citation: Cˇ erna´ L, Mu¨nzbergova´ Z (2013) Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level. PLoS ONE 8(10): e75563. doi:10.1371/journal.pone.0075563 Editor: Fei-Hai Yu, Beijing Forestry University, China Received June 11, 2013; Accepted August 15, 2013; Published October 7, 2013 Copyright: ß 2013 Cˇerna´,Mu¨nzbergova´. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The study was supported by project GACˇ R P504/10/0456 and partly also by institutional research projects RVO 67985939 and MSMT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction However, such knowledge is still largely lacking (but see [15], [20], [21], [22]). Understanding the population dynamics of a species is a key One of the types of species that is suitable for studying the prerequisite when attempting to understand the factors determin- dynamics of closely related species and obtaining information ing the performance of its populations [1], [2], [3]. Most studies about the minimum differences in the population dynamics of addressing the population biology of various plant species closely related species are pairs of diploid and polyploid species. investigate specific life-cycle stages or single traits, such as seed Polyploidy is relatively frequent in the plant kingdom, and it is production, seedling survival or population size (e.g., [4], [5], [6], estimated that between 47 and 70% of all plant species are [7], [8], [9], [10], [11]). However, to understand the causes of polyploid [23]. More recent estimates even suggest that all changes in population size, it is necessary to investigate the angiosperms have undergone at least one polyploidization event complete life cycle of a species, as it is only by putting the various [24]. Understanding the consequences of polyploidization for the life-cycle transitions into the context of the whole life cycle that we population dynamics of plants is therefore of major importance can understand the consequences of the differences in single life and can help us to evaluate the consequences of polyploidization history traits for the dynamics of a population (e.g., [12], [13], events for species diversity. Studies comparing the behavior of [14], [15], [16], [17], [18], [19]). diploid and polyploid species have usually concentrated on Performing a detailed analysis of the entire life cycle of a species individual stages of the life cycle, e.g. germination and seedling is a demanding task, and it is not possible to perform such analyses recruitment (e.g. [25], [26]) and individual growth rates, for all species of interest. It would therefore be useful to be able to inflorescence production and flower morphology (e.g. [27], [28], transfer knowledge obtained from one population and/or species [29], [30]). Only few studies have compared the complete life to other populations of the same species and/or different species. cycles of diploid and polyploid species. Mu¨nzbergova´ [15] To evaluate this possibility, we need to understand the differences compared the complete life cycles of diploid and autohexaploid in the population dynamics of closely related species in the same perennial herbs and detected no overall differences in population habitat type and of individual species in different habitat types. dynamics, despite large differences in single life history traits. PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e75563 Population Dynamics of Diploid and Allotetraploid However, the hexaploid populations exhibited a higher extinction Republic, A. ramosum can be found in both Bohemia (western part) probability. Bucharova´ et al. [21] compared diploid and allote- and Moravia (eastern part). For A. liliago, the eastern boundary of traploid ferns and demonstrated the existence of a higher the distribution range is in central Bohemia. extinction probability and smaller number of populations in the In the Czech Republic, the two species usually occur separately. diploid species. Buggs & Pannell [31] compared performance of A. liliago prefers open, sunny stony slopes and rocks with a southern diploid and tetraploid individuals of annual Mercurialis annua and exposure. A. ramosum occupies sunny hillsides (often on a demonstrated that diploid plants have higher fitness. This is in calcareous substrate) and dry open forests. On some open sunny agreement with the fact that diploids are currently displacing slopes, these two species co-occur. In these habitats, it is possible to polyploids in the area. compare the population dynamics of the two species under the Another type of comparison that could help us to understand same habitat conditions and, thus, detect minimum differences in the variability of population dynamics and therefore tell us the population dynamics of two closely related species with something about the possibility of transferring the conclusions of different ploidy levels. Furthermore, the different habitat types studies on the population dynamics of single species is analysis of occupied by A. ramosum allow differences in the dynamics of the dynamics of a single species in different habitat types. As for populations of a single species to be studied in different different ploidy levels, many studies have compared single life environmental conditions. Unfortunately, it is not possible to set history traits between populations from different habitats (e.g., up a full factorial study in this system, as A. liliago does not occur in [32], [33]). Recently, various authors started to compare the whole forests. life cycle of populations of the same species occurring in different habitat types (e.g., [34], [35], [36], [37], [38], [15], [39], [40], Study Localities [41], [42], [43]). To compare the population dynamics of A. liliago and A. In the present study, we estimated the importance of habitat ramosum, we selected 3 localities in open habitats where the two types and species (ploidy levels) in the population dynamics of species co-occur in the Czech Republic. To study the population plants. Specifically, we compared the dynamics of two closely dynamics of A. ramosum in contrasting habitats, 3 additional forest related species, Anthericum liliago (4n) and Anthericum ramosum (2n), in localities were chosen. Therefore, 6 localities and 9 populations the same habitat type in the same localities as well as the dynamics were studied in all (Figure 1). of A. ramosum in two contrasting habitats (forest and open habitat). At each locality in each studied population, the basic habitat Specifically, we asked the following questions. (1) What are the conditions were investigated separately for patches where A. liliago differences in single life history traits between the two species and and A. ramosum occurred. The populations of the two study species between populations of a single species in different types of never completely overlap in the open localities, so we selected habitat? (2) How do these differences translate into differences in patches with only one or the other species for comparison of the population growth rates? (3) Are the observed differences between habitat conditions. For each locality and species, the vegetation species comparable to the
Recommended publications
  • <I>Chlorophytum Burundiense</I> (Asparagaceae), a New Species
    Plant Ecology and Evolution 144 (2): 233–236, 2011 doi:10.5091/plecevo.2011.609 SHORT COMMUNICATION Chlorophytum burundiense (Asparagaceae), a new species from Burundi and Tanzania Pierre Meerts Herbarium et Bibliothèque de botanique africaine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 169, BE-1050 Brussels, Belgium Email: [email protected] Background and aims – In the context of our preparation of the treatment of the genus Chlorophytum for the ‘Flore d’Afrique centrale’, a new species is described from Burundi and Tanzania. Methods – Herbarium taxonomy and SEM of seeds. Key results – Chlorophytum burundiense Meerts sp. nov. is described. It is a small plant < 35 cm in height, with linear leaves < 6 mm wide, a dense raceme and large, deep purplish brown bracts. It is morphologically not closely related to any other species in the genus. It has a distinct habitat, growing in afromontane grassland and scrub at 2000–2500 m a.s.l. All collections but one originate from Burundi, and a single collection originates from SW Tanzania. A determination key is provided for Chlorophytum species with linear leaves occurring in Burundi. Key words – afromontane, determination key, new species, Chlorophytum, SEM, Burundi, Tanzania. INTRODUCTION silvaticum, C. sparsiflorum, C. stolzii, C. subpetiolatum, C. zingiberastrum (taxonomy and nomenclature after Nordal The circumscription of the genus Chlorophytum Ker Gawl. et al. 1997, Kativu et al. 2008). In addition, a species came (Asparagaceae in APG 2009) was revised by Obermeyer to our attention which could not be identified using Baker (1962), Marais & Reilly (1978), Nordal et al. (1990) and (1898), von Poellnitz (1942, 1946), Nordal et al.
    [Show full text]
  • The Chloroplast Genome of Arthropodium Bifurcatum
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Chloroplast Genome of Arthropodium bifurcatum. A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Massey University Palmerston North, New Zealand Simon James Lethbridge Cox 2010 Abstract This thesis describes the application of high throughput (Illumina) short read sequencing and analyses to obtain the chloroplast genome sequence of Arthropodium bifurcatum and chloroplast genome markers for future testing of hypotheses that explain geographic distributions of Rengarenga – the name Maori give to species of Arthropodium in New Zealand. It has been proposed that A.cirratum was translocated from regions in the north of New Zealand to zones further south due to its value as a food crop. In order to develop markers to test this hypothesis, the chloroplast genome of the closely related A.bifurcatum was sequenced and annotated. A range of tools were used to handle the large quantities of data produced by the Illumina GAIIx. Programs included the de novo assembler Velvet, alignment tools BWA and Bowtie, the viewer Tablet and the quality control program SolexaQA. The A.bifurcatum genome was then used as a reference to align long range PCR products amplified from multiple accessions of A.cirratum and A.bifurcatum sampled from a range of geographic locations. From this alignment variable SNP markers were identified.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Book of Abstracts
    th International Workshop of European Vegetation Survey Book of Abstracts „Flora, vegetation, environment and land-use at large scale” April– May, University of Pécs, Hungary ABSTRACTS 19th EVS Workshop “Flora, vegetation, environment and land-use at large scale” Pécs, Hungary 29 April – 2 May 2010 Edited by Zoltán Botta-Dukát and Éva Salamon-Albert with collaboration of Róbert Pál, Judit Nyulasi, János Csiky and Attila Lengyel Revised by Members of the EVS 2010 Scientifi c Committee Pécs, EVS Scientific Committee Prof MHAS Attila BORHIDI, University of Pécs, Hungary Assoc prof Zoltán BOTTA-DUKÁT, Institute of Ecology & Botany, Hungary Assoc prof Milan CHYTRÝ, Masaryk University, Czech Republic Prof Jörg EWALD, Weihenstephan University of Applied Sciences, Germany Prof Sandro PIGNATTI, La Sapientia University, Italy Prof János PODANI, Eötvös Loránd University, Hungary Canon Prof John Stanley RODWELL, Lancaster University, United Kingdom Prof Francesco SPADA, La Sapientia University, Italy EVS Local Organizing Committee Dr. Éva SALAMON-ALBERT, University of Pécs Dr. Zoltán BOTTA-DUKÁT, Institute of Ecology & Botany HAS, Vácrátót Prof. Attila BORHIDI, University of Pécs Sándor CSETE, University of Pécs Dr. János CSIKY, University of Pécs Ferenc HORVÁTH, Institute of Ecology & Botany HAS, Vácrátót Prof. Balázs KEVEY, University of Pécs Dr. Zsolt MOLNÁR, Institute of Ecology & Botany HAS, Vácrátót Dr. Tamás MORSCHHAUSER, University of Pécs Organized by Department of Plant Systematics and Geobotany, University of Pécs H-7624 Pécs, Ifj úság útja 6. Tel.: +36-72-503-600, fax: +36-72-501-520 E-mail: [email protected] http://www.ttk.pte.hu/biologia/botanika/ Secretary: Dr. Róbert Pál, Attila Lengyel Institute of Ecology & Botany, Hungarian Academy of Sciences (HAS) H-2163 Vácrátót, Alkotmány út 2-4 Tel.: +36-28-360-147, Fax: +36-28-360-110 http://www.obki.hu/ Directorate of Duna-Dráva National Park, Pécs H-7602 Pécs, P.O.B.
    [Show full text]
  • Climate Effects on Native Plants in Swiss Botanical Gardens
    Climate Effects on Native Plants in Swiss Botanical Gardens Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Christine Föhr von Eriswil (BE) Leiter der Arbeit: Prof. Dr. Markus Fischer Institut für Pflanzenwissenschaften, Botanischer Garten und Oeschger Zentrum, Universität Bern Climate Effects on Native Plants in Swiss Botanical Gardens Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Christine Föhr von Eriswil (BE) Leiter der Arbeit: Prof. Dr. Markus Fischer Institut für Pflanzenwissenschaften, Botanischer Garten und Oeschger Zentrum, Universität Bern Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Der Dekan: Bern, 21. September 2015 Prof. Dr. Gilberto Colangelo Public defense at the Institute of Plant Sciences (University of Bern) September 21, 2015 Promotion Committee Prof. Dr. Markus Fischer Institute of Plant Sciences, Botanical Garden and Oeschger Center University of Bern Prof. Dr. Jasmin Joshi University of Potsdam Chairman Prof. Dr. Willy Tinner Institute of Plant Sciences University of Bern Table of contents Chapter 1 General introduction………………………………………………...….…….1 Chapter 2 Warmer climate than in their natural range reduces the performance of 165 native plant species across 10 botanical gardens in Switzerland…………………………………….11 Chapter 3 Phenological shifts and flower visitation of 185 lowland and alpine species growing in a lowland botanical garden…………………………………………………………………...………….39 Chapter
    [Show full text]
  • Designed Plant Communities for Challenging Urban Environments in Southern Finland - Based on the German Mixed Planting System Sara Seppänen
    Designed plant communities for challenging urban environments in southern Finland - based on the German mixed planting system Sara Seppänen Independent Project • 30 credits Landscape Architecture – Master´s Programme Alnarp 2019 Designed plant communities for challenging urban environments in southern Finland - based on the German mixed planting system Sara Seppänen Supervisor: Karin Svensson, SLU, Department of Landscape Architecture, Planning and Management Examiner: Jitka Svensson, SLU, Department of Landscape Architecture, Planning and Management Co-examiner: Anders Westin, SLU, Department of Landscape Architecture, Planning and Management Credits: 30 Project Level: A2E Course title: Independent Project in Landscape Architecture Course code: EX0852 Programme: Landscape Architecture – Master´s Programme Place of publication: Alnarp Year of publication: 2019 Cover art: Sara Seppänen Online publication: http://stud.epsilon.slu.se Keywords: designed plant community, ecological planting, dynamic planting, naturalistic planting, mixed planting system, planting design, urban habitats SLU, Swedish University of Agricultural Sciences Faculty of Landscape Architecture, Horticulture and Crop Production Science Department of Landscape Architecture, Planning and Management Abstract Traditional perennial borders require a lot of maintenance and climate to get an understanding of what is required of a plant to are therefore not so common in public areas in Finland. There is survive in these conditions. a need for low-maintenance perennial plantings that can tolerate The thesis looks into the difference between traditional the dry conditions in urban areas. Especially areas close to horticultural perennial plantings and designed plant communities, traffic, such as the middle of roundabouts and traffic islands need such as the German mixed plantings. easily manageable vegetation and they are therefore normally covered in grass or mass plantings of shrubs.
    [Show full text]
  • Centaurea Ruthenica Lam. -..:::: Kitaibelia
    id9336859 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com 259 KITAIBELIA VI. évf. 2. szám pp.: 259-266. Debrecen 2001 Centaurea ruthenica Lam. (Asteraceae) in the forest-steppe of the Transylvanian Basin BÃDÃRÃU Alexandru – DEZSI ªtefan – PENDEA Florin – DURA Nicolae „Babeº-Bolyai” University, Faculty of Geography, 5-7 Clinicilor street, RO-3400 Cluj-Napoca, Romania Introduction Centaurea ruthenica Lam. is one of the rarest species of the flora of Romania and of Central Europe as well. It belongs to subgenus Centaurea s. str. (WAGENITZ 1975) which comprises a controversial number of species which inhabit the steppes, forest steppes and mesoxerophytic bushy submediterranean habitats from western Palaearctis. The species is known from only three localities in the entire Transylvania and Romania, which are at the same time the westernmost ones in the range of this species. Here we analyse the three Transylvanian localities of this rare and precious element that needs urgent protective measures. The taxonomic and biogeographic context of the species The place of the subgenus Centaurea s.str. within the genus Centaurea L. and even more largely within the entire tribe of Cardueae was investigated by SUSSANNA – JACAS – SOLTIS - SOLTIS (1995). They have concluded that Centaurea L. can be paraphyletic and that subgenus Centaurea s. str. is a primitive, isolated branch that seems to be more related with other genera like Cheirolophus Cass. Therefore, the unity of the genus should be questioned in the future and a serious revision based upon the phylogenetic relations inferred from genetical, biochemical and morphological studies is further needed.
    [Show full text]
  • From the Western Cape
    S.Afr.J.Bot., 1990,56(2): 257- 260 257 A new species of Trachyandra section Trachyandra (Asphodelaceae) from the western Cape P.L. Perry Compton Herbarium, National Botanic Gardens, Private Bag X7, Claremont, 7735 Republic of South Africa Accepted 6 November 1989 Trachyandra pro/ifera P.L. Perry, an autumn-flowering geophyte with distinctive proliferating roots is described. It has a limited distribution in the Nieuwoudtville area on the Bokkeveldberge. Trachyandra karrooica Oberm. appears to be the most closely related species. Trachyandra pro/ifera P.L. Perry, 'n herfsblommende geofiet met kenmerkende proliferende wortels word beskryf. Dit besit 'n beperkte verspreiding op die Bokkeveldberge in die Niewoudtville-area. Trachyandra karrooica Oberm. is waarskynlik die spesie wat die naaste verwant is. Keywords: Asphodelaceae, taxonomy, Trachyandra Introduction intlorescentia simpIici , glabra, pauciflora et tloribus 30 mm The genus Trachyandra was first described by Kunth diametro differt. (1843) when he divided Anthericum L. into the three TYPUS.- Cape Province: NieuwoudtviIIe, Farm Glen Lyon , genera Phalangium Mill. , Bulbinella Kunth and flower April 1986 , leaf June 1986, Snijman 869 (NBG, Trachyandra Kunth. Most authors after that date holotypus) . reverted to Anthericum for all or part of the related groupings until the revision by Obermeyer (1962) of the Plants deciduous small , up to 200 mm high , gregarious, South African species of Anthericum, Chlorophytum and proliferating to form large clumps. Roots few , thick , Trach yandra. fleshy, mainly up to 75 mm long, 5 mm wide near the Although the distinction between Anthericum and base, gradually tapering to the apex, with root hairs Chlorophytum is somewhat tenuous, relying on seed along most of the length and scattered narrower laterals; structure, Trachyandra forms a more distinctive outer flakey layer light rusty brown with an inner bright grouping separated from the former two genera on a red layer, and white internally; swollen regions formed number of characters.
    [Show full text]
  • Steckbrief: Anthericum Liliago L. – Trauben-Graslilie (Anthericaceae)
    Steckbrief: Anthericum liliago L. – Trauben-Graslilie (Anthericaceae) Biologie und Ökologie Gefährdung Verantwortung Verbreitung in Deutschland Vorwarnliste (Metzing et al. 2018) hohe Verantwortlichkeit (Metzing et al. RP, SL, BY, BW, HE, TH, SN, ST, BE, 2018) SH, BB, NRW, NI, HB, MV, SH (Jäger 2017) Gefährdungsursachen Standort Beschreibung Gehölzsukzession, Aufforstung, Trockenrasen, Trockengebüsche, Pflanzenhöhe 30-60 cm, Stängel Eutrophierung, Verbiss (WIPs-DE) Felsfluren, Trockenwälder, -säume aufrecht, Blätter grundständig, (Jäger 2017); offene Eichen- und grasartig, traubiger Blütenstand Kiefernwälder (Peterson et al. 2008) blattlos, Perigon 3-5 cm Durchmesser, (Floraweb 2020); Griffel bogig gekrümmt (Jäger 2017); Verwechslungsmöglichkeit mit Anthericum ramosum, diese aber mit rispigem Blütenstand, geradem Griffel und kleinerem Perigon, ca. 4 Wochen späterer Blüte (Jäger 2017) Lebensform Lebensdauer Mykorrhizierung sommergrüner Hemikryptophyt ausdauernd (Jäger 2017) unbekannt (Ellenberg et al. 1992); Geophyt/ Hemikryptophyt (Jäger 2017) Blütezeit Bestäubung Kompatibilität Mai bis Juni (Jäger 2017) Insektenbestäubung (Floraweb 2020); selbstkompatibel (Rosquist 2001) Myrmica sabuleti (Ameisen), Isomira murina (Pflanzenkäfer) (Peterson et al. 2002); Merodon rufus (Schweb- fliegen), solitäre Bienen der Gattung Andrena, Halictus, Lasioglossum, Osmia, Wollschweber, Käfer, Zweiflügler, Hautflügler, Schmetter- linge (Peterson et al. 2008) Frucht und Samen Samenanzahl- und Gewicht Samenreife und Ausbreitung eiförmige, spitze Kapsel, 9-15
    [Show full text]
  • Chlorophytum Comosum Spider Plant
    Chlorophytum comosum (C.P. Thunberg) H.A. Jacques Spider Plant (Anthericum comosum, Anthericum mandaianum, Chlorophytum beniense, Chlorophytum capense, Chlorophytum ela- tum, Chlorophytum mandaianum, Chlorophytum picturatum, Chlorophytum semlikiense, Chlorophytum sternbergi- unum, Chlorophytum vittatum) Other Common Names: Airplane Plant, Hen-And-Chickens, Ribbonplant, Spider-Ivy, Spiderplant, Walking Anthe- ricum. Family: Agaveaceae; also placed by some authorities in the Antheriaceae or Liliaceae. Cold Hardiness: While the foliage is killed by even light frosts, plants are root hardy in USDA zones 9 (8b) to 11, and function as an evergreen herbaceous perennial in USDA zones 10 (9b) to 11. 3 Foliage: Alternate, evergreen, glabrous, linear-lanceolate slightly arching 6O to 12O (18O) long by ⁄8O to ¾O wide sword-shaped leaves are keeled at the base; blades have entire to slightly undulate margins with acuminate tips; leaves of most cultivars are streaked with white to creamy yellow variegation, while the species type is green alone. Flower: The small single white flowers are approximately ¾O across with a whorl of three narrowly ovate white petals in an alternating pattern with a subtending whorl of three white lanceolate sepals; a single pistil is sur- rounded by six stamens; the flowers are present year-round and subtly attractive, but are sparsely borne on the 6O to 14O long racemes. Fruit: Tiny triangular deeply lobed three-celled leathery capsules with three to five flat black seeds each follow the flowers singly or in small clusters. Stem / Bark: Stems — vegetative stems are short and stout with very short internodes, while flower stalks are stiff, wiry, and lightly scabrous; viviparous plantlets form on the terminus of these stalks and produce fleshy aerial rootlets; Buds — tiny green buds are largely encased in the rosette at the base of the plant, or elongate shortly after formation on the wiry arching flower stalks; Bark — not applicable.
    [Show full text]
  • Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 24 2006 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J. Chris Pires University of Wisconsin-Madison; University of Missouri Ivan J. Maureira University of Wisconsin-Madison Thomas J. Givnish University of Wisconsin-Madison Kenneth J. Systma University of Wisconsin-Madison Ole Seberg University of Copenhagen; Natural History Musem of Denmark See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Pires, J. Chris; Maureira, Ivan J.; Givnish, Thomas J.; Systma, Kenneth J.; Seberg, Ole; Peterson, Gitte; Davis, Jerrold I.; Stevenson, Dennis W.; Rudall, Paula J.; Fay, Michael F.; and Chase, Mark W. (2006) "Phylogeny, Genome Size, and Chromosome Evolution of Asparagales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 24. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/24 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales Authors J. Chris Pires, Ivan J. Maureira, Thomas J. Givnish, Kenneth J. Systma, Ole Seberg, Gitte Peterson, Jerrold I. Davis, Dennis W. Stevenson, Paula J. Rudall, Michael F. Fay, and Mark W. Chase This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 24 Asparagales ~£~2COTSgy and Evolution Excluding Poales Aliso 22, pp. 287-304 © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY, GENOME SIZE, AND CHROMOSOME EVOLUTION OF ASPARAGALES 1 7 8 1 3 9 J. CHRIS PIRES, • • IVAN J. MAUREIRA, THOMAS J. GIVNISH, 2 KENNETH J. SYTSMA, 2 OLE SEBERG, · 9 4 6 GITTE PETERSEN, 3· JERROLD I DAVIS, DENNIS W.
    [Show full text]
  • Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp.
    [Show full text]