UNITED NATIONS UNITED NATIONS ENVIRONMENT EDUCATIONAL, PROGRAMME SCIENTIFIC AND CULTURAL ORGANIZATION

A WORLDWIDE SURFACE WATER

CLASSIFICATION SYSTEM

UNEP/ EMINWA PARIS, 1988 UNEP UNESCO

AWORLDWID ESURFAC EWATE R CLASSIFICATIONSYSTE M

L.W.G.Higle r

Therepor twa sprinte db yth eResearc hInstitut e forNatur eManagement ,Leersum ,Th eNetherland s

Unesco,Paris ,198 8

^l CONTENTS

FOREWORD 4

Acknowledgements 7

Introductory remarks 8 1 A classification of surface waters 8 2 Climate and hydrology 13 2.1 Climatological regions 13 2.2 Hydrological regimes/systems 20 3 Classification of running waters 24 4 Classification of stagnant waters 38 4.1 Classification acccording to origin 38 4.2 Classification according to morphometry 39 4.3 Classification according to thermal stratification 41 4.4 Classification according to chemical composition 45 Saline lakes 45 Acid waters 49 4.5 Classification according to trophic status 51 Intermezzo 55 4.6 Classification according to flora and fauna 61 Temporary waters 63 5 How to proceed? 65

Appendix I References 70 References of literature on zonation and classification of streams 71 References of general literature and literature on stagnant waters 93 Appendix II Ecological types of running water based on stream hydraulics in The Netherlands 103 Appendix III Questions and comments on the River Continuum Concept 111 Appendix IV Stream hydraulics as a major determinant of benthic invertebrate zonation patterns 119 Appendix V Flora and fauna of European running waters 133 Appendix VI Tables with data on morphometry of large water bodies 181 Appendix VII Appendices with data on saline lakes in the world 194 Appendix VIII Glossary 210 -4-

FOREWORD

The aim of the publication "A worldwide surface water classification system" is to propose a methodology and information for classifying water bodies that will facilitate the inter-comparison of hydro-environmental situations. This proposal is open to discussion, and critical comment and suggestions for changes and improvements would be welcomed and will be used for the preparation of a revised edition of the publication. The publication was prepared in*the framework of the UNEP/Unesco pro­ ject "Integrated Environmental Evaluation of Water Resources Develop­ ment", reference number FP/5201-85-01. The determination of the influence of man on the hydrological cycle and the impact of development projects on the water-related environment are priority areas for both UNEP and Unesco in their respective water programmes. The water resources programme of Unesco is centered on the Internatio­ nal Hydrological Programme (IHP). Within IHP the influence of man on the hydrological cycle has been a priority area since the start of the Inter­ national Hydrological Decade in 1965. This section covers scientific stu­ dies of the influence of man on the hydrological cycle, including water quantity and quality. The activities of man are considered to include di­ rect action such as land-use changes, consumptive use of water, physical operations on river systems, addition of contaminants of various kinds, as well as those of a more indirect nature such as, for example, man-in­ duced climate changes. These studies also include the effect of changes in the hydrological cycle on social, environmental and ecological aspects relative to water resources. The studies executed in the framework of the IHP will result in the synthesis of existing knowledge, guidance material for the execution of national studies, teaching notes and public information material. Publi­ cations issued in this area include: - Man's Influence on the Hydrological Cycle" (with FAO) - Hydrological Effects of Urbanization and Industrialization on Water Resources Planning and Management - Casebook on Methods of Computation of Quantitative Changes in the Hydrological Regime of River Basins due to Human Activities - Aquifer Contaminants and Protection - Hydrological Problems related to the Development of Energy - Study of the Relationship between Water Quality and Sediment Transport -Th eHydrologica lRegim ea sinfluence db yth eDrainag eo fWetland s -Investigatio no fth eWate rRegim eo fRive rBasin saffecte db y Irrigation -Hydro-environmenta lIndices ,a Revie wan dEvaluatio no fthei rUs ei n theAssessmen to fth eEnvironmenta l Impacto fWate rProjects .

UNEP'swate rprogramm e isfocusse do nth eEnvironmentall y SoundManage ­ mento fInlan dWate r (EMINWA).Thi sprogramm e isdesigne dt oassis tgo ­ vernmentst ointegrat eenvironmenta lconsideration s intoth emanagemen t anddevelopmen to finlan dwaters ,wit ha vie wt oreconcilin gan densurin g thedevelopmen to fwate rresource s inharmon ywit hth ewater-relate d(na ­ turalan dman-made )environmen tthroughou tentir ewate rsystems .I tcon ­ tributest oa harmoniou srive rbasi ndevelopmen tan dt oa sustainabl ere ­ gionaldevelopment . Themai nactivitie so fth eEMINW Aprogramm eare : (a)t oassis tgovernment st odevelop ,approv ean dimplemen tenvironmen ­ tallysoun dwate rmanagemen tprogramme s inrive rbasin sb yinlan d waterprojects ; (b)t oprepar ea manua lo fprinciple san dguideline s forth eenviron ­ mentallysoun dmanagemen to finlan dwater ; (c)t ous eth eEMINW Ainlan dwate rbasin sfo rdemonstratio npurposes ; (d)t otrai nexpert san dimplemen ta ninstitution-buildin gprogramme ; (e)t omak eregula rworld-wid eassessment so fth estat eo fth e environmenti ninlan dwate rsystems .

Besidesthi spublicatio no nth eclassificatio no fsurfac ewate rbodie s theUNEP/Unesc oprojec t "IntegratedEnvironmenta lEvaluatio no fWate rRe ­ sourcesDevelopment" ,issue di n1987 ,a repor tentitle d "Methodological Guidelines forth eIntegrate dEnvironmenta lEvaluatio no fWate rResource s Development"i nEnglish ,Frenc han dSpanish ,an di n198 8a teachin gguid e inEnglis hfo rth eus eo fth emethodolog y forth eevaluation . Eachwate rresource sdevelopmen tprojec tdiffer sfro mal lothe rwate r resourcesproject san dn osituatio nis ,a tfirs tsight ,comparabl et o another.Difference s inclimate ,morpholog yo fth erive rbasin ,geology , soilstructure ,lan duse ,vegetation ,ecology ,etc .ar esuc htha ti teve n appearsdifficul tt ocompar eth eenvironmenta l statuso fundevelope dri ­ vers. Itwa sfelt ,therefore ,tha ta hydro-environmenta lclassificatio no f waterbodie swoul db euseful ,i nth efirs tplace ,t omak e itpossibl et o useknowledg eobtaine dunde rdifferen tcircumstance s tosystematicall y increaseth ebod yo fknowledg eo nquestion srelate d toth eenvironmenta l statuso fwate rbodies .I twoul dals omak epossibl eth eevaluation so f thehydro-ecologica lstatu so fwate rbodie sa scompare dt oothe rones , andmak e itpossibl et omor eeasil yestablis hadministrativ ean dlega l standardsfo rth edifferen twate rbodie si na country . Theidea lclassificatio nsyste mwoul dfulfi lal lthes erequirements , wouldb erobus ti nth esens etha ta wate rbod ynormall ywoul dremai ni n thesam ecategor yan di twoul db eeas yt ounderstan dan dt ous eb yengi ­ neersan dplanner swh od ono thav ea specialize dknowledg e ofhydro-bio ­ logy. Iti sprobabl y impossible,an dcertainl yunwieldy ,t odesig na detai ­ ledclassificatio no nth ebasi so fth eabov erequirement swhic hwoul dco ­ veral lpossibl esituation s inth eworld .O nth eothe rhand ,i ti s thoughttha ta firs tapproac hclassificatio no nth ebasi so fphysica lva ­ riableswoul db egloball yvalid ,woul dno tb econtradictor y toexistin g classifications already inus ean dwoul dallo wfo raddition sbase do nre ­ gionalo rloca lconditions . Asstate d inth efirs tparagrap ho fthi schapte rth epropose dclassi ­ ficationan dth eothe r informationi nthi spublicatio n isno tmean ta s thefina lwor do nth esubject .I ti sope nt odiscussio nan dcritica lcom ­ ments. Suggestion sfo rchange san dimprovement sar ewelcom ean dwil lb e usedi nth epreparatio no fa secon dversio no fth edocument . Pleasesen dyou rcomments/suggestion s toth eDirecto ro fth eDivisio n ofWate rSciences ,Unesco ,7 Plac ed eFontenoy ,7570 0Paris ,France . ACKNOWLEDGEMENTS

Thisrepor ti spar to fth eUNEP/Unesc oprojec tFP/5201/85-0 1 "IntegratedEnvironmenta lEvaluatio no fWate rResource sDevelopment" . Ia mgratefu lfo rth ecomment so fth e (other)member so fth eScientifi c ExportGrou pfo rthi sproject ,Prof .Dr .L .Hartman n (chairman),H.C . Torno (whocorrecte dth eenglis hversion) ,Dr .I .Bogardi ,Drs .P . Leentvaar,Ir .F.H .Verhoo gan dL .Davi d (theUNE Pprogramm eofficer) . Manyfigure san dtable shav ebee ntake nfro mbooks ,an dsom efro m journals.Al lpublisher shav egive nthei rpermissio nfo rreproduction , whichi sacknowledge dher ewit hgratitude . INTRODUCTORY REMARKS

Thisrepor tpresent sa worldwid eclassificatio no fsurfac ewaters .Th e diversityo fwate rtype si simmens ean dan yattemp tt obrin gsom eorde r tothi sdiversit y invariablyconfront sa multitud eo fexceptions .Th e resultingrepor ttherefor e isa noversimplificatio no freality ,base d uponlimite d informationan dleanin gheavil yo nresearc hdat afro m temperateregions . Despiteth eendles svariet yo fwate rtype scertai nlaw san d regularitiesca nb eobserve dan dthes efor mth ebod yo fth e classification.Loca lclimatologica lan dbiogeographica l circumstances willrequir eadaptation san dfillin gi no fth esystem .Thes eadaptation s shouldb emad eonl yb yloca lexperts . Thisrepor tindicate sa numbe ro fpossibl eadaptation san dgive s examplesfro mdifferen tarea si nth eworld .Extensiv eliteratur elist s whichprovid efurthe rdetail so nal laspect so fth eclassificatio nsyste m havebee nincluded .Th efirs tchapte rgive sa nelementa lclassificatio n withleadin gconsideration sa sa summar yo fthi sstudy .Th eremainin g chaptersconstitut eth escientifi cbasi sfo rth eclassificatio nan dth e appendicesgiv ebackgroun d informationan djustification .

1 ACLASSIFICATIO NO FSURFAC EWATER S

Withrespec tt oth euse so fsurfac ewater son eca nmak edifferen t classifications.I fth emai ninteres ti sfo rdrinkin gwate rpurposes , qualityan dquantit yar eth efirs tconcerns .Fo rnavigation ,hydrauli c characteristicsan dth egrowt ho fwate rplant sar eimportan tan ds oon . Wehav eopte dfo ra necologica lclassification ,whic hattempt st o describewater s inthei r"natura lstate "an dwhic huse sbiologica la s wella sabioti cparameters .Biologica lparameter sca nb euse da s indicatorso fth enatura lstat ean dals ofo rdeviation s fromth enatura l state.The yca nals ogiv einformatio nabou twate rquality ,trophi c status,th efisher ypotentia letc . Plantsan danimal si nth ewate rca ninfluenc echemistry ,wate r movement,dept h (byterrestrializatio n stages)an ds oon ,bu tth e startingpoin tfo ra nanalysi so fth esuitabilit yo fa wate rfo rplant s andanimal s isabiotic .Climate ,compositio no fth esoil ,an dmorphometr y ofth elandscap ear eth emai nfactors ,an dderive dfro mthes ear e temperature (ranges),streamflo wvelocit y inrunnin gwaters ,salinity , dimensions,nutrients ,pH ,etc . Thesedifferen tcondition sar echaracterize db ydifferen t biocommunities,bu tth estructur ean dfunctionin go fthes ecommunitie s showsimililarit ywithi nth ediscerne dtypes ,despit ebiogeographica l variations.Fo rthi sreaso non eca nwor kwit ha generalize dconcept , whichi sthe nadapte dt oregiona lo rloca lconditions . Inth esimplifie dclassificatio nshow ni nFig .1 ,a firs tdivisio nha s beenmad e intorunnin gan dstagnan twater s (separately treated inth e chapters3 an d 4). Itseem st ob epractica lt od othis ,a sther ear efe w commonfeature so rspecie so fplant san danimal s inthes etw ocategories .

Runningwater s Ina recen tpape rStatzne ran dHigle r (1986-Als oinclude da sAppendi x IV)suggeste dtha tphysica lcharacteristic s offlo w (streamhydraulics ) areth emos timportan tenvironmenta l factorgovernin gth ezonatio no f streambentho so na world-wid e scale.The yrecognize dzone so ftransitio n instrea mhydraulic s fromsourc et omout ht owhic hth egenera lpatter no f assemblageso fstrea m invertebratesca nb erelated .A proposa lwa sgive n fora genera lpatter no fbenti cfaun ai npristin estreams .Fo rthi sthe y createda n"ideal "strea mfro mit ssourc ei nth emountain s toit sdelt a orestuar yi nth esea .Isolate dstream san dstrea msection sca nb e related topart so fth eidealize dstream . Byrearrangin g theelement so fth eMannin gequatio nHigle ran dMo l (1984- includeda sAppendi xI )constructe da diagra m (Fig.23 ,Appendi x II)i nwhic hrunnin gwater s inTh eNetherland sca nb echaracterize do n thebasi so fmeasurement so fstreamflo wvelocity ,terrai nslop ean d dimensions.Hydrauli cfactor san ddimension sdetermin e theplac e inth e diagram.A sstrea mbentho s isgoverne dmainl yb yhydraulic s itshoul db e possiblet oindicat eth eplac eo fassemblage so forganism stha tar et ob e foundi ncertai npart so fth ediagram .I nthi swa yth eidealize dstrea m canb epopulate dwit horganisms .The ystarte dwit hWest-Europea n •10- invertebratesan dalthoug hmuc hwor kremains ,th efirs tresult sloo kver y promising. Theseconsideration shav ebee nderive dfro mwor ki ntemperat ezones , butth eUnesco/UNE Pprojec ti saimin ga ta broade rapplicatio ni n developingcountries .I ti sobviou stha ton ecanno tconstruc ta worldwid e systemusin gname so forganism san dcircumstance sfro mtemperat eregions . Thereferenc esituatio nmus tb efille di nfo ran ygive nare aincludin ga n analysiso fth edeviation s fromth ereference .A hierarch yo f environmental factorsmus tb eused ,i nwhic hth eclimatologica lfactor s areth emos timportant .I nth edifferen tclimatologica lzone scriteri a likedrought ,ic ecover ,precipitatio nextreme s influenceth econdition s instreams .Th ezonobiome sdescribe db yWalte r& Breckl e (1983)(Fig .2 ) canfunctio nver ywel la slarg eecologica lunit so na globa lscale . Temporarystream shav ebee ntreate dseparately ,becaus eth eextrem e environmentalcondition srequir eman yadaptation so fth ebiocenosis . Streams inth earcti cca nb efroze nfo ra considerabl eperio dwherea s thosei nth etropic sma ydr you tcompletel y forman ymonths .I ntemperat e regionsth euppe rcours eofte ndrie sou ti nsummer .Moun dspring si n Australiahoweve revaporat eafte rsom eten so fmeters ,an donl yi nth e rainyseaso ndoe sthei rlengt h (andth epopulatio no fth ebiocommunity ) increase.Tabl e1 (pag e29 )present ssom egeneralize dcharacteristic sfo r runningwater salon gthei rcours ei ntemperat eregions .

Stagnantwater s Stagnantwater shav ebee nfirs tdivide d intonon-salin ean dsalin e waters,becaus eth esalinit y iso fsuc himportanc etha ti toverrule sal l otherfactor s (4.4). Instagnan tfreshwater sther ei sn osingl efacto r sucha shydraulic s inrunnin gwater stha tdominate sal lprocesses . Historically,therefor eclassification shav ebee nmad efro mdifferen t pointso fvie wbase do ndifferen tvariables .Fore l (1901)mad eth efirs t classification,base do ntemperatur eregime .I nth efirs tdecade so fthi s centuryNauman nan dThieneman nmad eclassification so flake so nth ebasi s ofproductivity ,an dlate rHutchinso n (1957)discerne d7 6type so flake s onth ebasi so forigin .Morphometr yha sbee nconsidere da sa goo d criterionfo rclassificatio nb ysevera lauthors ,öklan d (1964)summarize s sevencategorie so fparameters :climate ,morphometry ,chemica lan d physicalproperties ,sediment ,flora ,faun aan dproductivity . Inclassi c limnologyattentio nha sbee ndirecte dmor et odee plake s •11 - thant oshallo wwater san dmuc hmor e isknow nfro mtemperat eregion stha n fromothers .O fcours ether ear ewel lknow nexception s tothi srule ,suc h asThieneman n (1931),bu ti ngenera lth eexistin gclassification ssuppor t therule .Dept hi sa ver y importantecologica lfactor ,an dstagnan t watersshoul db edivide d intothre emai ngroup saccordin gt odepth .Th e exactdept hfo rth edivisio ni sdependin go nloca lconditions .I nho t weather inth etropics ,fo rinstance ,a ver yshallo wwate r (1.5m )ca n dryou ttotally ,wherea s ina temperat eregion ,a neve nshallowe rpoo l willremai nwate rthroughou tth eyear . Thedivisio nbetwee ndee pan dshallo wwater sdepend so na fe wphysica l parameters,relate dt oligh tan dtemperature .Th eexistenc eo fa thermocline isver yimportant ,a si sth emaximu mdept hwher eplant swil l grow.A dept ho f1 0m ha sbee narbitraril y selected,bu ti tcoul db ea s littlea s6 m an da smuc ha s1 4m unde rcertai nconditions . Table6 (pag e51 )present ssom echaracteristic s ofth e3 type so f stagnantwaters .On emigh texpec ttha tspecie sdiversit ywoul db ehighes t inth eth edee psystem ,becaus eth elittora lzon erepresent s thesam e conditionsa sthos ei nshallo wan dver yshallo wwaters .Thi si sno ttrue . Theshallo wsystem shav eth ehighes tdiversit yan dthe yprobabl y representth estandar dstagnan twater .Dee pan dver yshallo wwater s (wetlands)woul db ebiologicall y derivedfro mthem .Exception sar eth e veryol dlake slik eBaikal ,Victoria ,Biw aetc . Figure1 summarize s themai nconclusion so fth ereport .Consideration s forth eimportan tdivision sar ederive dfro ma.o .som efigure san dtable s asindicate d inth efigure . -12-

< l/l oc o. E E r >- Q. «c^ V c ' 10 E Eà L. •OJ a

l/l T_ oc "I a < z z1 u I < l/l cc LU H f—. S< ta LU V Z A _l m

w m c D g 1/1 c uS 0) E X 1/1 ï uLUj /i a: ^LL Hïl^J

O

1/1 a) a: O> oc (4-1 o ce ca )-i a> 1 •p c — cd Ç ,_ E* C .o 1 4-1 E LU LU O C o V) SU u * et) ™ IN U •r-l I .C ~- 4-1 1 i <1. •H î CO CO 1 cd V w C 0c1 1/1 c V 'C L. a a: u il o o j| (0 •o UJ a; £ o eu L«. cJ » £ < ^ o z z z L- m 1 s- 0) c 1 1-1 l/l à oc s rc.2 à E ca < E LU oc 11; s 01 1- 5 ifl 3 U i u ai*- ; tu i > E cc 1 00 u •H

CoL S LU H •13-

2 CLIMATEAN DHYDROLOG Y

2.1 Climatologicalregion s

Theavailabilit y ofwate r inan yregio ni sdependen to na numbe ro f factorssuc has :precipitation ,evaporation ,run-off ,groun dwate r reservoir,and/o rsoi lmoisture .I ti sobviou stha ti nth eSahar a conditionsar edifferen tfro mthos ei nth eAmazo nbasi nan ddifferen t againfro mthos ei nth eAntarctic .Th eexistenc eo fclimatologica l regionswit hrespec tt othei rpositio nrelativ et oth epole so rth e equatorha sbee nestablished ,an dha srecentl ybee ndescribe d interm so f ecologicalsystem scalle dzonobiome san dzonoecotone s (Walter& Breckl e 1983). (Fig. 2). Sucha classificatio no fregions ,base dlargel yo nth efat eo fwater , isa nadequat etoo lfo rth eclassificatio no fwater so na worldwid e basis.Th efollowin gzone so rregion sar edescribe d inthi scontext . Exampleso fmajo rprecipitatio nregime sar egive ni nFig .3 .

I. Equatorialzone .Hig hannua lrainfal l (>10 0m ma month )wit htw o equinoxialmaxima .N oannua lseason sbase do ntemperatur edifferences .

II. Tropicalzone .Heav yrai ni nsummer ,extrem edrough ti nwinter .Annua l rainfalltend st obecom elowe rth efurthe rfro mth eequator .Marke dseasona l temperaturedifference .I nthi szon esevera ltype so fsurfac ewater sca nb e found.River s intropica ldeciduou sfores to ri nsavanna hhav edifferen t characteristics.Th eprecipitation-evaporatio n ratioi sver yimportan tan d canchang emarkedl ywithi nth ezone .

III. Subtropicaldeser tzone .Annua lrainfal l< 20 0mm ,an di ndesert s < 50mm .Surfac ewater s inthi szon ear eseldo mperennial ,an dgenerall y short-lived.Stagnan twater sten dt ob esal tplain sdurin gmos to fth eyear .

IV. Mediterraneanclimat ezone .Winte rrai nan dsumme rdrought .Generall y moreevaporatio ntha nprecipitation .Intermitten trivers ,an dfe wo rn o stagnantwaters .

V. Warmtemperat ezone .Maximu mrainfal li nsummer .A sth esummer sar ever y wetan dth ewinter smild ,thi szon ei sric hi nsurfac ewaters . •14-

VI. Typicaltemperat ezone .Short ,col dwinter san dwarm/ho tsummers . Sufficientmoisture ,especiall ynea rth eoceans .Ric hi nsurfac ewaters .

Fig.2 .Th edistributio no fzonobiome sI-IX ,showin gth ezono-ecotone s betweenthe m (Walter& Breckl e 1983). •15-

VII. Arid-temperatezone .Lo wrainfall ,dr ysumme ro rdrough tthroughou t theyear .Condition sar eno tver yfavourabl efo rsurfac ewaters .

VIII. Borealzone .Cold-temperat ewit hcoo lsummer san dlon gwinters .Zon e withman ylake san drivers .

IX. Arcticzone .We tcoo lsummers ,lon gcol dwinters .Precipitatio ni s predominantly snow.Lake san driver sar efrequentl y frozenfo rlon gperiod s oftime .

in. in in. cm. cm-20-- 10' ® -25 "^ CD -C5010' © -25

-20 16' 40 JL •20

6- -15 12- 30 -15

4- 10 8- -20 4- •10

LU •5 4-ii- 10 2- -5 STANLEYVILLE O MALI BELLA COOLA z (67-1 IN.) (70-5 IN.) (51-9 IN.) O 0- •0 0- JFMAMJJASOND JFMAMr-r! "7".JTJ JASONJD 'j'FMAM J JASOND' cm. in -10 4-1 •10 4 -^VALETTA J1" ©ARCTIC BAY

•5 2- (4-9 IN.) -5

O O JFMAMJJASOND J FMAMJJASOND J FMAMJ JASOND

Fig.3 .Example so fth emajo rtype so fprecipitatio nregime s (Stippled portionsindicat esnowfall) .A -Equatorial;B -Tropical;C -Temperat e Oceanic;D -Mediterranean;E -Temperat eContinental ;F -Arcti c (Chorley 1969). •16-

Fig. 4. Precipitation in four seasons (Jackson 1977) •17-

Iti sobviou stha tprecipitatio nplay sa nimportan trole ,no tonl y quantitatively,bu tals owit hrespec tt ofrequency .Fig .4 show sseasona l variations inprecipitation .Th erelatio nt oFig .2 i sclear .

A fewcomment sar ei norder . 1. There isno ta ver yclea rzonatio no fclimati czone saccordin gt o latitude.Thi si sdu et oth eshap ean dmagnitud eo fth econtinent s andth epresenc eo fmountains .Moreover ,th edistributio no flan d massesi nth enorther nan dsouther nhemisphere si sunequa l (Fig.5) .

Fig. 5.Th eunequa ldistributio no flandmasse sillustrate db ya 'summarizedcontinent '(War d 1985).

2. Therei sa roug hcorrelatio nbetwee nlatitud ean dth edistributio no f humidan dari dzone s (Fig. 6).

P>E

P

Fig. 6.Th elocatio no fhumi dan dari dzone si nglacia ltime san dth e presentda y (Chorley 1969).

3. Precipitationalon ei sles simportan tt oth epresenc eo fsurfac e waterstha nresultin gvariable s sucha sannua lrun-of f (Fig.7) . •18-

160* UÖ* lao* ÏO? B? 60* 40* 2? O1 20* 4? 60" ÏO* ÎÔO* 120* ïiÔ" Î6CT 110* >100cm 60-100 40-60 V77A 20-40 lyVy^ 5-20 liiüüüj< 5 c m

Fig. 7.Annua lrun-of fi ncm .Informatio ni sno tavailabl e forarea s leftblan k (Chorley 1969).

4. Iti sremarkabl e thatsom eo fth eworld' sgreates tdrainag ebasin s occupylarg epart so fari dzone s (Fig.8) .Th eplac eo fth esource s andth eamoun to fwate rfro mthes esource s isobviousl yo fmor e importance.

Iti st okno wwhethe rprecipitatio nca nb epredicte d fora specifi c season.Tw ostation s inEas tAfric a (Fig.9 )demonstrat e this.Th e stationsar eno tver yfa rfro meac hothe ri nzone sI-I Ian dI-III , butth eprecipitatio npattern sar equit edifferent . -19-

Fig.8 .World' slarges tdrainag ebasin s (1)an dmagnitud eo fsoli dloa d (2)(Chorle y 1969).

NAIROBI

Fig.9 .Rain ypentade s inNairob ian dGul u (Jackson1977 ) •20-

2.2 Hydrologlcal systems/regimes

All surface waters depend onprocesse s such as precipitation, evaporation, and transport ofwate r through air or soil. In Chapter 1 global conditions inclimatologica l zoneswer e treated; herew e shall go intomatter s such as the quantity ofwate r in lakes and rivers, hydraulics, processes indrainag e basins and factors that govern living conditions for aquatic organisms. Fig. 10describe s thebasi c hydrological cycle.Man y variables canb e measured, providing good opportunities formodellin g and predicting (Fig. 11).

Trans port of water

vapour and clouds

Precipitation

- F ^ IF Evaporation froi

TrTranspiratioa n Ioil and found Evaporation of A k T surface intercepted water |

Precipitation

on oceans Evaporation from Transpiration r lakes and rivers Evaporation from ocean -r-iJ f 4/- Deep V SSo,\ moisture I through flow leepage Seepage! movement

Fig. 10.Th ehydrologica l cycle (Jackson 1977) •21-

Fig.11 .Th ecomponent so fth ebasi nhydrologica lcycle . A.Bloc kdiagra mo fth ebasin . B.Schemati c inter-relationshipso fth ebasi ncomponent s (Chorley1969 ) -22-

Tf> [p [p fp fp JP fp [P fp [P

KCOAOO N. Key \tWMf*A»WMATIOM/ ^ input \ I ^ «UMTlTtM \

MTtRCCmON , ( output j •^ -^

•^ J= ?-* storage

/ subsystem \ ^d> SOS. MOItTUftC ^nstructio^> I

( MTttriow ] * 7 MI»»T»TCM ^^ £->

tMOVNO «HTH M BAUFLOW A »TMASC O

SUMYSTCM

'MEF (TOMA0I Q'

f KMwOUMMtL A l owrruow b J

««WCT» \ ^ ADJUST!» ^f »AIM CMUMIl A D <

Fig.1 1(cont'd) .Th ecomponent so fth ebasi nhydrologica lcycle . C.Cross-sectio no fth ebasin . D.Flo wdiagra mo fth ebasi ncomponents . •23-

Before going into detail ofwatershe d areas some data onwate r amounts in the globalhydrologica l cyclewil lb e presented. Fig. 12 gives the worldwide distribution ofwate r in the different phases over the hydrological cycle. ATMOSPHERE 0-035% OF ALL FRESH WATER

THE HYDROLOGICAL CYCLE £> -ç^f HORIZ. ADVECTION OF 100 UNITS PRECIPITATION | WATER VAPOUR - MEAN I, EVAPORATION TRANSPIRATION ANN. GLOBAL »I«.. PRECIPITATION PRECIP. \ ' FROM i OCEAN FR|°M 85-7 CM. 0N N0 I OCEAOCEANN LANDS V» 133-6"). v A—

RIVERS 0-03% LAKES ICE SHEETS

0-3% ANO GLACIERS SOIL MOISTURE 0-06% OCEANS 75% OF ALL

97% OF ALL WATER GROUND WATER (*2500') 11% FRESH WATER

GROUND WATER ( 2500'- 12500') 14%

OCEANS CONTINENTS

( Ptrconfoget rotor to froth wotor total )

Fig. 12.Th e globalhydrologica l cycle andwate r storage (Chorley 1969).

InAppendi xV I allmajo r rivers, lakes,an d reservoirs are listed (Unesco 1978). Such a survey may seem unnecessary in this context,bu t experience has taught that it isver y difficult to find data like these ifneeded . Moreover the survey gives abette r ideawher e what quantities ofwate r inwhic h phase are tob e found, although we must never forget that during theyea r considerable changes in thephase s can occur (Fig. 13).

Fig. 13.Th e four components of totalmoistur e at Sapporo,Japa n (43 N) (Chorley 1969). •24-

3 CLASSIFICATION OF RUNNING WATERS

Fig. 14give s ahierarchica l scheme from continental to microhabitat level for running waters. The scheme isbase d on the factors which influence the distribution ofmacro-invertebrate s in streams. It is useful for the classification of runningwaters .

Climate and rainfall slope of terrain • composition of the soil precipitation Geomorphology (a.o.J) (surplus) 200-4C0 mn/year ' ' •I - ' ' Characteristics structure of regime properties storage capacity discharge area of the discharge (Faber 1972) sources, seepage (Horton 1945) permanence of stream area (de Vries 1977) |_ V i ' Characteristics stream dimensions 4 water chemistry shore vegetation (o.a. R) of the streams —autumn shed leaves ' r stream velocity • bottom type Jj —temperatur e 1 1 * •n— —• aquat. vegetation +• «•n- I hum •

Fig. 14,Factor s controlling the conditions for aquatic fauna in running waters (translated fromHigle r 1981).

Climatological and geomorphological factors were discussed briefly in the preceding pages. Some data onprecipitatio n (Figs. 15 and 16)sho w that the amount ofprecipitatio n can differ from year toyear , aswel l as throughout theyear , causing different discharges, current velocities etc. -25-

Fig. 15.Discharg e of theHierde n Stream in 1966 and 1970 (Higler & Repko 1981).

i l 1 l r- 1 -1 1 1 • 1 1 T 200 -

100 V

0

100 -

TRINIDAQ I574mm VIZAGPATAM 989mm 200

i i i i 1 1

BOGOTA 1009mm

j i i i i_ 1871 - 90 1881 - 90 189) - 00 fl I9H - 20 1921 - 30 1911 • 40 1881 • 90 1891 -0 0 1901 -10 I9N •2 0 I9Î) •Î 0 I9ÎI• 4 0194 1 - 50 -i 1 1 rf \i 1 1— 1 1 1 1 1 1

Fig. 16.Rainfal l fluctuations 1861-1940 (Jackson 1977). •26-

Characteristics ofth edischarg earea ,a sa resul to fth efirs tleve l characteristics climatologyan dgeomorphology ,ar eth eshap ean d dimensionso fth edischarg eare a (Fig. 17), thenumbe ro forder si n relationt oth estrea mlengt h (Fig.18) ,th erang eo fdrainag edensit y (Fig.19 )an daccordingl y thedrainag epatter n (Fig.20) .

MOST DISTANT POINT ON PERIMETER FIRST-ORDER BASIN

HALF DRAINAGE BASIN AREA

O

Fig.17 .Som ecommo ndrainag ebasi nlengt hparameter s (Chorley1969 )

"-.6 3 l_l O) o c 0) £' a(>0 i— in c3 (0 0) E J L ''•' I I L. o2 Order,u

Fig.18 .Regressio no flogarith mo fmea nstrea msegmen tlengt hversu s orderfo rfou rdrainag ebasin s inth eAppalachia nPlatea u (Chorley1969 ) •27-

&3 2^A- * 'T* 1 \"\ lt{y^~-t-^ J s

'S![{/ jjVfl w. / y V-T? \v ( ic° r^ftï jc ° /l (D^Q-^JI U )W>>S^-V !v/- w\

Fig. 19.Fou r areas,eac h of 1 square mile, illustrating the natural range of drainage density (Chorley 1969).

Top left:Lo w drainage density: Driftwood Quad., Penn. Top right:Mediu m drainage density: Nashville Quad., Ind. Bottom left:Hig h drainage density: Little Tujungo Quad., Cal. Bottom right:Ver y high drainage density: Cuny Table West Quad., S.Dak. •28-

Fig. 20.Fou rbasi c drainage patterns, each occurring at awid e range of scales (Chorley 1969).

A relationship between stream length and stream order canb e indicated (Fig. 18)an d a relationship also exists between stream channel slope and stream order (Fig. 21).A combination of these cases is illustrated in Fig.22 .

2000

^\j 1000 ^N ^s •üij.^ ->.i- \ -n ^ 'eT1 N.

'*•* » 3 100 b. l a. £•*>• o y *%. "o* z < HI a: z 2 io 12 3 4 5 STREAM ORDER (">)

Fig. 21.Regression s ofmea n channel slopeversu s order for streams in theUnak aMountains ,Tenn . and N. Car.,an d Dartmoor, England (Chorley 1969). •29-

y Order 1 -\ 0.277 202 Composite Profile '**T\. 2 1 \ 0.122 »4.8 \

1 1778 \ 3 O •^" 0.050 O 'ff = 224 4 L Q 0126 L = 5224 — H>I35 - L = 10,710

i 5,000 10,000 15,000 Horizontol dist. feet

Fig.22 .Plo to fth elongitudina lprofil eo fSal tRun ,Penn. ,showin gth e difference inmea nslop eo feac ho fth efou rsegment so fdifferin gorde r (Chorley 1969).

Thecharacterizatio no fth estream sthemselve s (lowerpar to fFig .14 ) involvesa multitud eo ffactors .Penna k (1971)summarize sth e ecologicallymos t importantones : 1. widtho fth estrea m (6categories ) 2. flowregim e (2categories ) 3. currentspee d (5categories ) 4. substrate (6categories ) 5. summertemperatur e (5categories ) 6. winter temperature (4categories ) 7. turbidity (5categories ) 8. totaldissolve d inorganicmatte r (4categories ) 9. totaldissolve dorgani cmatte r (4categories ) 10.wate rhardnes s (4categories ) 11.dissolve doxyge n (5categories ) 12.roote daquati cplant s (4categories ) 13.streamsid evegetatio n (4categories )

Theoretically 184,320,000combination so fthes efactor sar epossibl ean d thisobviousl ycanno tb econsidere da sa simpl estrea mclassification .A numbero fth efactor sfro mPennak' slis tar einterrelate dan dther ei sa definitehierarch y inthei rimportance .I nFig .1 4a numbe ro fth emai n factorso rcombination so ffactor shav ebee ndepicte d ina certai n relationship inorde rt odescrib eth econdition s foraquati cfaun ai n •30- streams. A central position is takenb y the stream velocity and the Manning formula isuse d in its determination. It should be noted that the variables in this formula are derived from other characteristics in the scheme of Fig. 14,thu s indicating their mutual relationship. By rearranging the elements ofManning' s formula it ispossibl e to construct a diagram (Fig. 23) inwhic h running waters canb e characterized on thebasi s ofmeasurement s of current velocity, terrain slope, and dimensions (Higler &Mo l 1984).

.05 .1 .2 .5 1 2 m/s 10-K \ \-V^ arge rivers

3^ small rivers larg\ e\ lowlanV Vd large foothill streams streams ditches mountain streams

streams\\foothill streams

marshe seepage a v springs 0.01 ,—W *-V-1 0.01 0.1 1 10

Fig. 23.Simplifie d diagram of running water typesbase d on hydraulic factors as derived fromManning' s formula.

InAppendi x Ia n extensive description is given of themethod s used to construct the diagram and to apply it for specific stream reaches. The advantage of thismetho d is the simplicity with which apar t of a stream canb e characterized by measurements,whic h are of great practical use formanagemen t purposes. The diagram can alsob e used for a description ofpossibl e habitats fororganisms . Studies of running water have recognized a relationship between factors that change from source tomout h and organisms such as fish or macro-invertebrates. This concept isknow n as the zonation concept (Huet -31-

1949; lilies1961 ;lilie s& Botosanean u1963 )an dth emos tfrequentl y usedterm sfo rzone sar ekrenon ,rhitro nan dpotamo n (upper-,middle -an d lower course). Eachzon ei sassume dt ocontai na characteristi cfauna . In198 0a ne wconcep twa spublishe d (Vannotee tal . 1980),know na sth e RiverContinuu mConcep t (RCC).Her ea gradua lchang efro msourc et omout h (fromfirs torde rt ohighes torder )i sassumed ,i nwhic hon elink s fluvial,geomorphi cprocesses ,physica lstructure ,an dth ehydrauli c cyclet o"pattern so fcommunit y structurean dfunctio nan dorgani cmatte r loading,transport ,utilizatio nan dstorag ealon gth elengt ho fa river. " Bothconcept scontai nver yvaluabl e informationan dStatzne ran d Higler (1985,1986 )hav erecentl ycombine delement sfro mbot h (Fig.24) . Bothpublication shav ebee ninclude da sAppendice s IIIan dIV .The y suggesttha tphysica lcharacteristic so fflo w (streamhydraulics )ar eth e mostimportan tenvironmenta l factorsgovernin gth ezonatio no fstrea m benthoso na worldwid escale . Inbot hFigure s2 3an d2 4n oname so forganism shav ebee ngiven .I ti s impossiblet od os ofo rth ewhol eworl dbecaus eo fZoogeographi e differences.Th ereferenc esituatio nmus ttherefor eb efille di nfo ra givenarea .Th enex tste pi sa nanalysi so fth especifi cwate rbod yt ob e considered,an dwher ean dho wi tdeviate sfro mth ereference .Fo rthi sa hierarchyo fenvironmenta l factorsca nb eused ,no tunlik eth eschem eo f Fig.14 . Streamsca nflo wthroug hlakes ,interrruptin g thecontinuu mpatterns , andthi ssituatio ni smor ecommo ncurrentl ydu et oman-mad e lakes.Ther e aregrea tdifference s innutrien tconten twhe nglacie rstream sar e comparedwit hlowlan dstreams .Th ecompositio no fth ebotto mca n influenceth ep Han dth enutrien tcontent ,a swel la sth evegetatio ni n thedrainag ebasin . Someenvironmenta l factorsar es odominan ttha tn odoub texist sabou t theirimpact .I fa strea mdrie sou tdurin ga certai ntim eo fth eyear , thisinfluence s thebiocommunitie si nth estrea mradically .Man yspecie s areno tabl et osurviv edrought ,s oth ebiocommunit ywil lb e impoverished.Th eorganism s inglacie rriver smus tadap tt oa cold , nutrientpoo ran dturbi dwater ,havin g itshighes tdischarg e insummer . Here,too ,specie sdiversit y issmall . Ingenera lspecie sdiversit y islowe ri nsituation s thatdeviat efro m theso-calle dreferenc esituation .I ti sno tnecessar y toinvestigat e entirerive rsystem s inorde rt ob eabl et oevaluat eth esituatio na ta givenstation ,bu t iti snecessar y tokno who wt oplac eth evariable s -32- measureda ttha tstatio nint oth ehypothetica lreferenc estream . Theforegoin gconsideration s arebase do nnumerou spaper so nzonation , classification,an dth erelatio nbetwee nabioti can dbioti c characteristics inrunnin gwaters .Thes ereference shav ebee nliste di n AppendixI .Figure s2 3an d2 4summarize dth emos tuniversa l characteristics ofrunnin gwaters ,an dTabl e1 provide sdetail so nth e ecologicalcharacteristics .Th edat aoriginat efo rth egreates tpar tfro m research intemperat eregions .

AppendixV give sa classificatio no fEuropea nstreams ,mad e inth e frameworko fth eEuropea nConventio nfo rth eprotectio no finternationa l watercourse sagains tpollution .I tillustrate s thesequenc eo fth e processan dth eapplicatio no fth eaforementione d environmentalfactors . Moreover,biologica ldat ahav ebee nincluded . Thefirs tste p isth edivisio no fEurop e (minusEaster nEurope )int o fivehydrobiologica lregions ,whic har ea littl eles sdifferentiate dtha n thezonobiome so fFig .2 .Figur eV 1 give sth ema po fEurop ewit hth e regions.Th estream sar edivide d intothre emai ncategories ,accordin gt o thesequenc eo fstrea msyste mdevelopmen twit htemperatur e (generalleve l andannua lfluctuations )a sth eprincipa ldifferentiatin g factor.I n AppendixV ,strea mhydraulic swa sa mor eo rles shidde nse to fparameter s aboutwhic hw eha dmor elimite d informationtha nw ehav enow .Fo r practicalpurposes ,however ,th eclassificatio n isadequate . Itma yb edesireabl et oclassif yrunnin gwater saccordin gt opotentia l use,considerin gonl yphysica lan dchemica lparameters .A nexampl eo f sucha schem e isgive ni nTabl e2 . -33-

Deito

Rheocrene

Helocrene \ First transition in hydraulic stress

Limnocrene Second transition m hydraulic stress Estuary Large-scale discontinuities n hydraulic stress :" sai.mty x x x -* f y i

-indifferent species

Fig.24 .Proposa lfo ra genera lfaunisti czonatio npatter no fth ebentho s inpristin estream s (aerialvie wan dslope )wit h"standard "flo w characteristics.Sourc etypes : rheocrene -sourc edischarge sdirectl y intoa channe l helocrene -sourc edischarge s intoa marsh ypon d limnocrene -sourc edischarge sint oa pond . Notal lo fth ecomponent s shownher eca nb eo rmus tb epresen t ina stream.Th especie' sdistributio ni na runnin gwate rtha tstart swit ha helocrenean dend swit ha nestuar y isindicate d inou rexample .Specie s occurringi nth esprin g (A)an di nth ereac ho fhig hslop e (B)overla pa t thefirs ttransitio ni nhydrauli cstress .Specie so fgrou pB an dspecie s occurringi nth estrea mafte ri tha sentere dth efloo dplai n (C)overla p atth esecon dtransitio ni nhydrauli cstress ,wherea spristin estream s arefrequentl ybraided .Pattern s inth elarg erive rar erathe r speculativedu et ospars e information.I nth ebrackis hzone ,a thir d overlap isfoun dbetwee nspecie so fgrou pC an dth emarin efaun a (D).I n allthre ezone so fspecie soverlap ,fe wspecie soccu rwhic har esolel y foundi nthes ereache so ftransitio n (Tl,T2 ,T3) .Specie swhic hd ono t characterizea zon ear eomitted . (Statzner& Higle r 1986). -34-

Table1 .Ecologica lcharacteristic s alongth ecours eo frunningwater si n CentralEurope .Thi si sa nexampl eo fth estatemen t thatgeneralize d concepto frunnin gwater sha st ob efille di naccordin gt oregiona l conditions

SOURCEglacie r t<7C :hig hturbidit y insummer :n ocanopy :ver yfe w species, hotsprin g t>30C :hig hturbidit yb ysulphu roften :n ocanopy :ver yfe w species, lake tdepend so forigin ,s odoe sturbidity :numbe ro fspecie s andorganism s inaccordanc ewit htrophi cstatu san dorigin , limnocrene groundwatero flo wt follow sannua lt :clea rwater :i n naturalcondition scanopy :lenti corganisms , helocrene aslimnocrene ,bu tt tend st ob elowe ran dwit hloti e organisms. rheocrene t5-1 2 :clea rwater :i nnatura lcondition sunde rtimberlin e canopy:loti ean dspecialize dorganisms , seepageare agroundwate ro flo wt follow sannua lt wit hsmalle r amplitude:clea rwater :generall ycanopy :specie s compositioncomparabl e tohelocrene ,bu tmor eadapte dt o semi-permanentconditions .Th elas tfou rtype sdependen to f slopeo fterrain .

UPPER temperaturean dturbidit ydepen do fsource . COURSEP/R< 1 (productioni sgenerall ylowe rtha nrespiration) :allochtonou s productionfro mth eban kvegetatio ni sher eno tconsidered .Sometime s thesecourse sca nb etemporary . Order1-3 :dimension s small (standardtype )o rlarg e (lakeoutle t etc.). sloperelate dt osourc ei sa nimportan tecologica lfactor . Canopyresult s inallochtonou sorgani cmatte ran dshredder sdominate . Ifther ei sn ocanop ygrazer san dpredator sdominat ea thig hcurren t velocities,bu tno nfilterin gcollectors ,grazer san dpredator sa tlo w ones.Fis hspecie slik etrou tan dbullhead .

MIDDLEextrem etemperature so fglacie rstream san dho tspring sten dt o COURSEstabilize ,th eother shav elarge ramplitude stha nuppe rcourses . P/R-lo rP/ R> 1 . Order4-7 :dimension san dslop ear eimportan tecologica lfactors . Highnumber so fspecie s (in"modern "stream shighes tnumbers) . Primaryproducer sar ealga eo nstone san dbeginnin gproductio no f plankton.Invertebrate sar efilte rfeeders ,collectors ,grazer san d predators. Fishar egrayling/barbe l (intemperat e streams). Highernutrien tconten ttha ni nuppe rcours eb y inputfro mth eupstrea m parto fth edrainag earea .

LOWER dailytemperature shav ebee nstabilized ,annua lt follow sai rt . COURSEP/ R> 1 o r (generallyb ydisturbances )P/ R< 1.Unde rnatura lcondition s manystagnan tan dperiodicall yoverflow nwater s inth ewinter-be dca na d tohig hproduction .Dept hi sth emos timportan tdimensio nvariable . Sedimentationo fsan dan dsil ti nth elas tstretch . Generallyhig hnumber so fspecie s innatura lcondition sb ybackwaters , poolsetc .i nmoder nstream spredominantl y collectors,unde rnatura l conditionsal ltype so ffunctiona lgroup saccordi gt oloca lvariation . Highnutrien tcontent :plankto nan daquati cmacrophytes .Berbel/brea mi n temperatestreams . •35-

Table 2. Classification of running waters according toHartmann , L. & R. Jourdan (1987).

Class (A) (E) (I) (0) (U)

BFQ (m3/s) >100 0 500-1000 100-500 10-100 <1 0 Factor <2 2- 4 4 -8 8- 1 6 >1 6

PH -7 >6. 5 >6. 0 >5. 0 <5. 0 <7. 5 <8. 0 <9. 0 >9. 0

T(°C ) <5 5-10 10-15 15-20 >2 0 Factor <2 2- 4 4 -8 8- 1 6 >1 6

Electric Conductivity <25 0 250-750 750-2250 2250-4000 >400 0 (uS/cm)

Oxygen

(mg0 2/l) >8 6-8 4-6 2-4 <2

DOC 1.2-2.1 1.6-3.0 2.2-4.0 3.4-7.2 8.7-10.5 (mgC/l ) (1.6) (2.2) (3.0) (4.5) (9.4)

BOD 0.9-1.7 1.5-3.3 2.2-6.8 4.1-9.5 4.9-17.0 (mg^/l) (1.2) (2.3) (3.8) (6.6) (11.2)

PO- P 0 .03-0.09 0.10-0.48 0.15-0.66 0.47-1.24 1.1-3.0 (mg/1) (0.06) (0.21) (0.30) (0.78) (2.48)

NH- N 0 .06-0.21 0.09-0.29 0.21-0.94 0.55-4.7 2.4-28.0 mg/1 (0.10) (0.15) (0.45) (2.2) (19.4)

D0C1 (mgCl/1 ) <0.0 1 0.01-0.02 0.02-0.04 0.04-0.08 > 0.1

E.coli , (nr/100cm ) <1 0 100 100-500 500-1000 > 1000

P/R ~ 1 >1 > 10 > 100 » 100 <1 < 1/10 < 1/100 « 1/100 •36-

Explanationan dexample so fTabl e2

Baseflo w (BFQ)i sa paramete ruse di nwate rmanagement .Facto r (ratio ofth eminima lo rmaxima lvalu et oth eaverag evalue )describe sth e potentialfo rus eo na nannua lbasis . Examples Class (À) Rine,Danub e (E) Elbe,Wese r (I) Main,Necka r pHi sa measur eo fth ehydroge nion ,whic hinfluence sbiologica lan d chemicalprocesses .Fo rinstance ,i fth epotentia lwate rus e isfo rfis h habitat:

Class (A)/ (E) ideal :p H 7-8 (U) lethal :p H< 4. 5 or> 10. 8(carp ) :p H< 4. 5 or> 9. 4 (rainbowtrout )

Temperatureinfluence sth erat eo fchemica lan dbiologica lprocesses . Extremevalue sar efoun di narcti can dtropica lwaters ,ho tspring san d heatedcoolin gwater .

ElectricConductivit y isals ouse da sa measur eo fsalination .A ssuc h iti so fimportanc efo ragricultura lpurpose s (Achtnich 1980).

Comparable ElectricCond . Saltconten t (uS/cm) (mg/1) Classes (A) <25 0 0- 20 0 Foral lplan tspecie s (drinkingwate rtil l+ 35 0m gsalt/1 )

(E) Slightlybrackis h 250- 750 200- 500 Notfo rextremel ysalt-sensitiv eplant s

(I) Stronglybrackis h 750- 225 0 500- 150 0 Forplant stha tca nendur esal to nsoil s withgoo dpermeability .Preferabl ywit h additionalsalt-swa bou t

(0) Verystrongl ybrackis h 2250- 400 0 1500 -250 0 Onlyfo rplant swit ha hig hsalt-toleranc e onwel ldraine dsoils .Reinforce dsalt-swa b outi snecessar y

(U) Extremelybrackis h >400 0(-6000 ) >250 0 Onlyfo rplant swit ha ver yhig hsalt - toleranceo nver ywel ldraine dsoi lan d perfectsalt-swa bou t •37-

Oxygen, DOC,BOD s, PO,,NH, . These parameters for the assessment of water quality have acertai n interrelationship with respect to oxygen management and the load of organic substances. The classes (A) - (U)represent different water quality classes; the figures inbracket s are averages (Source:Ministeriu m für Ernährung, Landwirtschaft,Umwel t und ForstenBaden-Württemberg . Gütezustand der Gewässer inBaden-Württember g 4, 1985/86).

Class (A) Very good oxygen supply, low amount of organic load (I) Good oxygen supply, reasonable amount of organic load (E) Critical oxygen supply and organic load (0) Bad oxygen supply andhig h organic load (U) Very bad oxygen supply andver y high organic load •38-

4 CLASSIFICATION OF STAGNANT WATERS

As long as limnologists have been active, theyhav e made classifications of stagnantwaters . Early workwa s restricted to deep, freshwater lakes in Europe.A t a later stage,America n andAfrica n lakeswer e studied and occasionally shallowwater s andbrackis h or salinewater s aswell . As aresult , literature on the classification of stagnantwater s isbase d predominantly on studies of European andAmerica n lakes.Onl y recently has more attention been paid to shallowwaters , intermittent waters,arcti c and tropic waters,an d saline waters. The approach of the early Europeanworker s was focused on structural characteristics in lakes,whil e Americans developed methods to analyse the functional characteristics. Both approaches aim at a classification on the basis of trophic status.A s biotic parameters result from ahierarchica l set of factors such as geographical region, climate,physica l and chemical factors etc. (ina wa y comparable to Fig. 14),classification s on thebasi s of abiotic characteristics will be treated first.

4.1 Classification according to origin A well known classification,base d on the origin of lakes,wa s made by Hutchinson (1957). He states: "It ismor e convenient to classify according to the general nature of the processes responsible forbuilding , excavation, and damming. Since these processes have acted locally, the resulting classification tends tob e regional, certain types ofproces s occurring incertai n areas of the earth's surface." In theprecedin g chapter on running waters thematte r of regionality was also discussed. Itwa s shown that it ispossibl e to find general characteristics with regional applicability. The sameprocedur e willb e followed with stagnantwaters .Hutchinso n discerns 76 types of lakes,groupe d into the following classes: Tectonic basins (9 types) Lakes associated with volcanic activity (10 types) Lakes formedb y landslides (3 types) Lakes formedb y glacial activity (20type s in4 subclasses) Solution lakes (5 types) Lakes due to fluviatile actions (12 types in 3 subclasses) Lakebasin s formedb ywin d (4 types) Lakes associated with shorelines (5 types) Lakes formed by organic accumulation (3 types) •39-

Lakes formedb y the complexbehaviou r ofhig h organisms (3 types) Lakes produced by meteorite impact (2 types) In this classification deep and shallow lakes are treated together within one class or even one type.Fo rpractica l purposes it is often important tokno who w deep thewate r is.Al lbiologica l processes inwate r depend on the input of radiationvi a the chain ofprimar y producers, consumers, and decomposers.Th e primary production is restricted to theuppe r layers of the lake,wher e sufficient energy from sunlight canpenetrate . Moreover, temperature conditions indee p lakes show certain patterns (4.3) that influence physical andbiologica l properties inway s that are quite different from the situation in shallowwaters .Th e origin of lakes can alsob e important for other factors of importance such as chemical composition,bu t generally it isno t sufficient as a sole factor in the classification process.

4.2 Classification according to morphometry Hutchinson (1957)give s themos t importantmorphometri c parameters describing a lake.Th ebes t representation is abathymétri ema p (Fig. 25), because it gives details about the distribution of shallowareas , about the form (often an indication of the origin)an d slope in all parts of the lake.

LAKEMAARSSEVEE NI

Fig. 25.Bathymétri ema p ofLak eMaarssevee n I (Ringelberg 1981)

Morphometric parameters are: Maximum depth (Z ).I t canvar y in timewit hvariation s inwate r level m Mean depth (z). Thevolum e of a lake divided by its area (V/A) -40-

Volume (V).I ti scalculate db ya nintegratio nove rth eare aa teac h depth. Area (A). Determinedb yplanimetry . Lengtho fth eshorelin e(L.) . Developmento fth eshorelin e (D) .Rati oo fth elengt ho fth eshorelin e toth elengt ho fth ecircumferenc eo fa circl eo fare aequa lt otha to f thelake .I ti sa measur eo fth epotentia leffec to flittora lprocesse s onth elake ,are abein gconstant . L

DL- 2V7T Ä Ratioz: Z m

Therear eothe rparameters ,bu tthes ear eth emos tused .Althoug hthe y areexcellen ttool sfo rdescribin ga lak e (andpreferabl ya dee p lake), theyar egenerall yno tuse di nclassification . InTh eNetherland sth efollowin gclassificatio nscheme ,base do n morphometric characteristics,i sused . A Flowingan drunnin gwater s

sources brooklets,rivulet s streamsan driver-basin s

B Stagnantwaters ,originate dprincipall yb yfunctiona lmorphometr y

ditches,trenche s canals urbanwater s intown san dvillage s drinkingpool s man-madelakes ,impoundment s

C Stagnantwaters ,no tprincipall yoriginate db yfunctiona lmorphometr y

moorlandlakes ,mires ,seepag elake s coastaldun elake s sand/gravel/peat-pits,quarrie s alpinelake s lowlandlakes ,meres ,broad s

D Brackishwater s

brackishcreek s tidalwater s

Althoughth ecategorie sar eno tconsisten ti nal lrespects ,i ti s nonethelessusefu li npractice .Th eclassificatio ni sa dichotoma lone , -41-

merelyo nth ebasi so fmorphometry .Th enumbe ro fpossibl ecombination s isver yhigh ,whic hmoreove rpresent sa proble mo ffunctionalit ywhe n watersar econsidere da secosystems .Fo rinstance ,th ebiocommunit yi na ditchwit hoccasiona lflo wresemble sth ebiocommunit y ofa slo wrunning , canalizedstream ,bu tbot htype sar etreate dtotall yseparately ;th e formeri nth ecategor yo fstagnant ,man-made ,lon gan dshallo wwaters , thelatte ri nth ecategor yo flowlan dstreams .Thi si sonl yon eexampl e ofpossibl eproblem swit hclassification sbase do na singl efacto rtha t isrigidl yapplied .

4.3 Classificationaccordin g totherma lstratificatio n Sinceth een do fth elas tcentur ymeasurement s indee plake shav eshow n theexistenc eo fdifferen tlayer so fwate rwit hrespec tt otemperature . Intemperat eregion sth ewate ri na lak ei nearl ysprin gi sabou t4° Ca t alldepths .Unde rth einfluenc eo fradiatio nth euppe rwate rlayer sar e heatedan di ntheor ya nexponentia ltemperatur ecurv ei sformed .I n practicehowever ,tw ofactor s interfere:th euppe rwate rlaye ri scoole d byevaporation ,causin gconvectio ncurrents ;win dmixin gcause sth e downwardtranspor to fheat .A ver ycharacteristi c temperaturecurv e results (Fig.26 )indicatin ga nuppe rlaye r (epilimnion),a lowe rlaye r (hypolimnion)an da relativel ythi nlaye ri nbetwee n (thermoclineo r metalimnion).

Fig.26 .Temperatur ecurv efo rApri l3 0(I )an dmea ntemperatur ecurve s forJun e1-1 5 (II)an dAugus t3-1 7 (III),1936 ,Linsle yPond , Connecticut (Hutchinson1957 ) -plac eo fthermoclin e -42-

Inautum nth erevers eproces s isobserved ,whe nth euppe rlayer sar e cooledan dth ewate r ismixe dagain ,resultin g ina homogeneou s temperaturecondition .Lake swit htw ocirculation sa yea rar ecalle d dimictic. Therear econdition swher ecirculatio noccur sonl yonc ea yea ro rno t atal l (monomictican damictic) .The yar eusuall yrelate dt ogeographica l circumstances,bu tno talway s (Fig.27) .Fo rth eclassica lstudie san da morecomplet ediscussio nw erefe rt oHutchinso n (1957). Hutchinsonan d Löffler (1956)devise da lak eclassificatio nbase do nmixin gpatterns , whichwa srevise db yLewi s (1983).Tw ofigure sfro mLewis 'publicatio n (Fig.2 8an d29 )hav ebee nreproduced ,an dhi sdefinition so fth etype s areals ogiven .

0°C 4 K> 20 30 n i i M c/

E

50- / \

100-

20 'T^

Fig.27 .Temperatur ecurve sa tth eheigh to fsumme rstratification .Uppe r panel:F ,Flakevatn ,Norway ,a subpola rdimicti clake :C ,Lak eCayuga , NewYork ,a firs tclas stemperat edimicti c lake:I ,Ikedako ,Japan ,a warmmonomicti c (subtropical)lake :E ,Lak eEdward ,Uganda ,a noligo - micticlak e (ormor eo rles smeromictic) .Lowe rpanel :Linsle yPond ,an d Q,Lak eQuassapaug ,shallowe rdimicti c lakeso fth esecon dclass ,a t aboutth esam elatitud ea sLak eCayuga ;not eth eidentica lslop ei nth e metalimnioni nspit eo fth egreate rarea ,an dth emor edefinit eepilim - nioni nLak eQuassapau g incontras tt oLinsle yPon t (Hutchinson 1957). -43-

The Classification of Lewis ispurel y dichotomic and selfexplanatory (Fig.28) .

yes V\ Only one mixing per yr ? Sometimes ice~£ree

yes yes

Warm Amictic Clonoraictic Mixing daily ? Warms above 4°C

Discontinuous Continuus Warm Polymictic Warm Polymictic u_._ ..u .. .. ruijrwttic More than twomixing s per yr ?

no / \ yes

Dimictic Mixing daily ?

yes

Discontinuous Continuous Cold Polymictic Cold Polymictic

Fig. 28.Classificatio n of lakesbase d onmixin g (Lewis 1983)

Lewis (1983)describe s the terms of Fig. 28 as follows: 1. Amictic: always ice-covered 2. ColdMonomictic : ice-coveredmos t of theyear , ice-free during the warm season,bu t notwarmin g above 4 C 3. Continuous Cold Polymictic: ice-coveredpar t of theyear , ice-free above 4 C during thewar m season, and stratified atmos t on a daily basis during thewar m season 4. Discontinuous Cold Polymictic: ice-coveredpar t of theyear , ice-free above 4 C and stratified during thewar m season for periods of several days toweeks ,bu twit h irregular interruptionb y mixing 5. Dimictic: ice-covered part of theyea r and stably stratified part of theyea r with mixing at the transitions between these two states 6. WarmMonomictic :n o seasonal icecover, stratified part of theyear , andmixin g once each year 7. Discontinuous Warm Polymictic: no seasonal icecover stratified for days orweek s at a time,bu t mixing more thanonc e a year -44-

8. ContinuousWar mPolymictic :n oseasona licecover ,stratifie da t mostfo ra fe whour sa ta time . Thedistributio no fth etype si srelate dt oth elatitud ean dth e elevation.Lewi scombine dthes etw ofactor sint oth eso-calle d "adjusted latitude"an dgive sa graphi crepresentatio no fth edistributio no flak e types (Fig.29) .

100

Amlctlc Cold Dlmlctlc Warm Monomictic Monomictic

£. 50

Discontinuous 25 km Discontinuous, fetch 25k n Cold Warm fetchPolymicti c Polymictic

Continuous Continuous 5 ta fetch Col(j Warm Polymictic Polymictic

1— 90 80 60 50 40 30 20 10

Adjusted Latitude

Fig.29 .Estimate ddistributio no fth eeigh tlak etype si nrelatio nt o latitude (adjustedfo relevation )an dwate rdept h (Lewis 1983). fetch- distanc eove rwhic hth ewin dha sblow n

Theexistenc eo fstratificatio nan dth edifferen tmode so fmixin glak e waterca ngreatl yinfluenc ebiologica lprocesses .I fth ewate r inth e hypolymnioni sdevoi do foxygen ,whic hi softe nth ecas ei nhypertrophi c orpollute dlakes ,oxyge ncondition si nth ewhol ewaterbod yca nb ever y badafte rth eautum nturnover .Thi sca nlea dt ofis hkills .Unti l recentlyth eexistenc eo fstratificatio nwa sthough tt ob erestricte dt o deeplake s (>6-1 0m )bu tMarshal l (1981)an dKerstin g(1983 )hav eals o shownstee ptemperatur egradient swit hdail yturnove ri nver yshallo wan d stagnantwaters ,suc ha spolde rditches .Mixin gthe nresult si n unexpected lowtemperature san dlo woxyge nconten ti nth ewaterbod y duringth emornin gan dearl yafternoon . -45-

4.4 Classificationaccordin g tochemica l composition Chemicalcompositio ni so fgrea timportanc ea sa classifyin g characteristic.Chemica lcompound sca nhav eman ysources .Fo rinstance , aciddepositio nno tonl yacidifie sth ewater ,bu tals oenriche s iti n manycases .Indirec teffect sar eth emobilizatio no fheav ymetal s (aluminium inparticular )an da whol echai no fevent s inth ebiocenosis . Anothersourc eo fchemica lcompound si sth ebotto mmaterial ,eithe ri n thegeologica lsense ,o ri nth eth efor mo fdeposite dmaterial .Th e latterca nb e internally formed,an dals oca nb eth eresul to ftranspor t fromth ecatchmen tare ab ystream so rtranspor tove rland .Th einpu to f inorganicand/o rorgani csubstance sgenerall yresult s ineutrophicatio n orpollution .Literatur eo nthi spollutio ni sextensiv ean dw ewil lno t dealwit hpollute dwater si nthi sreport . Asnutrient s inth ewate rinfluenc eprimar yproductio nan dfurthe r levelso fth efoo dchain ,som eothe rpropertie so fchemica lcompositio n canb elimitin gfo rman yorganisms ,suc htha tonl yspecialize dspecie s cansurvive .On esuc hcategor yo fwater s istha to faci dan dver yaci d waters (waterswit hver ylo wo rn oalkalinity),an danothe ri stha twit h veryhig hconcentration so fions ,generall y salto rbrackis hwaters .Thi s lattercategor yespeciall ydeserve sseparat etreatment ,becaus eth e salinitydominate sal lothe rcharacteristic so fth ewate rbodies .

Salinelake s 3 Thevolum eo fsalin elak ewate r (104,000k m )i salmos ta sgrea ta sth e 3 volumeo fth eworld' sfres hwater s (125,000k m) (Vallentyn e 1972).Thes e salinelake sar efrequentl yth eonl ysurfac ewater si nlarg edr yclimati c regions.Mos tsalin elake sar esmal lan dshallo wan dma yb eephemeral . Somear ever ylarg ean dpermanen t (GreatSal tLake ,USA ;Lak eUrmia , Turkey,Lak eBalkhash ,USSR) .Larg eshallo wplay alake s (LakeEyre , Australia)contai nwate ronl yonc ei na varyin gnumbe ro fyears .Ther e areals over ydee psalin elake ssuc ha sth eDea dSe a(Israel/Jordan) , IssykKu l (USSR). Theexistenc eo fsalin elake sdepend so nth efollowin gspecia l conditions: -evaporatio nexceed sprecipitation ; -endorhei cdrainag ebasins ; -availabilit yo fsolubl esalts . Potentialevaporatio nexceed sprecipitatio ni nhyperarid ,ari dan d semiaridregion so fth eworl dan dals osometime s insubhumi dregions . -46-

Arid regions are not good candidates for saline lakesbecaus e water tends tob e ephemeral on the surface as in theworld' s great deserts. Saline lakes occur on every continent and research on themha s been carried out since the latenineteent h century. Itwa s established fairly early that species diversity decreased rapidlywit h increasing salinity. Examination of osmo regulation and ionregulation ,mainl y by crustaceans and ,provide d evidence that some speciesmerel y conformed to environmental salinity above specific concentrations while others maintained fairly stable internal concentrations as the external medium became more saline.Th e latter group contains members such as Artemia which are successful inextremel y saline conditions. Primary production and, to a limited degree, secondary production ofman y of the salt lake ecosystems were studied. Part of the secondary production studies involved investigations of life cycles of little known saline organisms. Salt lakes cover thewhol e range ofproductivity ; not all of them are extremely productive as early studies seemed to indicate. Few studies have looked at all trophic levels. Saline lakes are also called athalassohaline, athalassic or poikilosaline lakes.Th e termbrackis h waters shouldb e restricted to waterswhic h are amixtur e of seawater and freshwater (also called mixohaline). There is aclea r difference between lakes incontac t with the sea and real inland saline lakes.Th e latter canb e "brackish" (nearly fresh tover y saline)an d generally the salt concentration shows greatvarability . The ionproportion s of saline lakes are sometimes very different from those in seawater. Be itpossibl e to indicate exactly which saline lakes are inrea l inland lakes,th e salinity limit for the divisionwit h freshwater s isa plac e somewhere on a continuum. In table 3 this division is shown in the different systems that are used.

Classification of saline lakes.Th e response of organisms in saline watersha s been related to salt concentration as a driving force for osmo regulation. Themai n classifications therefore arebase d on salinity concentrations as summarized inTabl e 3. Hutchinson (1957)classifie d inland saline waters into three "extreme typesbase d on theprevalen t anion, and therefore termed carbonate, sulfate and chloride waters".H e also pointed out that "all possible intermediate mixtures exist".William s (1964)suggeste d the use of total dissolved matter and Tailing & Tailing (1965)use d the electric -47- conductivity.Ilti s (1974)characterize d thealkalin esalin ewater so f Chada soligo- ,meso- ,poly -an deucarbonat ewaters . Someclassification so nth ebasi so fbiot ahav ebee nproposed .Zieman n (1968)develope da halobi c indexusin gdiato mflora .Hussain y (1969) appliedsevera ldiversit y indicest ozooplankto ncommunities ,bu tthi s methoddi dno tprov et ob esatisfactor yi nothe rlakes .Als omacrophyte s havebee nused ,bu tth eproble mwit hthes eclassification s istha tthe y generallyar esite-specifi can dhav en oworldwid eapplicability . Moreover,th esalinit ytoleranc ediffer sconsiderabl y forth esam e species indifferen tcircumstance san dth eorganism sd ono tfi ti nth e rigidcategorie so fchemica ldivisions .Th edominatin grol eo fio n concentrationjustifie sa classificatio no nthi sbasis .Hamme r (1986) concluded (p.15) :"Athalassi c salinewater sar edefine da sthos ehavin g salinitiesequa lt oo rgreate rtha n3 g 1 salinity.Freshwate rlake s have50 0o rles smilligram spe rlitr edissolve dsalts .Subsalin elake s arethos ewhic hrang efro m0. 5 to3 g 1 S.Th esalin elake sar e categorized inthre emajo rgroup saccordin gt osalinity .Thes ear e hyposaline (3-20g l ),mesosalin e (20-50g l )an dhypersalin e (equal orgreate rtha n5 0g 1 ).Extrem ehypersalinit yma yals ob ea justifiablecategor ybu tit sspecifi csalinit y isdifficul tt ospecify . Althoughbiot aoverla pth eborder so fthes ecategories ,man yspecie sten d tob eabundan t inon eo rmor eo fthem .Som especie sca ntolerat ea broa d rangeo fsalinitie s (areeurysaline )whil eothe rspecie soccup y relativelynarro wrange san dare ,therefore ,stenohalin ean dma ymor e easilyfi tt oa specifi csalinit ycategory. " Hammer (1986)als opropose da mode l (Fig.30 )fo rth erelationshi p betweenth enumbe ro fspecie s (algae,crustaceans , setc. )an d salinity.I nth erigh tpar to fth efigur e (B)th emode lpropose db y Remane (1934)fo rth etransitio nfro mfreshwate rt obrackis ht omarin e water isdepicted .I ti sobviou stha tth elef tpar to fth efigur e(A) , indicatingth ecircumstance s inathalassi cwaters ,i si ndistinc t contrastwit hRemane' smodel .I nthi swa yth ebiologica ldifferenc e betweenth etw otype so fsalin ewater si sclearl ydemonstrated . •48-

Table 3. Classification systems with respect to salinity of saline waters with emphasis on athalassic lakes (Hammer 1986).

Rédeke 1926 Kolbe-Budde Redeke- Venice System Gisiescu 1963 Beadle 1943a. Williams 1964. Fan I9KI 1927. 1931 Valikangas 1433 1459 Hammer 1978. 1968, 1981b Hammer et at. 19K3

oligohaline 0.5 Fresh water fresh water fresh water fresh water fresh waier fauna fresh water l«l 'CI oligohalobien 2g 1 'CI fresh oligohallne oligohaline subsalinc waier saline me&ohaline saline 5_ mesohaline salmastre) tolerant mesohalobien salt mesohaline fresh water

HL 6gl 'CI P- hy pos alin e

phili e

I5_ mesohalobien fauna 16.S ,

lüg 1 ' CI polyhaline polyhalinc 20.

polyhalinc "'S

salt lakes XL

20gl 'CI (lacuri sarale)

sea euhalinc saline 4(1 cuhalobien lakes

50_ Sil

hypcrhaline hypersalinc ha l oh ion t «)_ Ml

Slgl 'CI

polyh alohie n «Ig 1 ' CI

SALINITY (gl')

brackish water

30 50 '00 400 10 20 30 SALINITY (gH) SALINITY

Fig. 30. The number of species in relation to aquatic salinity. A: Athalassic waters from fresh to hypersaline. B: Fresh to brackish to marine waters (Hammer 1986). -49-

The division indeep , shallow, andver y shallow stagnant waters (Table 6) isbase d on freshwater systems.Th e classification of salinewater s can be treated separately, as long as it is clear that saline waters are considered. There is a transition zonebetwee n a fewhundre d mg CI 1 and 3g. 1 salinity. Salinity in this context is (according to Hutchinson 1957) "the concentration of all the ionic constituents present". It is recommended thatHammer' s proposal of 3g. 1 followed and that all stagnantwater s with lower concentrations be considered to be freshwaters , that canb e divided according toTabl e6 .

References All information in this section isderive d from Hammer (1986). His book gives appendiceswit h numerous data. InAppendi xVI I of this report these have been copied topresen t a complete overview of data on saline waters in the world.

Acid waters Purewater , inequilibriu m with C0„ from the atmosphere,ha s ap H of 5.6. Rainwater, therefore,mus thav e ap H of 5.6 (ifno t polluted). Under natural conditions nitrogen oxides occur insmal l quantities in the atmosphere, so thep H of rainwater is slightly lower (5.5). Contributions from the natural sulphur cycle (Charlson& Rohde 1983)ca n further reduce the average pH to 5. This starting position canb e influenced by pollution, as seems tob e the case in large areas of theworld . In surface waters,man y ofwhic h are fedpredominantl y by naturally acid precipitation, the pH is directly related to the acid-neutralizing capacity or alkalinity of thewater . The equilibrium:

+ 2 + 2 H + C03 "^ JH + HC03" * ' CO +H_ 0 ismos t important describing the distribution ofbiologicall y important ions over the pH range (Fig.31) . Only a few species of aquatic plants canutiliz e free CO. (if CaCO,i s present in the bottom). In thisway , the absence of carbonate ions restricts thepresenc e of aquatic vegetation. The fauna inaci dwater s is strongly influencedb y the pH,becaus e physiological processes are related to acidity. To understand this we refer to the scheme Havas (1981)develope d for freshwater organisms in acidwate r (Fig.32) . •50-

Fig. 31.Carbonate-bicarbonat eequilibriu m (Ringelberg 1976).

ACID-BASE BALANCE

EXTERNAL pH -SUBLETHAL RANCE- -LETHAL RANGE-

Fig. 32.Th emos timportan tphysiologica lresponse so ffreshwate ranimal s toa lo wp H (Havas 1981). •51-

Thecalciu mregulatio ni sth efirs tproces s (whenp Hi slowered ) influencinganimal ssuc ha ssnails ,leeche stha tea tsnails ,an dlarge r crustaceans.A tp H5. 5o rlowe rrepresentative s ofthes egroup sar eno t found.Som efis hspecie sar efoun di naci dwaters ,bu tbelo wp H4. 5 to5 onlyadapte dspecie soccur .I nth esam ewa yorganism sfro mothe rgroup s canb efoun di ndecreasin gnumber so fspecie sa sp Hi sreduce dan donl y specializedspecie ssurviv e inwate rwit hp H4. 5 orlower . Unlikesalinity ,p Hi sno ta facto rrequirin ga separat e classificationo nit sbasis ,bu ti ti son eo fth emos timportan tfactor s tob emeasure dt oevaluat eth ewate renvironmen tfo ranimal san dplant s (andsubsequentl y forman) .

4.5 Classificationaccordin g totrophi cstatu s Classificationaccordin gt otrophi cstatu si sa classi cbattlegroun dfo r limnologists.Fro mth ebeginnin go flimnologica lscience ,ther ehav ebee n attemptst odefin etroph y inman yway san dnumerou ssystem shav ebee n constructed.Trophi c statusdepend so nth eavailabilit y ofth enutrient s forprimar yproducers .I nthi scontex ton ecoul dconside rtrophi cstatu s asa chemica la swel la sbiologica lmatter .I ngeneral ,th ebiologica l approachha sbee nadopted .Th emos timportan tnutrient sar ephosphate , nitratean dcarbon .Element slik esilicium ,calcium ,iro nan dsom eother s areals oindispensabl efo rth egrowt ho faquati corganisms .I fon eo f thesechemica lcompound s ismissin go rpresen ti nlo wconcentrations ,th e growtho fcertai norganim si shampere d (limitingfactors) . Inessence ,on edistinguishe sbetwee nlow-productiv e (oligotrophic) andhigh-productiv e (eutrophic)lakes .Ove rth eyear smor eclasse shav e beenintroduce dsuc ha smesotrophic ,distrophic ,hypertrophi cetc .Th e terminologyan dgenera lapproac hwer edevelope dprimaril yb yNauman nan d Thienemannearl y inthi scentury .Naumann' swa sth emos tfundamenta l approach,connectin gchemica lpropertie san dbiologica lcharacteristics . Naumann (1931)state dtha tsi xfactor spla ya dominan trol ei nbiologica l production (Ca,N ,P ,Fe ,humi cacid san dsuspende d clay). Eacho fthes e factorsact salon ga transec tfro mlo wt ohig hinfluence ,calle doligo- , meso- andpolytypic .N ofurthe rquantificatio n isgiven .Nauman nstudie d shallowwater san dth eepilimnio no fdee pwater san di nhi sopinio nth e systemwa sapplicabl e toman ywater sal love rth eworld . •52-

Table4 .Biologica lcharacteristic s ofvariou slak etype safte rNauman n (1931).

Suspended Type Ca NandP Fe Humic acids clay pH

Alkalitrophic polytypic oligotypic oligotypic oligotypic oligo- to 8 mesotypic Argillotrophic oligo- to oligo- to ? oligo- to polytypic 7 polytypic polytypic polytypic Eutrophic oligo- to meso- to oligotypic oligo-meso- oligo- to 7 polytypic polytypic typic mesotypic Oligotrophic in -ehgotypic oligotypic oligotypic oligo-meso- oligo- to 7 a strict sense typic mesotypic Acidotrophic oligotypic oligotypic oligotypic oligo-meso- oligo- to 7 typic mesotypic Dystrophic oligotypic oligotypic meso- to meso- to oligo- to 7 polytypic polytypic mesotypic Siderotrophic oligotypic oligotypic meso- to oligo- to oligo- to 7 polytypic polytypic mesotypic

InTabl e4 th elak etype sar echaracterize db ywate rcolour , phytoplankton,highe rplant san dbotto mdeposits .Nauman nstresse dth e directrelationshi pbetwee nnutrient san dprimar yproducers ,unlik e Thienemannan dhi spupils ,wh oneglecte dthi srelationship . Thienemann (1925)develope da syste mbase dprimaril yo nth epresenc e orabsenc eo fcertai nspecie so fChironomida e inth ebotto msediment so f deeplakes .Thi smean stha th erestricte dhi sclassificatio nt odeepe r lakes (temperateregion )an dtha th ebase d ito nhypolimnio n characteristics.H efoun da relationshi pbetwee nth edept ho fa lake ,th e temperaturecurv ean dth eoxyge nconten ti nth ehypolimnion ,an dth e specieso fchironomid s (Table5) . •53-

Table 5. Lake types according to Thienemann (1925)modifie d

Oligotrophic Eutrophic Dystrophic

Distribution alpine and foot hills Baltic lowlands and alps mostly Scandinavia Morphology deep, narrow littoral shallow, broad littoral variable Hypolimnion/Epilimnion hypolimnion large hypolimnion small Water colour blue-green brown-green, green-yellow yellow-brown Transparency great small-very small small Water chemistry poor in N andP rich in N andP poor in N andP humic material absent humic material slight humic substances abundant Ca variable Ca usually high Calo w Suspended detritus minimal rich, planktogenic rich, allochthonous Deepest mud non-saprobic saprobic (gyttja) peaty(dy ) 02 in summer 60-70",, minimum 0-40" Ó minimum 0-?% minimum decrease even with depth decrease sharp in metalim- decrease sharp in metalim- nion nion 02 under ice as above shallow—as above strongly depleted in deeper deep—as oligotrophic parts Littoral plant production low rich low Plankton low quantity, present at large quantity, small low quantity, rarely blooms all depths, large diurnal diurnal migration migration, seldom blooms often blooms Benthos diverse, Tanytarsus fauna, restricted, Chironomus fauna, very restricted,Chironomus no Chaoborus Chaoborus usually present (no C. anthracinus)o r none, 300-1000 /m2 2000-10 ooo/m2 Chaoborus probably always 1-4 g dry weight/m2 100 g dry weight/m2 present io-20/m2 or none Distribution with depth constant decreasing Further succession to eutrophy to pond or meadow to peat-moor

Many authorshav e followed Thienemann indevisin g new systems or commenting on existing systems always using and occasionally including other benthic organisms (Aim 1922;Miyad a 1933;Vall e 1927). Vallewa s the first to introduce the termmesotrophic ,whic hha s been generally accepted andused . Brinkhurst (1974)give s an extensive overview of trophic systems,emphasizin g those ofThieneman n and his pupils (Alsterberg 1930;Ber g 1938;Ber g & Petersen 1956;Brundi n1942 , 1949, 1956;Decksbac h 1929;Deeve y 1941;Järnefel t 1925,1953 ;Lan g 1931; Lastockin 1931;Len z 1925,1928ab , 1933;Lundbec k 1926, 1936; Pagast 1943; Pearsall 1921;Pest a 1929; Stahl 1959, 1966;Steinboc k 1953,1958 ; Thienemann 1913,1918 ,1931 , 1954).

The use of chironomids undoubtedly was initiated by Thienemann and his school,bu t the of the larvae wasbadl y developed. Moreover, in some cases other benthic organisms were more dominant. This ison e of the points of criticism Stahl (1966)ha s put forward against these •54- classifications.Othe rpoint swer etha tfactor sothe rtha noxyge nsuppl y may limitth echironomi dfaun a (e.g.th enatur eo fth esediment )an dtha t thesystem sar eheavil yoriente d toth ePalaearcti c fauna.Hilsenhof f& Narf (1968)foun dn orea lstatistica lcorrelation sbetwee nth eoccurrenc e ofchironomi dan dothe rbenthi cspecie san dth echemica lan dphysica l characteristicso fth esystem .Brinkhurs tan dcollaborator shav etrie dt o correlateoligochaete san dlak etypes .Problem stha tma yaris ear eth e intralacustrinevariation san dth efailur et orelat eth especie st olak e types.Th erelativ eabundanc eo fwor mspecies ,however ,an dth edegre eo f dominanceo fworm sove rothe rbentho sturne dou tt ob ea usefu ltool .A n importantconclusio n (Brinkhurst1974 :p .29 )i s :"Mor eprecis esamplin g soonshow stha tspecie slist sca nusuall yb elengthene db ybot hextensiv e andintensiv esampling ,bu tth eproportiona lrepresentatio no fwor m speciess oreveale dsuggest sth esam estory :th especie sfoun da ta give n spoti nquic ksurvey sar ethos etha tprov et ob e themos tabundan ta t thatsit ewhe nprope rsample sar etaken .Bot hi nth esaprobi c systeman d thelak etypology ,samplin gmus tb ecarrie dou tver ycarefull y inorde r toestablis hrelativ eabundanc eo fspecie srathe rtha nlength yspecie s lists." Despitethes ecriticism sman yauthor sstil lus eth esystem so f Thienemann (andNaumann )(Dambsk a1984 )o rkee po ntryin gt oprov eth e useo fchironomid s forlak eclassification .Saethe r (1975,1979 )an d Wiederholm (1980)improve dBrundin' sclassificatio nan dKansanen ,Ah oan d Paasivirta (1984)teste dthi sclassificatio nwit hmultivariat e statisticalmethods .The yfoun dtha tth eavailabilit yo ffoo di sth e primarycontrollin gmechanis m inth eprofunda lchironomi dcommunitie san d thata ta dept ho f3- 5m th econtrollin gmechanism sar erelate dt owate r qualityan dtrophi cstatus .Th eproble mstipulate dher econcernin g differencesbetwee nth edee ppart so flake san dth eshallo wlittora lzon e leadst oon eo fthei rconclusions :" Anee dt oproduc ea benthi clak e typologybase do nsublittora lo rlittora lfaun ai sapparen tfro mth e practicalpoin to fview" .Finally ,wit hrespec tt ochironomids ,Äagaar d (1986)studie d5 0lake si nnorther nNorwa yan dh egav eth einterrelation ­ shipso fth echironomi dcommunitie san dlak ewate rparameters .Th ebes t correlationwa sfoun dwit horgani cparameter s (chlorophylla andP , dividedb y thedepth) .Othe rabioti can dhydrographi eparameter sturne d outt ob eo fles svalue .Thi sagree swit hth eresult so fstudie sfro m Saether (1979)an dWiederhol m (1980).Àagaar dconcludes :"I nrelatio nt o severalothe rpossibl emethod so fmonitorin gtrophi clevels ,th echirono - -55- midcommunit yclasssificatio nmetho drepresent sa ninexpensiv ean dfairl y reliablesolution. "

INTERMEZZO Whilereviewin gth eliteratur eo nth eclassificatio no fstagnan twaters , itbecam eclea rt othi sautho rtha ta tripartit eo fstagnan twater swoul d usuallyfacilitat e theapproac ht oan ywate rbody .I npractic e scientists studyinglake sgenerall yrefe rt odee pwaters ,the yhav ethei row n methodsan dterminology ,an dthe ydevelo p theoriesan dhypothese stha t areno tapplicabl e toshallo wwaters .O nth eothe rhan dver yshallo w waters (orwetlands )hav ethei row nproblems ,quit edifferen tfro mthos e inlake san dstudent si nthi sfiel do flimnolog yfor ma separat eworl di n comparisont oth eothers .Fo rthi sreaso nth etripartit eo fTabl e6 wa s proposeda tth e23r dmeetin go fth eSI Li nNe wZealand ,Februar y1987 . Thereaction swer ever ypositive .Peopl easke dfo rpreprint s forthei r seminarsan deve nfo rinsertio ni na handboo ko nlimnology .On ereactio n wasfocuse do nth ematte ro fbrackis han dsalin ewater s (thereaso nfo r insertingth echapte ro nSalin eLakes) .I nth eyea rfollowin gth e constructiono fTabl e6 ,man yothe rpublication shav esupporte dth evalu e ofa tripartit eapproac ht ostagnan twate rclassification .Th etabl ei s self-explanatory.Th edept ha scriterio nmus tb ehandle dwit hsom ecare ; othercharacteristic sma yb emor eimportan ti ndeterminin gth ecategory . A lakewit ha dept ho f8 m deep ,fo rexample ,tha ti sprotecte dagains t thewind ,ca nexhibi tal lcharacteristic so fa dee plake .Th eboundar y deptho f1 0m isobviousl yno tvaluabl e intha tcase .A ver yshallo w ditchi nTh eNetherland s (50cm )ca nkee pwate rdurin gth esumme ran da n Africanlak eo f15 0c mo fdept hca ndr yu ptotally .Fo rthi sreason ,th e lowerboundar ybetwee nver yshallo wan dshallo wi ssomewher ebetwee n1 and2 m . ENDO F INTERMEZZO -56-

Table 6. Ecological characteristics of stagnant waters.Th e example is predominantly based on data from the temperate region.

DEEP Largewate rvolum ewit hmino r impact of level fluctuations. Diurnalvariation s in temperature and oxygen content are small: (bi-)yearly circulation (sometimes one or none); stratification. (>1 0m ) Plankton in epilimnion: submerged and emergent macrophytes in littoral. Diptera larvae,Oligochaet aan dMollusc a inhypolimnion : low diversity. Diversity inepilimnio n (littoral included) generally high.

SHALLOW Water level fluctuations canb e considerable inrelatio n to volume. Diurnal and annualvariation s in temperature and oxygen content canb e considerable. (10-1m ) In deeper waters of this category real plankton; if shallow tychoplankton. Emergent macrophytes along the shore, submerged ones towards the centre.Diversit y veryhigh .

VERY Water level fluctuations large (until drying up); in arctic zones this category canb e completely frozen formonths . SHALLOW Diurnal and annualvariation s in temperature and oxygen content high. (

Table 4 shows Naumann's approach to lake typology which incorporates primary producers (phytoplankton andhighe r plants). This line of research hasvariabl y been followed, amended, improved or rejected. Phytoplankton has beenuse d ina qualitative and a quantitative way, as net production, as chlorophyll a, asbiomas s and as a trophic index. Kuznetsov (1970)afte r giving a shorthistorica l view of classification systems, states: "Acomprehensiv e classification of lakes is impossible because of their greatvariet y innatur e and the abundance of factors that can serve as themai n identification. In ourview , the problem can be solved by using certain gross features,an dher e we return to the classificationo f Thienemann-Naumann. Indeed the terms oligotrophic, mesotrophic, eutrophic, and dystrophic provide a fairly accurate general picture of alake. " A frequent criticism ofNaumann' s approach is thath e considered the biomass (standing crop) of the phytoplankton as directly related to the primary production of organic material.On emus t therefore talk about the biomass per time unit.Th e directmeasuremen t ofprimar y production, however, (Elster (1958), for example)meet s enormous practical problems. Moreover, the actual productionma y not reflect thepossibl e production (Ruttner 1952). Rohde (1958)propose d that an internationally accepted choice be made between theus e ofproductio n or the production possibilities for a description of trophy. He proposed tous e the rate of primary production and to abandon all trophic lake types except oligotrophic and eutropic noting that "Other characteristics of lakes (such as their chemical and physical conditions,morphometry , secondary production, aswel l as qualitative characters)ma y conveniently be compared and defined forvariou s lakes, ifplotte d against the trophic axis as abscissa." Here again one of the leading scientists returns to the original approach. One remark isnecessar y in this respect;whe n lakes are concerned one talks about deep lakes in general and about shallow lakes (Table 6)onl ywhe n they are deep and large enough. Elster (1958)point s to thenecessit y formeasurin g theprimar y production of the littoral as well, inorde r tob e able to estimate the trophic status of the complete lake. Here againw e find the division into deep and shallow, as was remarked in the discussion of chironomids.Nygaar d (1958)give s an example of the productivity measurement of thebotto m vegetation and Canfield et al. (1983)stres s thenecessit y to include figures about the phosphate content ofmacrophyte s in the littoral for estimation of the •58- total P content ina lake. Finally it isworthwhil e to draw attention to Ohle (1958)wh o pleads for a quite different approach, namely bio-activity,whic h is the sum of kinetic energy converted topotentia l energy (andvic e versa)pe r unit time andwate rvolum e orwate r surface area.H e distinguishes oligo- and eudynamicwater . Fig. 33 shows four types of lakes,wher e a andb are oligodynamic and c and d eudynamic. This method seems rather complicated for practical use,bu t fundamentally looks quite promising.

Trophic status is related to quantities ofnutrients , so it seems logical tous e quantitative parameters such asbiomass , production, productivity etc. A qualitative approach may be used aswell ,becaus e many organisms have been recognized as indicators of trophic status. Examples include applications using chironomids and oligochaetes. Despite a lot of criticism, people keep trying tomak e classifications with thehel p of species lists and/or trophic indices.Generall y these are only applicable ina certain geographical area,particularl y when secondary producers are used. Phytoplankton and to a lesser extenthighe r plants havebee n used with some success,especiall y since phytoplankton species tend tob e more ubiquitous thanmos t other aquatic organisms. Nygaard (1949)counte d the species of some phytoplankton groups and formulatedhi s trophic quotient as thenumbe r of species of Cyanophyceae, Chlorococcales, centric diatoms and Euglenophyceae, divided by Desmidiaceae. Pearsall & Pearsall (1925)hav e laid thebasi s for this approach and likeNygaar d others have developed similar indices (Thunmark (1945)onl y used Chlorococcales and Desmidiaceae). Regionally-specific different quotients have alsobee n developed. InTh eNetherland s some limnologists made new ones (Schroevers 1966;Dressche r &va n derMar k 1976). Round (1958) is in favor of indicator organisms andh e lists some phytoplankton species inNort h English lakes.Margale f (1958) combines indicator species ina phyto-sociologica lway , using plankton species fromNort h Spanishwaters .Hörnströ m (1981)a swel l asRose n (1981) give extensive lists ofphytoplankto n species,togethe rwit h well defined abiotic characteristics, thus describing the status of awate r within clearcut limits with thehel p of these lists. -59-

350Y

b EED* ^5

Fig. 33.Relationship sbetwee nth edifferen telement so fth eproductio n processcharacterizin g thebioactivit y (afterOhle) : 1)tota lproduction :2 )ne tproduction :3 )organi cmatte rburie di n sediments:4 )deca yo forgani cmatte r inth esediments :5 )decompositio n inth ehypolimnion :6 )decompositio ni nth eepilimnion :a )arcti clakes : b)alpin elakes ;c )lake so fth etemperat ezone :d )tropica llakes . (Kuznetsov 1970).

Theide ao fassociation so findicato rorganisms ,characteristi co f certainwate rtypes ,i srecognize d inReynolds '(1984 )approac hwhic h includesth eperiodicit yo fphytoplankto n inlake so fdifferen ttrophi c status (Fig.34) .Thi sexampl ei sbase do ntemperat elakes ,bu tsimila r eventsals otak eplac e inAfrica nlakes .Tailin g (1984)relate s phytoplanktonseasonalit y indeepe rtropica llake st oseasona lchange si n thermal (density)stratification ,whic hi softe nstrongl y influencedb y thewin dregime .I nshallo wtropica llake swithou tstratification ,alga l seasonality iseithe rinfluence db yth ehydrologica lregim eo rdoe sno t exista tall .Rot t (1984)ha sfollowe dth esam eprocedur ea sReynold san d findsa comparabl eschem e (Fig.35) .Tw oo fhi sconclusion sare : "phytoplanktonassemblage sfollo wsom egenera lpattern swhic har e determined inqualit yan dquantit yb yth etrophi cstatus "an d "phytoplanktonbiovolum e isa tleas ta svaluabl ea componen to flak e eutrophicationstudie sa schlorophyll-a" . Itseem stha ta tleas ti ndeepe rwaters ,promisin gprogres s ismad e withth eus eo fphytoplankto nfo rtrophi co rclassificatio nstudies .I n -60-

shallow waters in temperate regions periodicity has been observed, but it has not yet been as elegantly described as in Figs 34 and 35.

EARLY- ; LATE-

SUMMER PERIOD

Cyelotafla app CaraHwnNrundfcwM « OLIGOTROPHY Rhlzosotonia app

Aatarkxwla tormoaa Dlnobryon CyctotaJta app MaHomonaa MatosJra ItaUc* B Synedra app

AataftonaNa MESOTROPHIC Anklatrodaam» Coanococcua Tabatarfa AoccuhM« ChtoreHa Oocyatlakwuatri a FragUarta crotonanaia

I Cryplomonaa Rhodomonaa Stauraatrum app

I OacMatoria agardhl/rubaacanaL_

HYPERTROPHIC

1Cfyptomonaa/Rhodomona a v| t 1 | Oacillatorla agardhU/redafcel • 1

Fig. 34. Assemblages of temperate phytoplankton (A-S, X, Y) and some representative species, one or more of which grow well in the type of lake and during the approximate seasons of the year as indicated (Reynolds 1984). •61-

4.6 Classificationaccordin g toflor aan dfaun a Inth eprecedin gpage swate rclassification swer eoccasionall ybase do n organisms,an di nmos tcase sclosel yrelate dt otrophy .I ngenera lthes e systemsar eapplie dt odee pwaters .Shallo wan dver yshallo wstagnan t watershav ereceive dles sattention . Therear eman yorganisms ,plant sa swel la sanimals ,abou twhic hth e ecologicalrequirement sar ewel lknown ,includin gth etyp eo fwate rthe y prefer.Th eproblem ,a smentione dbefore ,i sth erestricte ddistributio n ofmos to fthes eorganisms .Therefore ,classification s onth ebasi so f triclads (Reynoldson (1958), wate rboatme n (Savage1982 )o reve nduck s (Murphye tal . 1984)ar erestricte d toregiona lconditions .Th esam eca n besai dabou tfis h (Tonne tal .1983 ;Johnso ne tal .1977) ,crustacea n planktoncommunitie s (Patalas1971 )an ddivin gbeetl ecommunitie s (Larson 1985).Th elatte rinclude ssmal lan dshallo wwaters ,a swel la srunnin g waters,an dseem st ob eapplicabl e forgenera lecologica lclassificatio n purposes (Fig.36) .Schleute r(1985 )studie dsmal lwate rbodie si na ver y restrictedarea .I tis ,however ,on eo fth efe wexample swher esmal l waterbodie sar eclassifie dwit hth ehel po fmacr oinvertebrates . Plantsociologist shav ea lon gtraditio no fclassifyin gassociation s ofplants ,bu tthe yseldo mclassif ywate rbodie so nth ebasi so fplan t associations.Th ewor ko fHasla m (1982)an dWeber-Oldeco p (1981)i s certainlyusefu li nthi srespect .Classification sutilizin gaquati c macrophyteshav ebee nmad epredominantl y inNorther nEurop ean dgenerall y onth ebasi so finvestigation so fa grea tnumbe ro flake s (Iversen (1929) andMathiese n (1969)i nDenmark ,Linkol a (1916),Cedercreut z (1947), Maristo (1941)an dRintaane n (1981)i nFinland ,Braaru d (1932),Braaru d& Aalen (1938),Reierse n (1942)an dHaug e (1957)i nNorway ,Blomgre n& Naumann (1925),Samuelsso n (1925),Almquis t (1929),Lohamma r (1938), Lundh (1951a & b )an dJense n (1979)i nSweden ,Grigeli s (1985)i n Lithuaniaan dDona t (1926)an dSaue r (1937)i nGermany) . Ingeneral ,thes eclassification s takeothe rcharacteristic s oflake s sucha strophi cstate ,int oaccoun ta swell . •62-

SPRING SUMMER AUTUMN

Dinobryon spp. and other small Chrysophyceae (Kephyrion, Chrysolykos, Dichrysis,Erkenia*)| X X Asterionella Cyclotella| Ceratium formosa 'or hirundinella O L I G O - Synedra acus Peridinium cinctum TROPHIC Tabellaria fenestrata (large lakes)

Cyclotella Ceratium Dinobryon spp.or small sp.+ hirundinella Uroglenasp . Oocystis la- Peridinium Dinobryon spp.o r ME S 0 - custris/parva cinctum Mallomonas spp. Mallomonassp p Scenedesmus TROPHIC Chrysosphaerella sp Uroglenasp . smallsp . Dichrysissp . Dactylococcopsls Thorakochloris smithii or Chroococcu» limneticus

Asterionella formosa or Fragilaria crotonensis Synedra acus E U -

TROPHIC

Mallomonas spp.or Uroglena sp. Dinobryon spp.

(small lakes)

Synedraspp . Lyngbya limnetica +L.contort ao r

Anabaena sp. • Euglena,Traenelomonas

Fig. 35. General successional trends of phytoplankton assemblages in Tyrolean lakes of different trophic status (low-an dmid-altitud e (Rott 1984)).

1 ALPINE LAKES

2 SUBALPINE STREAMS rQ 3 FOOTHILL STREAMS 4 WARM FOOTHILL STREAMS

5 WARM STREAMS, LAKES

6 ALPINE. SUBALPINE POOLS

7 FOOTHILL MARSHES

8 SPHAGNUM BOG

9 BOREAL MARSHES

10 GRASSLAND PONDS. PERMANENT

11 GRASSLAND PONDS. TEMPORARY

12 SALINE PONDS

0.1 0.2 0.3 SIMILARITY

Fig. 36. Simplified cluster analysis of Alberta dytiscid beetle collection sites based on similarity in species occurence (Larson 1985) •63-

Entire lakes canb e classified using thesemethods ,bu t there are also examples of differentvegetatio n typeswithi n one lake. They are considered as a complex of types,occurrin g in the same basin (Jensen 1979). This internal variation can, for example,b e caused by the occurrence of an inlet and an outflow. Some authors include these as different types, others ignore thevegetatio n at the lake ends and only consider the lake as awhole .Jense n (1978)give s a good overview of the literature andh e advises classifying lakes on thebasi s of three life-forms. He distinguishes helophytes,nymphaeid s and a life-form group elodids/lemnids/isoetids as the truemacrophyt e composition of a given lake. Methods like this one can also be used to classify shallow and very shallow waters.

Temporary waters Lamoot (1977)mad e a classification of intermittent waters in the savannahs of the Lamto region in Ivory Coast.Hi s classification isbase d onmacrophyte s and theheleoplankton . The pools arever y shallow and dry out during the dry season.Althoug h the area is small,th e results can probably be used formor e parts ofAfrica . Intermittent pools are an important type ofver y shallowwater s and they are tob e found in large areas of theworld . Wiggins,Macka y and Smith (1980)studie d temporary pools inOntari o and they reviewed an enormous amount of literature on the subject,wit h emphasis on life strategies of organisms.Th e following summary provides a detailed picture of one class ofwaters .

Fig. 37. Distinction between temporary vernal pool (upper figure) and temporary autumnal pool (lower figure); letters indicate months,vertica l scale indicates depth ofwate r (Wiggins,Macka y & Smith 1980). -64-

In temperate latitudes one finds two types of temporary pools,verna l and autumnal (Fig.37) . Classifications of temporary watershav ebee npreviousl y made on the basis ofphysico-chemica l factors,bu t in the authors'opinio n the dry period is of greater importance. They give anumbe r of factors that have tob e considered: -lengt h of the dry/wetperiod ; -canopy ; -vegetatio n in the pool; -io nconcentrations ; - temperature Generally the concentration of inorganic ions is comparable to that of non-temporary freshwater pools (in temperate regions!),bu t sometimes it isver y high.Nutrient s can reach thepoo lb y run-offan d they are adsorbed frequently toparticles . The nutrients areuse db y plants in the dry period andma y be released in thewe t period when terrestrial plants die. Canopy provides dead leaves and is therefore an important source of organicmaterial . Life strategies of organisms in temporary pools canb e of four types: 1. Permanent residents capable ofonl y passive dispersal. Some of them aestivate and overwinter as stages resistent to desiccation (certain Turbellaria, Bryozoa,Anostraca , Cladocera, Copepoda and Ostracoda) or theyperiodicall y live in thebotto m during dry periods (Oligochaeta, Hirudinoidea, Decapoda, and Mollusca). 2. Animals capable of some dispersal (certain Ephemeroptera, Coleoptera, Trichoptera, Diptera together with parasitic mites). Oviposition takes place in spring onwater ; aestivation and overwintering is in the dry basin invariou s stages of the lifecycle . 3. Animals that enter the poolbasi n after surface water has disappeared, because oviposition is independent ofwater ; eggs or larvae overwinter (certain Odonata,Trichopter a and Diptera) 4. Animals withwell-develope dpower s of dispersal that leave the disappearing pool and usually pass the dryphas e inpermanen t water. They return to oviposit in the temporary pool in the following spring (certain Ephemeroptera, Odonata, , Coleoptera, Diptera,Amphibia , and mite parasites ofHemipter a and Coleoptera). The authors state that "This group concept allows distinction tob e made among thevarie d ecological strategies for exploiting resources of temporary pools,an d provides a framework for community analysis and prediction." -65-

5 HOWT OPROCEED ?

Themai nresul to fthi sstud yi sth eclassificatio no fFigur e1 .Fo r practicalus ea nexper tsyste mmus tb edeveloped ,tha tca neithe rb e handledb ypersona lcompute ro rmanuall y inth efor mo fa decisio nkey . Thedat ai nthi srepor tca nb euse da sa basi sfo rth eextensio no fFig . 1.Regiona lan dloca lapplication sar epossibl ebu tfo rman yregion sth e dataneede dar elimite do rno tavailabl ea tall . Classification isa metho do fcombinin gsimila relement sou to fa groupo fdivers eelements ,i norde rt oachiev egroup stha tdiffe rmor e fromeac hothe rtha nfro mth emutua lelement swithi nth egroup . Classificationo fsurfac ewater so na necologica lbasi smeet sa multitud e ofcriteria ,a sha sbee nshow ni nth eprecedin gchapter san dth epurpos e couldb edescribe d -rathe rvaguel y -t odivid ewater s intoclasse so fa moreo rles shomogeneou s "ecologicalstructure " (init snatura l state). Wehav edescribe dth emos timportan tcriteri a -thos ewhic hhav ea n overallimpac to nstructur ean dfunctionin go faquati cecosystem s accordingt oa hundre dyear so flimnologica lresearch .Th ewid evariatio n ofplant san danimal s (thebioti cpar to fecosystems) ,a swel la sth e fundamentaldifference s inabioti cfactor so na worldwid escale ,mak e cleartha tonl yth eroughes tclassificatio nca nb emad efo rth ewater so f theworld .Al lclassificatio nsystem swit hpractica lapplicabilit yar e thereforerestricte dt oregiona luse .Man ysuc hsystem shav ebee n developed,an di nmos tcase sthe ygiv egoo dresults .I tis ,however , ratherdifficul tt omak ea choic efro mamon gthes esystem sfo ran ygive n newsituation .Th efollowin gmethod ,use di nrecen tstudie s inTh e Netherlands,shoul db eo fsom ehel p inclassifyin gwater so na n ecologicalbasis .Th emetho d iscalle da necologica ltypolog yo fsurfac e waters. Simplystated ,th emetho dconsist so fcombinin gabioti can dbioti c measurementso fa numbe ro fsurfac ewater s intocomputabl eunits ,whic h aresubjecte dt oa clusterin gan da nordinatio nprogram . InFig .3 8th e processingo fth edat ai sdepicted .Furthe rdetail so nth emetho dma yb e foundi nTe rBraa k1986 . •66-

Sites Sites Macrofauna Environmental taxa J, variables 1 PREPROCESS NC OF DATA Taxonomical reduction Elimination of indifferent variables Transformation of abundance Logarithmic transformation of into logarithmic classes quantitative variables Standardization

MULTIVARIATE ANALYSIS Classification Correspondence Principal component sites (FLEXCLUS) analysis analysis taxa (NODES) (CANOCO) (ORDIFLEX) L Review of literature (independent data) J_ INTEGRATION

Fig.38 .Dat aprocessin go fmacrofauna ltax aan denvironmenta lvariable s ofa numbe ro fsite s (Verdonschot& Scho t 1987).

Asa nexampl eo fth emetho da classificatio no fspring s inTh e Netherlands isgiven .I nFig .3 9th eresult so fmultivariat e analysiso f datafro mspring s inth eProvinc eo fOverijsse li sdepicted .Th econtou r linesindicat eth ehabita tclusters ,th earrow sth emos timportan tenvi ­ ronmentalvariable s (intersetcorrelatio ngreate rtha n0.3) .A relation ­ shipi spositiv e inth edirectio no fth earro wan dnegativ e inth eoppo ­ sitedirection .Th epositio no fth ehabita tcluster si sdetermine db y combinationso fmacro-invertebrates .Th earro wo fa nenvironmenta l variablepoint sapproximatel y inth edirectio no fsteepes t increaseo f thatvariabl eacros sth eordinatio ndiagra man dth erat eo fchang ei n thatdirectio ni sequa lt oth elengt ho fth earrow .Thi smean stha tth e relationshipo fa sit e (orsit egroup )t oon eo fmor e importantenviron ­ mentalvariable s isvisualisize db y itsperpendicula rprojectio no nth e environmentalarro wo rit simaginar yextensio n (inbot hdirections) . Withinth ediagra m thesesit egroup san denvironmenta larrow sshoul db e seena srelativ eprojection supo neac hother .Site si nth ecentr eo fth e diagramma yhav ethei roptim ahere ,bu tma yb e independento fth eaxe sa s well.Site swit ha poo ro raberran ttaxonomi ecompositio nofte nli ei n theperiphera lare ao fth ediagram ,du et othei rspecifi c environmental situationo rt ochance . -67-

permanent ÎMM-detritus

Fig. 39.Detrende dcanonica lcorrespondenc eanalysi sordinatio ndiagra m oftax aan denvironmenta lvariable sfo raxe s1 an d2 ,wit hth esi x habitatcluster s (contourlines )(Verdonscho t& Scho t 1987).

Thesi xhabita tcluster sfro mFig .3 9hav ebee nreorganize d (Fig.40) , sotha trelate dcluster shav ebee ncombine dt ofor ms ocalle dbiotypes . Verdonschot& Scho tgiv eth efollowin gexplanation . "Abiotyp e isdefine dal sa necologica lentit yoccurrin gi na certai n biotopean dmeetin gth especifie dtypologica lcriteria .A biotyp e developso rbecome simpoverishe d indu ecours eunde r theimpac to f environmentalchanges ,an dwil ltherefor eoccu ri na particula r developmentalstag e (succession stage). Weconclud etha tcluster sA .C an dE belon gt oth ebiotyp eo f helocrenesprings .Th ecluste rsequenc e (E.C ,A )reflect sa nincreas ei n eutrophicationand/o r (secondary)organi cenrichmen tdu et oanthropogeni c activity.Cluste rB belong st oth ebiotyp eo ftemporar yneutra lseepag e marshes.Cluster sD an dF belon gt oth ebiotyp eo ftemporar yaci dseepag e marshes.Th edrough tperio d islonge ri nF tha ni nD. " Thelas tste pi scombinin gth edat afro mal love rth ecountr yan d processingthes eaccordin gt oth edescribe dtechnique .Preliminar y resultshav ebee ndepicte d inFig .41 .Th eletter sA/ Fhav ebee nreplace d bynumbers ,indicatin gth ehierarchica lnatur eo fsom eo fth eclusters . Theblock srepresen tspecie slist san dsom eo fthes ear edirectl yrelate d toth ecluster sfro mFig .40 . •68-

drought [ J biotype \acidity stateo fa biotyp e correspondingt o O habitat cluster (letter)an d microhabitatcluste r (number) impacto fenvironmental ! variable

Fig. 40.Biotype s related to springs in the area under study (dotted lines). The circles correspond withhabita t clusters (letters). The arrows indicate in increase in the state of thevariabl e (Verdonschot & Schot 1987). -69-

2.1.1 2.1 .

impacto fenvironmenta lvariabl e

Fig. 41.Provisiona ltypolog yo fspring si nTh eNetherlands .Th earrow s indicatea nincreas e inth estat eo fth evariable .Th eblock swit h numberscorrespon dwit hlist so ftypifyin gspecie s (Verdonschot& Scho t 1987). 1.1.1 cf.cluste rC 2 E 2.1 D 2.1.1 F 3 B 4 A -70-

APPENDIXI Reference s •71-

Referenceso fliteratur eo nzonatio nan dclassificatio no fstream s usedfo rchapte r3

Albrecht,M.L .1953 .Di ePlan eun dander eFlämingbäche . Z.Fisch. ,N.F .1 :389-476 . Albrecht,M.L .& E.M .Bursch e1957 .Fischereibiologisch e Untersuchungen anFliessgewässer .I .Physiographisch-biologisch e Studiena nde r Polenz.Z .Fish .N.F .6 :209-240 . Allanson,B.R . 1965.Introductio n (toSymposium ,Biolog yo fSout hAfrica n rivers,Durba n1963) .Arch .Hydrobiol .61 :378-379 . Allen,K.R . 1951.Th eHorokiw istream .A stud yo fa trou tpopulation . Fish.Bull .N.Z .10 ,23 1p . Allen,K.R . 1960.Freshwate r faunao fWellington .Scienc e inWellington , Roy.Soc .N.Z .Handbook :23-24 . Allen,T.F.H .& T.B .Star r1982 .Hierarchy .Perspective sfo recologica l complexity.Chicago ,Universit yo fChicag oPress .31 0p . Ambühl,H .1959 .Di eBedeutun gde rStrömun gal sökologische rFaktor . Schweiz.Z .Hydrol .21 :133-264 . Angelier,E .1952 .L epeuplemen te nHydracarien sde seau xcourante s françaisese tso norigine .Fasc .hors-série .Soc .Biogeogr. :67-74 . Ant,H .1966 .Di eBenthos-Biozönose nde rLippe .Min .Ernährun g Landwirtschaftun dFors tNordrhein-Westfale nDüsseldorf . Ant,H .1967 .Korreliert eArtengruppe nun dMosaikkomplex e imBereic hde s Fliesswasserbenthos.Schriftenr .f .Vegetationsk . 2:193-204 . Ant,H .1971 .Di eGewässertype nWestfalens .Naturk .Westf .7 :73-84 . Armitage,K .1961 .Distributio no friffl e insectso fth eFirehol eRiver , Wyoming.Hydrobiologi a 17:152-174 . Armitage,K.B .1958 .Ecolog yo friffl einsect so fth eFirehol eRiver , Wyoming.Ecolog y39 :571-580 . Arntz,W.E .1981 .Zonatio nan ddynamic so fmacrobentho sbiomas s ina n areastresse db yoxyge ndeficiency .In :Stres seffect so nnatura l ecosystems (ed.G.W .Barret t& R .Rosenberg) :215-225 . Chichester-Wiley. Backiel,T .1964 .O nth efis hpopulation s insmal lstreams .Verh . Internat.Verein .Limnol .15 :529-534 . Badcock,R.M . 1953.Studie so fth ebenthi cfaun ai ntributarie so fth e KänlingeRiver ,Souther nSweden .Rep .Inst .Freshwate rRes . Drottningholm 35:21-37 . -72-

Balon, E.K. 6eD.J . Stewart 1983.Fis h assemblages ina river with unusual gradient (Luongo,Africa-Zair e system), reflections on river zonation, a description of another new species. Environmental Biology of Fishes 9:225:-252 . Barmuta, L.A. & P.S. Lake 1982.O n thevalu e of the River Continuum Concept. N.Z.J. Mar. Freshwater Res. 16:227-229 . Beauchamp,R.S.A . 6cP .Ullyo t 1932.Competitiv e relationships between certain species of freshwater triclads.J . Ecol. 20:200-208 . Beck,W.M . 1965.Th e streams of Florida. Bull.Fl a StateMus . 10:91-126 . Behning,A . 1924.Zu r Erforschung der am Flussboden derWolg a lebenden Organismen.Monogr . Biol. Wolga-Station 1: 1-388. Behning,A . 1928.Da s Leben derWolga . Zugleich eine Einführung indi e Fluss-Biologie. Die Binnengewässer 5, Stuttgart. Behning,A . 1929.Da s Leben derWolga , ed. 0. Vogt. Die Naturwissenschaft der Sovjet-Union, Berlin. 25p . Berg,K . 1948.Biologica l studies on the river Susaa. Fol. limnol. Scandinav. 4: 1-318. Bergstrom, F.W. 1982.Episodi c behaviour inbadlands : its effects on channelmorpholog y and sediment yield. In:F.J . Swanson,R.J . Janda, T. Dunne & D.N. Swanston (ed.). Sedimentbudget s and routing in forested drainage basins.U.S . Forest Service. Portland, OR. p. 59-66. Berthélemy, C. 1966.Recherche s écologiques etbiogéographique s sur les plécoptèrés et coléoptères d'eaucourant e (Hydraena et Elminthidae) des Pyrénées.Annl s Limnol. 2:227-458 . Bick, G.H. et al.1953 .A n ecological reconnaisance of anaturally , acid stream in Southern Louisiana. J. Tenn.Acad . Sei. 28:221-231 . Bishop, J.E. 1973.Limnolog y of a smallMalaya n river Sungai Gombak. Monographiae Biologicae 22.Junk , TheHague . Bloesch,J . 1980.Bodenfaunistisch e Untersuchungen inAar e undRhein . Schweiz. Z. Hydrol.42 :258-308 . Borne,V.D.M . 1877.Wi e kannma nunser e Gewässernac h den in ihnen vorkommenden Arten klassifizieren? Cirk. Dt.Ver . 4p . Botosaneanu, L. 6eF . Por 1957.Recherche s hydrobiologiques sur les sources dubassi n de l'Aries (II).Bull , scientific (Acad. RPR),Ser . Zool. 9: 19-66. Botosaneanu L. 1959.Recherche s sur les trichoptères dumassi f de Retezat et desMont s duBanat . Bibl. Biol. a (Bucarest) 1: 1-165. Botosaneanu L., St.Negrea ,A . Burghele,D . Dancau& V . Decou1959 . •73-

Contributions à l'étudehydrobiologiqu e d'unedeere à de Dobrogea: la Casimcea. Arch. Hydrobiol. 55: 30-51. Botosaneanu, L. 1979.Quinz e années de recherches sur la zonation des cours d'eau: 1963-1978.Bijdrage n totd e Dierkunde 49:109-134 . Bovee, K.D. 1982.A guide to stream habitat analysis using the instream flow incremental methodology. U.S. Fish andWildlif e Service (FWS/OBS-82/26),Washington , D.C. 248p . Brehm,V . & F. Ruttner 1926.Di e Biozönosen der Lunzer Gewässer. Internat.Rev . ges.Hydrobiol . 16:330-392 . Bretschko, G. 1969. Zur Hydrobiologie zentralalpiner Gletscherabflüsse. Verhandlungen der deutschen Zoologischen Gesellschaft in Innsbruck 1968: 741-750. Brinck, P. 1949. Studies on Swedish stoneflies. Opusc. Ent. Suppl.11 : 1-247. Brodsky,K.A . 1980Mountai n torrent of theTie n Shan. Monographiae Biologicae 39.Junk , TheHague . Bruns, D.A., G.W. Minshall, C.E. Cushing,K.W . Cummins,J.T . Brock & R.L. Vannote 1984.Tributarie s asmodifier s of the river continuum concept: analysis by polar ordination and regressionmodels .Arch .Hydrobiol . 99: 208-220. Budde, H. 1925.Di eAlgenflor a des Sauerländischen Gebirgsbaches.Arch . Hydrobiol. 19:433-520 . Burton, G.W. & E.P. Odum 1945.Th e distribution of stream fish in the vicinity ofMountai n Lake,Viginia . Ecology 26:182-194 . Butcher,R.W . et al. 1931.A biological investigation of theRive r Lark. Fishery Invest.,London . 112p . Butcher,R.W . et al. 1933.Studie s on the ecology of rivers.O n the distribution ofmacrophyti c vegetation in the rivers of Britain. J. Ecol. 21:58-91 . Butcher,R.W . et al. 1937.Surve y of the river Tees.Part III.Th e non-tidal reaches -chemica l andbiological . Tech. Pap.Wat .Pollut . Res. D.S.I.R. 6, 189p . Carpenter, K.E. 1928.Lif e in InlandWaters . Sidgwick &Jackson , London. 267p . Carpenter, K.E. 1928.O n the distribution of freshwater Turbellaria in theAberystwyt h district,wit h special reference to two ice-age relicts. J. Ecol. 16:105-122 . Chacko, P.I. & S.V. Ganapati 1952.Hydrobiologica l survey of the Surut River in the Highwavys,Mudura i District, India, to determining its -74-

suitability forth eintroductio no fth erainbo wtrout .Arch . Hydrobiol.46 :128-141 . Chandler,CM . 1966.Environmenta lfactor saffectin gth eloca l distributionan dabundanc eo ffou rspecie so fstreamdwellin gtriclads . Invest.Indian aLake sStream s7 :1-56 . Chutter,F.M . 1970.Hydrobiologica l studiesi nth ecatchmen to fVaa lDam . SouthAfrica .Par tI .Rive rzonatio nan dth ebenthi c fauna.Internat . Rev.ges .Hydrobiol .55 :445-494 . Clark,CF . 1944 Thefreshwate rnaiade so fAnglaiz eCounty ,Ohio .Ohi o J. Sei.44 :107-176 . Clarke,A.H .& CO . Berg1959 .Th efreshwate rmussel so fcentra lNe w York.Cornel lUniv .Agr .Exp .Sta. ;Ithaca . Conrad,W .1942 .Su rl afaun ee tl aflor ed'u nruissea ud e l'Ardenne belge.Mém .Mus .r .Hist .nat .Belg .99 :1-177 . Culp,J.M . &R.W .Davie s1982 .Analysi so flongitudina lzonatio nan dth e rivercontinuu mconcep ti nth eOldman-Sout hSaskatchewa nRive rsystem . Can. J. Fish.Aquat .Sei .39 :1258-1266 . Cummins,K.W . 1974.Structur ean dfuctio no fstrea mecosystems . Bioscience 24:631-641 . Cummins,K.W . 1975.Th eecolog yo frunnin gwaters ,theor yan dpractice . Internat.Join tComm .o nth eGrea tLakes .Sandusk yRive rBasi nSymp. : 278-293. Cummins,K.W. ,R. C Petersen,F.0 .Howard ,J. C Wuycheck& V.J .Hol t 1973. Theutilisatio no flea flitte rb ystrea mdetritivores .Ecolog y 54:336-345 . Cummins,K.W. ,J.R . Sedell,F.J . Swanson,G.W .Minshall ,S.G .Fisher , CE. Cushing,R.C .Peterse n& R.L .Vannot e1983 .Organi cmatte r budgetsfo rstrea mecosystems :problem si nthei revaluation .I nJ.R . Barnes& G.W .Minshal l (ed.). Streamecology .Applicatio nan dtestin g ofgenera lecologica ltheory .Plenu mPress ,Ne wYork .p .299-353 . Cummins,K.W .,W.G .Minshall ,J.R . Sedell,CE . Cushing&R. C Petersen 1984. Streamecosyste mtheory .Verh .Internat .Verein .Limnol .22 : 1818-1827. Curry,R.R . 1972.River s -a geomorphi can dchemica loverview .In :R.T . Oglesby,CA . Carlson& J.A .McCan n (ed.). Riverecolog yan dman . AcademicPress ,Ne wYork .p .9-31 . Cushing,CE. ,CD . Mclntire,K.W .Cummins ,G.W .Minshall ,R.C .Petersen , J.R. Sedell& R.L .Vannot e1983 .Relationship s amongchemical , physicalan dbiologica l indicesalon grive rcontinu abase do n •75-

multivariateanalyses .Arch .Hydrobiol .98 :317-326 . Dahm,A.G .1958 .Taxonom yan decolog yo ffiv especie sgroup s inth e familyPlanariidae .Malmö . Davies,L .& CD . Smith1958 .Th edistributio nan dgrowt ho fProsimuliu m larvae (Diptera:Simuliidae )i nhil lstream si nnorther nEngland .J . Anim.Ecol .27 :335-348 . Décamps,H .1968 .Vicariance sécologique sche zle sTrichoptère sde s Pyrénées.Annls .Limnol .4 :1-50 . Décamps,H. ,G .Larrou y6 eD .Trivellat o1975 .Approch ehydrodynamiqu ed e lamicrodistributio nd'invertébré sbenthique se nea ucourante .Annls . Limnol.11 :79-100 . Densen,R.D .va n1954 .Marylan dfreshwate rstrea mclassificatio nb y watersheds.Contr .Chesapeak eBiol .Lab .106 :1-30 . Dodds,G.S .& F.L .Hisa w1925 .Ecologica lstudie so faquati c insects.IV . Altitudinalrang ean dzonatio no fmayflies ,stoneflie san dcaddisflie s inth eColorad oRockies .Ecolog y6 :380-390 . Dorier,A .1937 .L afaun ede seau xcourante salpines .Verh .Internat . Verein.Limnol .8 :33-41 . Dorier,A .1961 .Su rl arépartitio nde sSimuliida e (Dipt.)de sAlpe s françaises.Verh .Internat .Verein .Limnol .14 :369-371 . Dudgeon,D .1982 .A ninvestigatio no fphysica lan dbiologica lprocessin g oftw ospecie so flea flitte ri nTa iP oKa uFores tStream ,Ne w Territories,Hon gKong .Arch .Hydrobiol .96 :1-32 . Dudich,E .1958 .Di eGrundlage nde rFaun aeine sKarpaten-Flusses .Act a zool.hung .3 :179-200 . Edington.J.M . 1966.Som eobservation so nstrea mtemperature .Oiko s15 : 265-273. Egglishaw,H.J .& N.C .Morga n1965 .A surve yo fth ebotto mfaun ao f streams inth eScottis hHighland spt .II .Th erelationshi p ofth e faunat oth echemica lan dgeologica lconditions .Hydrobiologi a26 : 173-183. Eidel,K .1933 .Beiträg ezu rBiologi eeinige rBäch ede sSchwarzwaldes , mitbesondere rBerücksichtigun gde rInsektenfaun ade rEl zun dKinzig . Arch.Hydrobiol .25 :543-615 . Einsele,W .1960 .Di eStrömungsgeschwindigkei t alsbeherrschende rFacto r beide rlimnologische nGestaltun gde rGewässer ,österr .Fischerei , Suppl.1 :1-140 . Elgmork,K .& O.A . Saether1970 .Distributio no finvertebrate s ina hig h mountainbroo ki nth eColorad oRock yMoutains .Studie so fth e •76-

University of Colorado (Series Biology) 31:1-51 . Elster, H.J. 1962.Stoffkreislau f und Typologie der Binnengewässer als zentrale Probleme der Limnologie.Naturwiss . 49:49-55 . Engelhardt,W . 1951.Faunistisch-ökologisch eUntersuchunge n über Wasserinsekten an den südlichen Zuflüssen desAmmersees .Mitt .Münch . ent. Ges.41 : 1-135. Entz, B. 1961.Di e Beziehungen derWasserchemi e und primären Produktion inkleine n Bächen der Balatonsee-Gegend.Verh . Internat.Verein . Limnol. 15:495-48 . Findenegg, I. 1959.Di e Gewässer Österreichs. Ein limnologischer Üeber- blick. Biologische Station, Lunz. Fisher, S.G. 1983. Succession in streams. In:J.R . Barnes & G.W. Minshall (ed.). Stream ecology.Applicatio n and testing of general ecological theory. Plenum Press,Ne wYork . p. 7-27. Fittkau, E.J. 1953.Odonate n aus der Fulda.Ber . limnol. Flussstn. Freudenthal 5:29-36 . Fittkau, E.J. 1964.Remark s on limnology of central-Amazon rain-forest streams. Verh. Internat.Verein . Limnol. 15:1092-1096 . Fittkau, E.J. & F. Reiss 1983.Versuc h einer Rekonstruktion der Fauna europäischer Ströme und ihrerAuen .Arch .Hydrobiol . 97: 1-6. Funk,J.L . & R.S.Campbel l 1953.Th epopulatio n of larger fishes in Black River,Missouri .Univ . Mo. Stud. 26: 69-82. Gammon,J.R . 1980.A proposed stream classification. Proc. Indiana Acad. Sei. 89:143 . Gaufin,A.R . 1959. Production ofbotto m fauna in the Provo River,Utah . Iowa St. Coll.J . Sei. 33:395-419 . Gaufin,A.R . & CM. Tarzwell 1956.Aquati c macroinvertebrate communities as indicators of organic pollution inLytl e Creek. Sewage Ind. Wastes 28: 906-924. Gerking, S.D. 1945.Distributio n of the fishes of Indiana. Invest. Indiana Lake Streams 3: 1-137. Gersbacher,W.M . 1937.Th e development of streambotto m communities in Illinois. Ecology 18:359-390 . Gibon, F.M. & B. Statzner 1985.Longitudina l zonation of lotie insects in the BandamaRive r system (Ivory Coast). Hydrobiologia 122: 61-64. Goodrich, C. &H . van der Schalie 1944.A revision of theMollusc a of Indiana.Am . Midi. Nat. 32:257-326 . Gore,J.A . 1978.A technique forpredictin g in-stream flow requirements ofbenthi c macroinvertebrates. Freshwater Biology 8:141-151 . -77-

Gray,L.J. ,J.W .Ward ,R .Martinso n& E .Berge y19C83 .Aquati cmacro - invertebrateso fth ePiceanc eBasin .Colorado :communit yrespons e alongspatia lan dtempora lgradient so fenvironmenta lconditions . Southeast.Nat .28 :125-135 . Gregory,K.J .& E .Wallin g1973 .Drainag ebasi nfor man dprocess .Arnold , London.45 6p . Grenier,P .1949 .Contributio nà l'étud ebiologiqu ede sSimuliidé sd e France.Physiologi acomp .Oecologi a1 :165-330 . Grimm,F .1968 .Da sAbflussverhalte ni nEurop a -Type nun dregional e Gliederung.Wiss .Veröff .Dtsch .Inst .Länderkd .N.F .25/26 :18-180 . Hallam,J.C .1959 .Habita tan dassociate dfaun ao ffou rspecie so ffis h inOntari ostreams .J . Fish.Res .Bd .Can .16 :147-173 . Harrison,A.D .1963 .A necologica lsurve yo fth eGrea tBer gRiver . Monographiaebiol .14 :143-158 . Harrison,A.D .1965 .Rive rzonatio ni nSout hAfrica .Arch .Hydrobiol .61 : 380-386. Harrison,A.D .1978 .Freshwate r invertebrates (exceptmolluscs) . Biogeography andEcolog yo fSouther nAfric a (ed.M.J.A .Werger) ,p . 1139-1152. Harrison,A.D .& J.F .Elswort h1958 .Hydrobiologica l studieso nth eGrea t BergRiver ,Wester nCap eProvince .Par tI .Genera ldescription , chemicalstudie san dmai nfeature so fth eflor aan dfauna. ,Trans .R . Soc.S .Afr .35 :125-226 . Harrison,A.D .& J.D .Agne w1961 .Th edistributio no finvertebrate s endemic toaci dstreams ,i nth eWester nan dSouther nCap eProvince . Nat.Inst .Wate rRes. ;Sout hAfrica nCounc .f .Sei .& Industr .Res . Ms.:1-11 . Harrison,A.D .& J.J .Ranki n1976 .Hydrobiologica l studieso fEaster n LesserAntillea nIslands .II .St .Vincent :Freshwate r fauna -it s distribution,tropica lrive rzonatio nan dbiogeography .Archi vfü r Hydrobiologie Supplement50 :275-311 . Haslam,S.M . 1978.Rive rPlants .Th emacrophyti cvegetatio no f watercourses.Cambridg eUniversit yPress .39 6p . Haslam,S.M . 1982.A propose dmetho dfo rmonitorin grive rpollutio nusin g macrophytes.Scienc ean dTechnolog yLetter sEnvironm .Techn .Lette r3 : 19-34. Haslam,S.M . &P.A .Wolsele y 1981.Rive rVegetation :it sidentification , assessmentan dmanagement .Cambridg eUniversit yPress .15 4p . Hawkes,H.A .& L.J .Davie s1971 .Som eeffect so forgani cenrichmen to n •78-

benthic invertebratecommunitie si nstrea mriffles .In :E .Duffe y& A.A.Wat t (eds.),Th eScientifi cManagemen to fAnima lan dPlan t Communitiesfo rConservation .Blackwell ,Oxford ,p .271-293 . HawkesH.A . 1975.Rive rzonatio nan dclassification .In :B.A .Whitto n (ed.),Rive rEcology .Studie s inEcolog y2 :312-374 .Univ .Calif . Press. Hermann,K .1930 .Di eEntwicklun gde rOde rvo mNatur -zu mKulturstrom . Jahrb.Gewässerkd .Norddtschl .Bes .Mitt .6 :1-75 . Higler,L.W.G .& A.W.M .Mo l1984 .Ecologica ltype so frunnin gwate rbase d onstrea mhydraulic s inth eNetherlands .Hydrobiol .Bull .18 :51-57 . Hofius,K .1971 .Da sTemperaturverhalte neine sFliessgewässers ,darge ­ stellta mBeispie lde rElz .Freiburge rgeogr .Hft .10 :1-111 .Freibur g imBreisgau . Höll,K .1968 .Wasser .Untersuchung ,Beurteilung ,Aufbereitung ,Chemie , Bakteriologie,Biologie .D eGruyter ,Berlin .39 3p . Holton,G.D .1953 .A trou tpopulatio nstud yo na smal lcree ki nGallati a County,Montana .J .Wildl .Mgmt .17 :62-82 . Hoover,E.E .1938 .Fis hpopulation so fprimitiv ebroo ktrou tstream si n NewHampshire .Trans .N .Am .Wildl .Conf .3 :486-496 . Hora,S.L . 1923.Observation so nth efaun ao fcertai ntorrentia lstream s inth eKhas iHills .Rec .India nMus .25 :579-600 . Hora,S.L .1930 .Ecology ,bionomic san devolutio no fth etorrentia l fauna,wit hspecia lreferenc et oth eorgan so fattachment .Phil . Trans.R . Soc.B .218 :171-282 . Horton,R.F .1945 .Erosiona ldevelopmen to fstream san dthei rdrainag e basins.Bull .geol .Soc .Am .56 :275-370 . Horwitz,R.J .1978 .Tempora lvariabilit ypattern san dth edistributiona l patternso fstrea mfishes .Ecol .Monogr .48 :307-321 . Howard,A.D .1951 .A rive rmusse lparasiti co na salamander .Chicag o Acad. Sei.nat .Hist .Misc .77 :6 p . Huet,M .1938 .Hydrobiologi episcicol ed ubassi nmoye nd el aLesse .Mem . Mus.r .Hist .nat .Belg .82 :1-128 . Huet,M .1949 .Aperç ude srelation sentr el apent ee tle spopulation sde s eauxcourantes .Schweiz .Z .Hydrol .11 :333-351 . Huet,M .1962 .Influenc ed ucouran tsu rl adistributio nde spoisson sdan s leseau xcourantes .Schweiz .Z .Hydrol .24 :413-432 . Hynes,H.B.N . 1941.Th etaxonom yan decolog yo fth enymph so fBritis h Plecoptera,wit hnote so nth eadult san deggs .Trans .R .ent .Soc , London.91 :459-557 . •79-

Hynes, H.B.N. 1948.Note s on the aquatic Hemiptera-Heteroptera of Trinidad and Tobago,B.W.I. ,wit h a description of ane w species of Martarega B.Whit e ().Trans .R . ent. Soc.Lond . 99: 341-360. Hynes, H.B.N. 1955.Biologica l notes on some EastAfrica n aquatic Heteroptera. Proc. R. ent. Soc.Lond .A 30:43-54 . Hynes, H.B.N. 1961.Th e invertebrate fauna of aWels h mountain stream. Arch. Hydrobiol. 57:344-388 . Hynes, H.B.N. 1971.Zonatio n of the invertebrate fauna in a West-Indian stream. Hydrobiologia 38,1 : 1-8. Hynes, H.B.N. & T.R. Williams 1962.Th e effect ofDD T on the fauna of a central African stream. Ann. trop.Med . Parasit. 56: 78-91. Hynes, H.B.N. 1972.Th e ecology of runningwaters . 2nd ed.Universit y of Toronto Press,Downsview . Ont. 555p . Ide, F.P. 1935.Th e effect of temperature on the distribution of the mayfly fauna of a stream. Pubis.Ont . Fish.Res .Lab . 50: 1-76. lilies, J. 1953.Di e Besiedlung der Fulda (insbes. das Benthos der Salmoniden-region)nac h dem jetzigen Stand derUntersuchung . Ber. limnol. Flussstn. Freudenthal. 5:1-28. lilies,J . 1955.De rbiologisch e Aspekt der limnologischen Fliesswasser- typisierung. Arch.Hydrobiol . Suppl. 22:337-346 . lilies,J . 1956.Seeausfluss-Biozönose nLappländische r Waldbäche. Entomologisk Tidskrift 77:138-153 . lilies,J . 1958.Di e Barbenregion mitteleuropäischer Fliessgewässer. Verh. Internat.Verein . Limnol. 13:834-844 . lilies,J . 1961.Versuc h einer allgemeinbiozönotische n Gliederung der Fliessgewässer. Int.Rev . ges.Hydrobiol . 46:205-213 . lilies,J . 1964.Th e invertebrate fauna of theHuâllaga , a Peruvian tributary of theAmazo n River, from the sources down toTing oMaria . Verh. Internat.Verein . Limnol. 15:1077-1083 . lilies,J . 1978.Vergleichend e Emergenzmessung imBreitenbac h 1969-1976 (Ins: Ephemeroptera, Trichoptera, Plecoptera).Arch . Hydrobiol.82 : 432-448. lilies,J . 1982.Längsprofi l des Breitenbachs im Spiegel der Emergenz (Ins: Ephemeroptera, Trichoptera, Plecoptera).Arch . Hydrobiol.95 : 157-168. lilies,J . & L. Botosaneanu 1963.Problème s etméthode s de la classification et de la zonation écologique des eauxcourantes , considérées surtout dupoin t devu e faunistique. Mitt. Internat. •80-

Verein. Limnol. 12:1-57 . Imanishi, K. 1941.Mayflie s fromJapanes e torrents X. Life forms and life zones ofmayfl y nymphs. II.Ecologica l structure illustrated by life zone arrangement.Mem . Coll. Sei., Engng.Kyot o imp.Univ . B 16: 1-35. Johnson,D.S . 1957.A survey ofMalaya n freshwater life.Malay . Nat. J. 12: 57-65. Jones, J.R.E. 1941.Th e fauna of the river Dovey,West-Wales .J . Anim. Ecol. 10: 12-24. Jones, J.R.E. 1943.Th e fauna of the river Teifi,Wes t Wales.J . Anim. Ecol. 12:115-123 . Jones, J.R.E. 1948.Th e fauna of four streams in the Black Mountain district of SouthWales .J . Anim. Ecol. 17:51-65 . Jones, J.R.E. 1949.A n ecological study of the river Rheidol, North Cardiganshire,Wales .J.Anim . Ecol. 18:67-88 . Junk,W.J . 1982.Amazonia n floodplains: their ecology, present and potential use.Rev . Hydrobiol.Trop . 15:285-301 . Kaiser, E.W. 1950.Siali s nigripes Ed. Pict., ny for Danmark, og udbredelsen af S. lutaria L. og S. fuliginosa Pict. i. Danmark. Flora Fauna 56:17-36 . Kani, T. 1944 (1981). Stream classification in "Ecology of torrent- inhabiting insects" (1944): an abridged translation. Physiol.Ecol . Japan 18:113-118 . Karaman,M.S .1964 .Übe r dieKategorisierun g der Zoozönosen. Beitr.Ent . 14: 739-750. Kelsy, H.M. 1982.Hillslop e evolution and sediment movement ina forested headwater basin.Va n DuzenRiver ,Nort h Coastal California. In: F.J. Swanson,R.J . Janda,T . Dunne & D.N. Swanston (eds.), Sediment budgets and routing in forested drainage basins.U.S . Forest Service, Portland OR. p.86-96 . Kleerekoper, H. 1955.Limnologica l observations inNortheaster n Rio Grande do Sul,Brazil .Arch .Hydrobiol . 50:553-567 . Knight,A.W . &A.R . Gaufin 1967.Strea m type selection and associations of stoneflies (Plecoptera) ina Colorado river drainage system. J. Kan. Ent. Soc. 40:347-352 . Kopelke,J.P . 1981.ökologisch e Studien an Eintagsfliegen am Beispiel der Emergenzde s zentralafrikanischen Bergbaches Kaiengo (Zaire) (Ephemeroptera). Entomol.Abh . (Dres.)44 : 9-43. Kothé, P. 1961.Hydrobiologi e der Oberelbe.Natürliche , industrielle und wasserwirtschaftliche Faktoren in ihrer Auswirkung auf das Benthos des -81-

Stromgebietesoberhal bHamburgs .Arch .Hydrobiol .Suppl .24 :221-343 . Kownacki,A .1971 .Taxocen so fChironomida e instream so fth ePolis hHig h TatraMts .Act aHydrobiol .13 ,4 :439-464 . Kuehne,R.A . 1962.A classificatio no fstreams ,illustrate db yfis h distributioni na nEaster nKentuck ycreek .Ecolog y43 :608-614 . Kühn,G .1940 .Zu rOekologi eun dBiologi ede rGewässe r (Quellenun d Abflüsse)de sWasserspreng sbe iWien .Arch .Hydrobiol .36 :157-262 . Kühtreiber,J . 1934.Di ePlecopterenfaun aNordtirols .Ber .Naturwiss . Med.Ver .Innsbruc k43/44 :1-219 . Lachner,E.A .1956 .Th echangin gfis hfaun ao fth eUppe rOhi obasin . Spec.Publ .Pymatunin gLan .Fid .Biol .1 :64-78 . Lagler,K.F .1949 .Studie s infreshwate rfisher ybiology .Michigan . Lan,H .A nde r1962 .Zu rTurbellarien-Faun ade rDonau .Arch .Hydrobiol . Suppl.27 :3-27 . Lastochkin,D.A . 1943.A plai nrive rsub-divisio nint ogeomorphologica l andbiologica ldistrict so nth ebasi so fit sstructura lan dbiologica l unity.Dokl .Acad .Nauk .S.S.S.R .41 :347-50 . Lauterborn,R .1916/1918 .Di egeographisch eun dbiologisch eGliederun g desRheistrome sI-III .Sitz.-Ber .Heidelberger .Acad .Wiss .Math. - Naturwiss.Kl .Abt .B .I : (1916)Abh .6 ;II :(1917 )Abh .5 ;III : (1918)Abh .1 . Lehmann,J . 1979.Chironomida e (Diptera)au sFliessgewässer nZentralafri ­ kas.Tei lI :Kivu-Gebiet .Ostzaire .Spixian aSuppl .(Münch. )3 :1-144 . Lepneva,S.G . 1928.Le slarve sde strichoptère sd el arégio nOlonetz . Trav.d el'Expéd . Sei.d'Olonet z 6(Zoologie )5 :1-125 . Leopold,L.B. ,M.G .Wolma n& J.P .Mille r1964 .Fluvia lProcesse s inGeo - morphology.Freeman ,Sa nFrancisco .53 9p . Lévêque,C. ,C .Dejou x& A .Ilti s1983 .Limnologi ed ufleuv eBandama , Côted'Ivoire .Hydrobiologi a100 :113-141 . Likens,G.E. ,F.H .Bormann ,R.S .Pierc ee tal .1977 .Biogeochemistr yo fa forestedecosystem .Springer ,Ne wYork .14 6p . Lindegaard-Petersen,C .1972 .A necologica l investigationo fth e Chironomidae (Diptera)fro ma Danis hlowlan dstrea m (Linding A). Arch. Hydrobiol.69 :465-507 . Lotspeich,F.B .1980 .Watershed sa sth ebasi cecosystem :thi sconceptua l frameworkprovide sa basi sfo ra natura lclassificatio nsystem .Wate r ResearchBulleti n16 :581-586 . Lotspeich,F.B .& W.S .Platt s1982 .A nintegrate dland-aquati cclassifi ­ cation.In :N.B .Armantrou t (ed.),Acquisitio nan dutilizatio no f •82-

aquatic habitat inventory information.Wester n Division American Fisheries Society, BethesdaMD . Ludwig,W.B . 1932.Th ebotto m invertebrates of theHockin g River.Bull . Ohio Biol. Surv. 26:223-249 . Macan, T.T. 1957.Ephemeropter a of a stony stream. J. Anim. Ecol. 26: 317-342. Macan, T.T. 1961.A review of running water studies.Verh . Internat. Verein. Limnol. 14:587-602 . Macan, T.T. 1976.Th e communities of runningwate r inCumbria . F.B.A. Annual rep.44 : 59-67. Madoni, P. 1984.Relationshi p between ciliated protozoa and ecological zones in somewate r courses of theRive r Pobasin . Int.J . Ecol. envir. Sei. 9: 87-88. Madoni, P. 1984.Ecologica l characterization of different type of watercourses by themultivariat e analysis of ciliated protozoa populations. Arch.Hydrobiol . 100:171-188 . Maier,M.H. ,M . Takino,M.A . Basile-Martins &M.N . Cipolli 1985.Rive r typology of Sao Paulo State,Brazil .Verh . Internat.Verein .Limnol . 22: 2161-2166. Maitland, P.S. 1966.Th e fauna of theRive r Endrick. Studies on Loch Lomond, 2. Publ.Univ . Glasgow. Blackie,Glasgow . 194p . Malaisse, F. 1976. Ecologie de larivièr e Luanza. In:J.J . Symoens, Explorationhydrobiologiqu e dubassi n du lac Bangweolo et duLuapula . Cercle Hydrobiologique de Bruxelles.Vol .XVII , 2. 135p . Malicky, H. 1978.De r Temperaturgang einiger niederösterreichischer Gebirgsbäche.Wette r und Leben 30:170-183 . Mangelsdorf, J. &K . Scheurmann 1980.Flussmorphologie . Oldenbourg, München. 262p . Margalef,R . 1960. Ideas for a synthetic approach to the ecology of runningwaters . Int.Rev . Ges.Hydrobiol .45 :133-153 . Marlier,G . 1951.L abiologi e d'un ruiseau deplaine : le Smohain. Mém. Inst. r. Sei. nat.Belg . 114:1-98 . Marlier,G . 1953.Etud ebiogéographiqu e debassi n de laRuzizi ,basé e sur ladistributio n des poissons.Annls . Soc.r . zool.Belg . 84:175-224 . Marlier, G. 1954.Recherche s hydrobiologiques dans les rivières du Congo oriental II.Etud e écologique. Hydrobiologia 6:225-264 . Marlier, G. 1981.Trichoptères . In:J.J . Symoens,Exploratio nhydrobio ­ logique dubassi n du lac Bangweolo et du Luapula. CercleHydrobio ­ logique de Bruxelles.Vol .XIV , 7. 70p . •83-

Marten,M .1983 .Di eEphemeropteren ,Plecopteren ,Heteroptere nun d Coleopterende rFulda .Diplomarbeit ,Frei eUniversität ,Berlin . Meyer,J.L .& J .O'Hop .Leaf-shreddin ginsect sa sa sourc eo fdissolve d organiccarbo ni nheadwate rstreams .Am .Midi .Nat .109 :175-183 . Mills,E.L .1969 .Th ecommunit yconcep ti nmarin ezoology ,wit hcomment s oncontinu aan dinstabilit y insom emarin ecommunities :a review .J . Fish.Res .Boar dCan .26 :1415-1428 . Minckley,W.L .1963 .Th eecolog yo fa sprin gstrea mDo eRun ,Mead e County,Kentucky .Wildl .Monogr .Chestertow n11 .12 4p . Minshall,G.W. ,J.T .Broc k& T.W .LaPoin t1982 .Characterizatio nan d dynamicso fbenthi corgani cmatte ran dinvertebrat e functionalfeedin g grouprelationship s inth euppe rSalmo nRiver ,Idah o (USA). Int.Rev . ges. Hydrobiol.67 :793-820 . Minshall,G.W. ,K.W .Cummin se tal .1985 .Development s instrea m ecosystemtheory .Can .J .Fish .Aquat .Sei .42 :1045-1055 . Minshall,G.W. ,R.C .Petersen ,K.W .Cummins ,T.L .Bot ,J.R . Sedeil, CE. Cushing& R.L .Vannot e1983 .Interbiom ecompariso no fstrea mecosyste m dynamics.Ecol .Monogr .53 :1-25 . Mitis,H .vo n1938 .Di eYbb sal sTypu seine sostalpine nKalkalpenfluss . Einevorläufig eMitteilung .Int .Revu eges .Hydrobiol .37 :425-444 . Mizuno,N .& H .Kawanab e1981 .A topographica lclassificatio no fstreams , witha nintroductio no fth esyste mwidel yuse d inJapa nI .Reac h types,strea mzon ean dstrea mtyp e (Abstract).Verh .Internat .Verein . Limnol.21 :913 . Mollenhauer,D .1984 .Gewässertypologie nun dA .Thienemann sBeiträg ezu r heutigenLimnologie .Natur .Mus .114 :192-198 . Möller,B .& H .Panko w1981 .Algensoziologisch eun d saprobiologische Untersuchungena nVorfluter nde rElbe .Limnologic a13 :291-350 . Moon,H.P .1938 .Importanc eo fth esubstratu m toth einvertebrat eanimal s onwhic hfis hfeed .Ann .Rep .Avon .Biol .Res .6 :36-40 . Morariu,T. ,I .Pisot a& I .But a1962 .Hidrologi agenerala .Bucarest . Mordukhai-Boltovskoi,P.D . 1979.Zoobentho san dothe r invertebrates livingo nsubstrata .Th eRive rVolg aan dit slife .Junk ,Th eHague ,p . 235-268. Moretti,G.P .1949 .Valutazion ebiologic ade lfium ePotenz acom e esponentedéli eacqu efluvial idéli eMarche .Verh .Int .Verein ,theor . angew.Limnol .10 :335-338 . Moretti,G.P .& F .Cianficcon i1984 .Zonatio no fTrichopter apopulation s fromth esourc et oth emout ho fth eTibe rRive r (CentralItaly ,Rome) . •84-

Proceedingso fth e4t hInternationa l Symposiumo nTrichoptera ,Clemso n 1983 (Ed.J.C .Morse) .Junk ,Th eHague ,p .243-252 . Mosley,M.P .1982 .Analysi so fth eeffec to fchangin gdischarg eo n channelmorpholog yan dinstrea muse si na braide driver :Oha uRiver , NewZealand .Wate rResour .Res .18 :800-812 . Müller,K .1951 .Fisch eun dFischregione nde rFulda .Ber .limnol .Fluss - stationFreudentha l2 :18-23 . Müller,K .1954 .Di eFischbesiedlun gun ddi eregional eEinstufun gde r Fliessgewässerde rnordschwedische nWaldregion .Ber .limnol .Fluss ­ stationFreudentha l6 :51-56 . Müller,K .1955 .Produktionsbiologisch eUntersuchunge n innordschwedi ­ schenFliessgewässern .Tei l3 .Di eBedeutun gde rSee nun dStillwasser ­ zonenfü rdi eProduktio n inFliessgewässern .Repor to fth eInstitut e forFreshwate rResearc hDrotninghol m 36:148-162 . Naumann,E .1932 .Grundzüg ede rregionale nLimnologie .In :Di e Binnengewässer,Bd .11 ,Stuttgart . Newbury,R.W .1984 .Hydrologi edeterminant so faquati c insecthabitats . In:V.H .Res h& D.M .Rosenber g (eds.),Th eEcolog yo fAquati cInsects . Praeger,Ne wYork .p .323-357 . Nicolau-Guillamet,P .1959 .Recherche sfaunistique se técologique s surl a rivière 'laMassane' .Vi ee tMilie u10 :217-266 . Nielsen,A .1942 .Übe rdi eEntwicklun gun dBiologi ede rTrichopteren . Arch.Hydrobiol .Suppl .17 :255-631 . Nietzske,G .1937 .Di eKossau .Hydrobiologische-faunistisch e Untersuchungena nschleswig-holsteinische n FLiessgewässer.Arch . hydrobiol.32 :1-74 . Nikolski,G.V . 1933.O nth einfluenc eo fth erat eo fflo wo nth efis h faunao fth eriver so fCentra lAsia .J .Anim .Ecol .2 :266-281 . Noel,M.S .1954 .Anima lecolog yo fa Ne wMexic osprin gbrook . Hydrobiologia 6:120-135 . Nowicki,M .1889 .Fishe so fRive rSystem so fWisla ,Styr ,Dniest ran d Pruti nGalicja .KraAkow ,Wydz ,Krapjowy ,Poland ,i v+ 5 5p . Odum,H.T .1956 .Primar yproductio ni nflowin gwater .Limnol .& Oceanogr . 1:102-117 . Ohle,W .1937 .Kalksystemati kunsere rBinnengewässe run dKalkgehal t RügenerBache .Geol .Meer eun dBinnengew .1 :291-316 . Oliff,W.D .1960 .Hydrobiologica l studieso nth eTugel aRive rSystem . PartI :Th emai nTugel aRiver .Hydrobiologi a 14:281-385 . Oliff,W.D .1963 .Hydrobiologica l studieso nth eTugel aRive rSystem . •85-

PartIII :Th eBuffal oRiver .Hydrobiologi a 21:355-379 . Oliff,W.D .& J.L .Kin g1964 .Hydrobiologica l studieso nth eTugel aRive r System.Par tIV :Th eMoo iRiver .Hydrobiologi a 24:567-583 . Oliff,W.D. ,P.H .Kemp f& J.L .Kin g1965 .Hydrobiologica l studieso nth e TugelaRive rSystem .Par tV :Th eSunday sRiver .Hydrobiologi a26 : 189-202. Otto,A .1980 .Gewässertypologi e imländliche nRaum .Unveröff .Zwischen ­ bericht,Bundesanstal t fürGewässerkund eKoblenz :1-107 . Pattee,E .1980 .Coefficient sthermique se técologi ed equelque spla ­ nairesd'ea udouce .VII :Leu rzonatio nnaturelle .Annls .Limnol .16 : 21-41. Pawlowski,L.K . 1948.Contributio nà l asystématiqu ede ssangsue sd u genreErpobdell ad eBlainville .Pr .Lod zTo wNau k3 :5 4p . Pawlowski,L.K . 1959.Remarque ssu rl arépartitio nd el afaun e torrenticolede sCarpathes .Bull .Soc .Sei .Lett .Lodz . 3:1-54 . Pennak,R.W .& E.D .va nGerpe n1947 .Botto mfaun aproductio nan dphysica l natureo fth esubstrat e ina norther nColorad otrou tstream .Ecolog y 28:42-48 . Pennak,R.W . 1971.Toward sa classificatio no floti ehabitats . Hydrobiologia 38:321-324 . Percival,E .& H .whitehea d1929 .A quantitativ e studyo fth efaun ao f sometype so fstream-bed .J . Ecol.17 :282-314 . Percival,E .& H .whitehea d1930 .Biologica lsurve yo fth eRive rWharfe . II.Repor to nth einvertebrat e fauna.J . Ecol.17 :282-314 . Persoone,G .1978 .Proposa lfo ra biotypologica lclassificatio no f watercourses inth eEuropea ncommunities .In :Jame s& Eviso n (eds.), BiologicalIndicator so fWate rQuality .Chapt .7 :1-28 . Pomeisl,E .1953 .De rMauerbach .Beiträg ezu rLimnologi ede rWienerwald ­ bäche.Wette run dLeben ,Sonderhef t2 :103-121 . Reice,S.R . 1984.Th eimpac to fdisturbanc efrequenc yo nth estructur eo f lotieriffl ecommunity .Verh .Internat .Verein .Limnologi e22 : 1906-1910. Richardot-Coulet,M. ,P .Richou x& C .Rou x1983 .Structur ee tfontionne - mentde sécosystème sd uHaut-Rhôn e français.29 .Structur ede s peuplementsd emacroinvertébré sbenthique sd'u nancie nméandre .Arch . Hydrobiol.96 :363-383 . Richardson,R.E .1921 .Th esmal lbotto man dshor efaun ao fth eMiddl ean d LowerIllinoi sRive ran dit sconnectin g lakes,Chillicoth e toGrafton : itsvaluation :it ssource so ffoo dsupply :an dit srelatio nt oth e •86-

fishery. Bull. 111. St.nat .Hist . Survey 13:363-522 . Ricker, W.E. 1934.A n ecological classification of certain Ontario streams. Univ. Toronto Stud.biol . Ser. 37:1-114 . Roll, H. 1938.Di e Pflanzengesellschaften ostholsteinischer Fliessgewässer. Arch. Hydrobiol. 34:159-305 . Rounick,J.S . &M.J . Winterbourn 1983.Lea fprocessin g in two contrasting beech forest streams:effect s ofphysica l andbioti c factors on litter breakdown.Arch . Hydrobiol. 96:448-474 . Savage,N.L . & F.W. Rabe 1979. Stream types in Idaho: an approach to classification of streams innatura l areas.Biol . Conserv. 15: 301-315. Schalie, H. van der 1938. The naiad fauna of the HuronRiver , in south easternMichigan .Misc . Pubis.Mus .Zool .Univ . Mich. 40.8 3p . Scheele,M . 1952.Systematisch-ökologisch eUntersuchunge n über die Diatomeenflora der Fulda.Arch . Hydrobiol.46 :305-424 . Schlosser, I.J. 1982.Fis h community structure and function along two habitat gradients ina headwate r stream. Ecol. monogr. 52:395-414 . Schmassmann,W . 1955.Di e Stoffhaushaltstypen der Fliessgewässer. Arch. Hydrobiol./Suppl. 22:504-509 . Schmitz,W . 1955.Physiographisch e Aspekte der limnologischen Fliessgewässertypen. Arch. Hydrobiol./Suppl. 22:510-523 . Schmitz,W . 1957.Di e Bergbach-Zoozönosenun d ihreAbgrenzung , darge­ stellt am Beispiel der oberen Fulda.Arch . Hydrobiol. 53:465-498 . Schmitz,W . 1961.Fliesswässerforschun g -Hydrographi e und Botanik. Verh. Internat.Verein . Limnol. 14:541-586 . Schräder,T . 1959.Zu r Limnologie undAbwasserbiologi e von Talsperren- Obere Saale. Int.Revu e ges.Hydrobiol .44 :486-619 . Schubart,0 . 1953.Übe r einen subtropischen FlussBrasiliens , den Mogi-Guassu, insbesondere seine physikalischen Bedingungen wie Wasserstand, Temperatur und Sichttiefe.Arch . Hydrobiol. 48:350-430 . Schwerdfeger, F. 1975.Ökologi e der Tiere. III.Synökologie . Parey, Hamburg, Berlin. 451p . Schwoerbel,J . 1961.Di e Bedeutung derWassermilbe n für die biozönotische Gliederung. Verh. Internat.Verein . Limnol. 14:355-361 . Schwoerbel, J. 1969.Ökologi e der Süsswassertiere. Fortschr. Zoologie 20: 173-206. Scott, K.F.M. 1958.Hydrobiologica l studies on the Great BergRiver . Part 4. The Chironomidae. Trans.R . Soc. S.Afr . 35:277-298 . Sedell,J.R . &J.L . Froggatt 1984.Importanc e of streamside forests to -87-

largerivers :th eisolatio no fth eWillomett eRiver ,Oregon ,U.S.A. , fromit sfloodplai nb ysnaggin gan dstreamsid efores tremoval .Verh . Internat.Verein .Limnol .22 :1828-1834 . Sedell,J.R . &K.J .Luchess a1982 .Usin gth ehistorica lrecor da sa nai d tosalmoni dhabita tenhancement .In :N.B .Armantrou t (ed.),Acquisi ­ tionan dutilizatio no faquati chabita t inventory information.Wester n DivisionAmerica nFisherie sSociety ,Bethesda ,MD .p .210-223 . Seeger,W .1971 .Di eBiotopwah lbe iHalipliden ,zugleic hei nBeitra gzu m Problemde rsyntopische n (sympatrischens.str. )Arte n(Haliplidae ; Coleoptera).Arch .Hydrobiol .69 :155-199 . Shadin,V.l . 1956.Lif ei nriver s [Russian].Jizn ipresni hvo dSSSR , Moscow.3 :113-256 . Shelford,V.E .1918 .Condition so fexistence .In :War d& Wipple ,Freshw . Biol.Ne wYork .p .21-60 . Sioli,H .1975 .Tropica lriver sa sexpression so fthei rterrestria l environments.In :F.B .Golle y& E .Medin a (ed.), Tropicalecologica l systems.Springer ,Ne wYork .p .275-288 . Sioli,H .1982 .Tropisch eFlüss ei nihre nBeziehunge nzu r terrestrischen Umgebungun di mHinblic kau fmenschlich eEingriffe .Arch .Hydrobiol . 95:463-485 . Slack,K.V. ,J.W .Nauman n& L.J .Tille y1979 .Benthi c invertebrates ina north-flowing streaman da south-flowin gstream ,Brook sRange ,Alaska . WaterResource sBulleti n15 :108-135 . Smissaert,H.R . 1959.Limburgs ebeken .Natuurhist .Maandbla d48 :7-78 . Smith,I.R .1975 .Turbulenc e inlake san drivers .Freshwate rBiol .Assoc . Sei.Publ .29 :1-79 . Sobolev,L.N .& V.D .Utekhi n1979 .Russia n (Ramensky)Approache st o Community Systematization.In :R.H .Whittaker ,Ordinatio no fPlan t Communities.Junk ,Th eHague ,p .71-98 . SomerenV.D .va n1952 .Th ebiolog yo fTrou ti nKeny aColony .Governmen t Printer,Nairobi .11 4p . Sommani,E .1953 .I Iconcett od i 'zonaittica 'e i lsu oreal esignificat o ecologico.Boll .Pesc aPiscic .Idrobiol .N.S .7 :61-71 . Sowa,R .1961 .Th ebotto mfaun ao fth eRive rBajerka .Act aHydrobiol .3 : 1-32. Sowa,R . 1965.Ecologica lcharacteristic so fth ebotto mfaun ao fth e WielkaPuszcz astream .Act aHydrobiol .7 :61-92 . Sprules,W.M . 1947.A necologica l investigationo fstrea m insectsi n AlgonquinPark .Univ .Toront oStud .Biol .Ser .56 :1-81 . -88-

Stanford,J.A .& J.V .War d 1983.Insec tspecie sdiversit ya sa functio n ofenvironmenta lvariabilit yan ddisturbanc ei nstrea msystems .In : J.R. Barnes& G.W .Minshal l (eds.),Strea mecology .Applicatio nan d testingo fgenera lecologica ltheory .Plenu mPress .Ne wYork .p . 265-278. Statzner,B .1975 .Zu rLongitudinalzonierun geine szentralafrikanische n Fliessgewässersystemsunte rbesondere rBerücksichtigun gde r Köcherfliegen (Trichoptera,Insecta) .Arch .Hydrobiol .76 :153-180 . Statzner,B .1976 .Di eKöcherfliegen-Emergen z (Trichoptera,Insecta )au s demzentralafrikanische nBergbac hKaiengo .Arch .Hydrobiol .78 : 102-137. Statzner,B .1978 .Factor stha tdetermin eth ebenthi csecondar y productioni ntw olak eoutflow s -a cyberneti cmodel .Verh .Internat . Verein.Limnol .20 :1517-1522 . Statzner,B .1981a .Th erelatio nbetwee n 'hydraulicstress 'an dth e microdistributiono fbenthi cmacroinvertebrate s ina lowlan drunnin g watersystem ,th eSchierense ebrook s (NorthGermany) .Arch .Hydrobiol . 91:192-218 . Statzner,B .1981b .A metho dt oestimat eth epopulatio nsiz eo fbenthi c macroinvertebrates instreams .Oecologi a (Berl.)51 :157-161 . Statzner,B .1981c .Shannon-Weave rdiversit yo fth emacrobentho s inth e Schierenseebrook s (NorthGermany )an dproblem so fit sus efo rth e interpretationo fth ecommunit y structure.Verh .Internat .Verein . Limnol.21 :782-786 . Statzner,B .& B .Higle r1985 .Question san dcomment so nth erive r continuumconcept .Can .J . Fish,aquat .Se i42 :1038-1044 . Statzner,B .& B .Higle r1986 .Strea mhydraulic sa sa majo rdeterminan t ofbenthi c invertebratezonatio npatterns .Freshwat .Biol .16 : 127-139. Steffan,A.W .1960 .Phylogenetisch eTrend s inde rGattun gDryop s (Dryopidae,Coleoptera) .Int .Congr .Ent .11 :97-103 . Steffan,A.W .1965 .Zu rStati kun dDynami ki mÖkosyste m derFliesgewässe r undz ude nMöglichkeite n ihrerKlassifizierung .In :R.Tüxe n (ed.), Biosoziologie.Junk ,De nHaag .p .65-110 . Steffan,A.W .1974 .Di eLebensgemeinschaf tde rGletscherbach-Zuckmücke n (Diptera:Chironomidae )- ein eExtrembiozönose .Entomologis k Tidskrift,Supplemen t95 :225-232 . Steinbock,0 .1942 .Da sVerhalte nvo nPlanari aalpin aDan ai nde rNatu r und imLaboratoriumversuch .Mem .Ist .ital .Idrobiol .1 :63-75 . •89-

Steinmann,P .1915 .Praktiku mde rSüsswasserbiologie .1 .Di eOrganisme n desfliessende nWassers .Berlin . Stjerna-Pooth,I .1981 .Di eRoll ede rBenthosorganime nbe ide rKlassi ­ fizierungvo nFliesgewässern .Limnologic a13 ,2 :351-362 . Stoneburner,D.L . 1977.Preliminar yobservation so fth eaquati cinsect s ofth eSmok yMountains :altitudina lzonatio ni nth espring . Hydrobiologia 56:137-143 . Strahler,A.N .1957 .Quantitativ eanalysi so fwatershe dgeomorphology . Trans.Am .Geophys .Unio n38 :913-920 . Straskraba,M .1966 .O nth edistributio no fth emacrofaun aan dfis hi n twostreams ,Lucin aan dMoràvka .Arch .Hydrobiol .61 :515-536 . Stroot,Ph .1984 .Faunistiqu ee trépartitio nlongitudinal ede s Trichoptèresdan sun erivièr esalmonicol ed ebass emontagne ,e n Belgique.Hydrobiologi a 108:245-258 . Sutcliffe,D.W .6 eT.R .Carric k1973 .Studie so nmountai nstream s inth e EnglishLak eDistric tI ,I Ian dIII .Freshwate rBiol .3 :437-462 , 543-560,561-568 . Tansley,A.C .1939 .Th eBritis hIsland san dthei rVegetation .Cambridg e UniversityPress .93 0p . Taylor,B.R .& J.C .Rof f1982 .Evaluatio no fecologica lmaturit y inthre e headwaterstreams .Arch .Hydrobiol .94 :99-125 . Thienemann,A . 1920.Di eGrundlage nde rBiozönoti kun dMonard sfaunis - tischePrinzipien .Festschrif tfü rZschokk e4 :1-14 . Thienemann,A .1925 .Di eBinnengewässe rMitteleuropas .Di eBinnengewässe r 1:54-83 . Thienemann,A .1926 .Hydrobiologisch eUntersuchunge na nde nkalte n Quellenun dBäche nde rHalbinse lJasmun dau fRügen .Arch .Hydrobiol . 17:221-336 . Thienemann,A .1936 .Alpin eChironomiden .Arch .Hydrobiol .30 :167-262 . Thienemann,A .1950 .Verbreitungsgeschicht e derSüsswassertierwel t Europas.Di eBinnengewässe r 18:1-809 ,Stuttgart . Thienemann,A .1954 .Chironomus .Leben ,Verbreitun gun dwirtschatftlich e Bedeutungde rChironomiden .Di eBinnengewässe r 20,Stuttgart . Tischler,W .1949/1951 .Zu rSynthes ebiozönotische rForschung .Act a biotheoret.9 :135-162 . Towns,D.R . 1979.Compositio nan dzonatio no fbenthi c invertebratecommu ­ nities ina Ne wZealan dkaur ifores tstream .Freshwate rBiol .9 : 251-262. Towns,D.R . 1983.Lif ehistor ypattern so fsi xsympatri c specieso f •90-

Leptophlebiidae (Ephemeroptera) ina Ne w Zealand stream and the role of interspecific competition in their evolution. Hydrobiologia 99: 37-50. Tovmsend, C.R. &A.G .Hildre w 1984.Longitudina l pattern in detritivore communities of acid streams: a consideration of alternativehypo ­ theses. Verh. Internat.Verein . Limnol. 22:1953-1958 . Triska, F.J. 1984.Rol e ofwoo d debris inmodifyin g channel geomorphology and riparian areas of a large lowland river under pristine conditions: a historical case study.Verh . Intern.Verein . Limnol. 22:1876-1892 . Ueno,M . 1938.Botto m fauna of lakeAbasir i and the neighbouring waters inHokkaido .Trans . Sapporo nat.Hist . Soc. 15:140-167 . Ulfstrand, S. 1967.Microdistributio n ofbenthi c species (Ephemeroptera, Plecoptera, Trichoptera, Diptera, Simuliidae) inLaplan d streams. Oikos 18:293-310 . Ulfstrand, S. 1968.Benthi c animal communities inLaplan d streams. Oikos Suppl. 10:1-117 . Vannote, R.L., G.W . Minshall,K.W . Cummins,J.R . Sedell & CE. Cushing 1980. The River Continuum Concept. Can.J . Fish.Aquat . Sei.37 : 130-137. Verneaux,J . 1973.Cour s d'eaud e Franche-Comté (Massif du Jura). Faculté des Sciences de Besançon. 257p . Verneaux,J . 6eG . Tuffery 1967.Un e méthode pratique de détermination de la qualité biologique des eaux courantes. -Indice s biotiques -Ann . Sei.Univ . Besançon Zool. 3: 79-90. Vonnegut, P. 1937.Di e Barbenregion der Ems.Arch . Hydrob. 32:345-408 . Wachs, B. 1968.Di e Bodenfauna der Fliessgewässer inBeziehun g zu den bedeutendsten Substrattypen. Wasser undAbwasserforschun g 4:124-134 . Wallace,J.B. , J.R. Webster &W.R . Woodall 1977.Th e role of filter feeders in flowingwaters .Arch . Hydrobiol. 79:506-532 . Wallace,J.B. , J.R. Webster & T.F. Cuffney 1982.Strea m detritus dynamics: regulationb y invertebrate consumers.Oecologi a (Berl.)53 : 197-200. Ward,J.V . & L. Berner 1980.Abundanc e and altitudinal distribution of Ephemeroptera ina Rock y Mountain stream. In:J.F . Flannagan &K.E . Marshall (eds.), Advances inEphemeropter a Biology. Plenum Press,Ne w York. p.169-177 . Ward,J.V . 1981.Altitudina l distribution and abundance ofTrichopter a in a Rocky Mountain stream. Series Entomologica 20:375-381 . Ward, J.V. 1982.Altitudina l zonation of Plecoptera ina Rock y Mountain •91-

stream.Aquati c Insects4 :105-110 . Ward,J.V . &J.A .Stanfor d 1983.Th eseria ldiscontinuit yconcep to f lotieecosystems .In :T.D .Fontain e& S.M . Bartell (eds.),Dynamic so f lotieecosystems .An nArbo rScienc ePublisher s Inc.,An nArbor ,MI .p . 29-42. Ward,J.V . 1986.Altitudina lzonatio ni na Rock yMountai nstream .Arch . Hydrobiol.Suppl .74 :133-199 . Weber-Oldecop,D.W . 1970/1971.Wasserpflanzengesellschafte n imöstliche n Niedersachsen (I)+ (II).Int .Rev .ges .Hydrobiol .55 :913-967 ;56 : 79-122. Weber-Oldecop,D.W . 1977.Fliessgewässertypologi ei nNiedersachse nau f floristisch-soziologischer Grundlage.Göttinge rFlorist-Rd.-Brief e10 : 73-79. Weber-Oldecop,D.W . 1981.Ein eFliessgewässer-Typologie .Limnologic a13 : 419-426. Webster,J.R . 1975.Analysi so fpotassiu man dcalciu mdynamic s instrea m ecosystemso nthre esouther nAppalachia nwatershed so fcontractin g vegetation.Unpubl .Ph .D .thesi sUniv .Georgia ,Athens .23 2p . Webster,J.R . 1983.Th erol eo fbenthi cmacroinvertebrate si ndetritu s dynamicso fstreams :a compute rsimulation .Ecol .Monogr .53 :383-404 . Whittaker,R.H .1975.Communitie san dEcosystem .MacMillan ,Ne wYork . 387p . Whittaker,R.H .1978a .Classificatio no fplan tcommunities .Junk ,Th e Hague.40 8p . Whittaker,R.H .1978b .Ordinatio no fPlan tCommunities .Junk ,Th eHague . 388p . Wiegleb,G .1981 .Struktur ,Verbreitun gun dBewertun gvo nMakrophyten - gesellschaftenniedersächsische r Fliessgewässer.Limnologic a 13,2 : 427-448. Williams,D.D .& H.B.N .Hyne s1977 .Th eEcolog yo fTemporar yStreams . II.Genera lRemark so nTemporar y Streams.Int .Revu eges .Hydrobiol . 62, 1:53-61 . Wilser,J.L . 1937.Beziehunge nde sFlussverlaufe sun dde rGefällskurv e desNeckar szu rSchichtenablagerun g amSüdran dde sOdenwaldes .Akad . Wiss.Math .Naturwiss .Kl . (Heidelberg)37 :3-16 . Winkler,0 .1963 .Beitra gzu rKenntni sde rBodenfaun ade robere nMolda u vorde rErrichtun gde rTalsperr e inLipno .Act aUniv .Carol .Biol . 1963:85-101 . Winterbourn,M.J .1982 .Th eRive rContinuu mConcep t -a repl yt oBarmut a -92-

andLake .N.Z .J .Mar .Freshwate rRes .16 :229-231 . Winterbourn,M.J. ,J.S .Rouninc k& B .Cowi e1981 .Ar eNe wZealan dstrea m ecosystemsreall ydifferent ?N.Z .J .Mar .Freshwate rRes .15 :321-328 . Wright,J.F. ,P.D .Armitage ,M.T .Furs e& D .Mos s1984 .Th eclassifi ­ cationo fsite so nBritis hriver susin gmacroinvertebrates .Verh . Internat.Verein .Limnol .22 :1939-1943 . Wright,J.F. ,D .Moss ,P.D .Armitag e& M.T .Furs e1984 .A preliminar y classificationo frunning-wate rsite si nGrea tBritai nbase do n macro-invertebratespecie san dth epredictio no fcommunit ytyp eusin g environmentaldata .Freshwate rBiol .14 :221-256 . Zahner,R .1959 .Übe rdi eBindun gde rmitteleuropäische nCalopteryx-Arte n (Odonata,Zygoptera )a nde nLebensrau mde sströmende nWassers .I .De r Anteilde rLarve na nde rBiotopbindung .Int .Revu eges .Hydrobiol . Hydrogr.44 :51-130 . Zwick,H .1974 .Faunistisch-ökologisch eun dtaxonomisch eUntersuchunge n anSimuliida e (Diptera),unte rbesondere rBerücksichtigun gde rArte n desFulda-Gebietes .Abh .senckenb .naturforsch .Ges .533:1-116 . •93-

REFERENCESO FGENERA LLITERATUR EAN DLITERATUR EO NSTAGNAN TWATER S The* marke dreference sar eno tmentione d inth etext ,bu tcontai nusefu l information.

Aagaard,K .1986 .Th echironomi d faunao fNort hNorwegia nlakes ,wit ha discussiono nmethod so fcommunit yclassification .Holartc tEcol .9 : 1-12. Aim,G .1922 .Bottenfauna noc hfisken sbiolog i iYxtasjö n (DieBodenfaun a desSee sYxtasjön ) (Schw).Medd .fr .Kungl .Lantbruksstyrelse n236 , Stockholm. Almquist,E .1929 .Uppland svegetatio noc hflora .Act aPhytogeogr . Suec.1 :1-624 . *Alonso,M .& M .Comelle s1984 .A preliminar ygroupin go fth esmal l epicontinentalwate rbodie si nSpai nan ddistributio no fCrustace aan d Charophyta.Verh .Internat .Verein .Limnol .22 :1699-1703 . Alsterberg,G .1930 .Di ethermische nun dchemische nAusgleich e inde nSee n zwischenBoden -un dWasserkontak t sowieihr ebiologisch eBedeutung . Int.Revu eges .Hydrobiol .Hydrogr .24 :290-327 . *Alzaki,M ,A .Otsuki ,T .Fukushima ,M .Hosom i& K .Muraok a1981 .Applicatio n ofCarlson' strophi cstat einde xt oJapanes elake san drelationship s betweenth einde xan dothe rparameters .Verh .Internat .Verein .Limnol . 21:675-681 . Berg,K .1938 .Studie so nth ebotto manimal so fEsro mLake .K .dansk e Vidensk.Selsk .Naturv .Math .Avd .8 :1-255 . Berg,K .6 «I.B.C .Peterse n1956 .Studie so nth ehumi caci dLak eGribso . Folialimnol .scand .8 :1-273 . Blomgren,N .& E .Nauman n1925 .Untersuchunge nübe rdi ehöher eVegetatio n desSee sStrake nbe iAneboda .Act aUniv .Lun dN.F .Av d2 Bd .21 :6 ,5 1p . Braak,C.J.F ,te r1986 .Canonica lcorrespondenc eanalysis :a ne weigenvecto r techniquefo rmultivariat edirec tgradien tanalysis .Ecolog y67 : 1167-1179. Braarud,T .1932 .Di ehöher eVegetatio neinige rSee ni nNord-Trondela gFylk e (Norwegen).Nyv .Mag .f .Naturv .71 :73-93 . Braarud,T .& O.J .Aale n1938 .Undersokelse rove rmakrovegetasjone ni inde l Aust-Agder-vatn.Nyt .Mag .o fNaturv .79 :1-48 . *Brinkhurst,R.0 .1964 .Observation so nth ebiolog yo fth elak edwellin g Tubificidae.Arch .Hydrobiol .60 :385-418 . -94-

*Brinkhurst,R.0 .& B .Wals h1967 .Rosthem eMere ,England ,a furthe r instanceo fguanotrophy .J . Fish.Res .Bd .Canad a24 :1299-1313 . Brinkhurst,R.0 .1974 .Th ebentho so flakes .St .Martin' sPress , NewYork .19 0p . *Brinkhurst,R.0 .& B.G.M .Jamieso n1971 .Th eaquati cOligochaet ao fth e world.Olive r& Boyd ,Edinburgh .86 0p . Brundin,L .1942 .Zu rLimnologi ejausländische rSeen .Mitt .Anst . Binnenfisch.Drottningholm ,Stockholm . 20:1-104 . Brundin,L .1949 .Chironomide nun dander eBodentier ede rSüdschwedische n Urgebirgsseen.Rep .Inst .Freshwat .Res .Drottninghol m 30:1-914 . Brundin,L .1956 .Di ebodenfaunistische nSeetype nun d ihreAnwendbarkei tau f dieSüdhalbkugel .Zugleic hei nTheori ede rproduktionbiologische n Bedeutungde rglaziale nErosion .Rep .Inst .Freshwat .Res .Drottninghol m 37:186-235 . Canfield,D.E.Jr ,K.A .Langeland ,M.J .Maceina ,W.T .Haller ,J.V . Shireman& J.R.Jone s1983 .Trophi cstat eclassificatio no flake swit haquati c macrophytes.Can .J .Fish .Aquat .Sei .40 :1713-1718 . Cedercreutz,C .1947 .Di eGefässpflanzenvegetatio n derSee nau fAland .Act a Bot.Fenn .38 :1-77 . *Chacornac,J.M . 1984.Toward sa typolog yo faltitud elakes .Revu efr .Sei . Eau3 ,4 :439 . *Chapra,S.C .& H.F.H .Dobso n1981 .Quantificatio no fth elak etrophi c typologieso fNauman n (surfacequality )an dThieneman n (oxygen)wit h specialreferenc et oth eGrea tLakes .J .Gt .Lake sRes .7 :182-193 . Charlson,R.J .& H .Rohd e1983 .Factor scontrollin g theacidit yo fnatura l rainwater.Natur e295 :683-685 . Chorley,R.J . (ed.)1969 .Water ,earth ,an dman .Methuen ,London .58 8p . Dambska,I .1984 .Le schangement sobservé sdan sle slac sde sdifférent s typeslimnologique sdan sl'Oues td el aPologne .Verh .Internat .Verein . Limnol.22 :970-972 . Decksbach,N.K .1929 .Übe rverschieden eTypenfolge nde rSeen .Arch .Hydro - biol.20 :65-80 . Deevey,E.S .1941 .Limnologica l studies inConnecticut .VI .Th equantit yan d compositiono fth ebotto mfaun ao fthirty-si xConnecticu tan dNe wYor k lakes.Ecol .Monogr .11 :413-455 . Donat,A .1926 .Di eVegetatio nunsere rSee nun ddi e 'biologischen See-typen'.Ber .Deutsch .Bot .Ges .44 :48-56 . Dresscher,T.G.N .& H .va nde rMar k1976 .A simplifie dmetho dfo rth e biologicalassessmen to fth equalit yo ffres han dslightl ybrackis h •95-

water. Hydrobiologia 48:199-201 . *Dussart, B.H. 1963.Le s grands lacs d'Europe occidentale.Anné e biologique T. II:499-572 . Elster, H.J. 1958.Da s limnologische Seetypensystem, Rückblick und Ausblick. Verh. Internat.Verein . Limnol. 13:101-120 . *Elster,H.J . 1962.Seetypen , Fliessgewässertypenun d Saprobiensystem. Int. Revue ges.Hydrobiol .Hydrogr . 47:211-218 . *Elster, H.J. 1966.Übe r die limnologischen Grundlagen der biologischen Gewässerbeurteilung inMitteleuropa .Verh . Internat.Verein . Limnol.16 : 759-785. *Estrada,M . 1975. Statistical considerations of some limnological parameters in Spanish reservoirs.Verh . Internat.Verein . Limnol. 22:1849-1859 . *Forsberg, C. & S. Ryding 1980.Eutrophicatio n parameters and trophic state indices in 30 Swedishwaste-receivin g lakes.Arch . Hydrobiol. 89,1/2 : 189-207. •Griffiths, J.F. 1959.Bioclimator y and themeteorologica l services. Proc. Symp. Trop.Meteor .Africa ,Munital p Foundation andWorl d Metereological Organisation, Nairobi,Kenya :282-300 . Grigelis,A . 1985.Biologica l classification ofLithuania n lakes.Act a Hydrobiologica Lituanica 5:21-26 . Hammer,U.T . 1986. Saline ecosystems of theworld . Monographiae biologicae 59. Junk, Dordrecht. 616p . Hartmann, L. & R. Jourdan 1987.Behandlun g undVerwertun g vonProzess ­ abwässern der Kartoffelverarbeitung. Heft 19. Inst. f. Ingenieurbiologie u. Biotechn.Abw. ,Univ .Karlsruhe . Hauge,H.V . 1957.Vagnsvat n and some other lakesnea rVoss . FoliaLimnol . Scand. 9. 189p . Havas, M. 1981.Physiologica l response of aquatic animals to lowpH . In: R. Singer (ed.), Effects of acidic precipitation onbenthos . Proc. Symp. Colgate University, Hamilton,N.Y .Augus t 8-9-1980. p. 49-65.N.A.B.S . Higler, L.W.G. 1981.Beke n inNederland . Natuur &Milie u 1981, 11/12: 4-8. Higler, L.W.G. & F.F. Repko 1981.Th e effects ofpollutio n in the drainage area of aDutc h lowland stream on fish andmacro-invertebrates .Verh . Internat.Verein . Limnol. 21:1077-1082 . •96-

Hilsenhoff,W.L .& R.P .Nar f1968 .Ecolog yo fChironomldae ,Chaoboridae ,an d otherbentho s infourtee nWisconsi nlakes .Ann .ent .Soc .Am .61 : 1173-1181. Hörnström,E .1981 .Trophi ccharacterizatio no flake sb ymean so fqualita ­ tivephytoplankto nanalysis .Limnologic a13 ,2 :249-261 . Hussainy,S.U . 1969.Ecologica lstudie so fsom emicrobiot ao flake si n WesternVictoria .Ph.D .Thesis ,Monas hUniversity ,Melbourne . Hutchinson,G.E .1957 .A treatis eo nLimnology .Vol .I .Geography ,physic s andchemistry .Wiley ,Ne wYork . *Hutchinson,G.E .1973 .Eutrophicatio n -th escientifi cbackgroun do fa contemporarypractica lproblem .Am . Sei.61 :269-279 . Hutchinson,G.E .& H .Löffle r1956 .Th etherma lclassificatio no flakes . Proc.Nat .Acad .Sei .42 :84-86 . Iltis,A .1974 .Phytoplancto nde seau xnatronée sd uKane m (Tchad).VI I Structurede speuplements .Cahier sORSTOM ,sér .Hydrobiol .8 :51-76 . Iversen,J . 1929.Studie nübe rdi epH-Verhältniss e dänischerGewässe run d ihrenEinflus sau fdi eHydrophyten-Vegetation .Bot .Tidsskr .40 :277-333 . *Jaatinen,S .1951 .Bidra gtil ikännedome no md ealändsk asjöarna sstrand - vegetation.Act aBot .Fenn .45 :1-354 . Jackson,I.J .1977 .Climate ,wate ran dagricultur e inth etropics .Longman , London& Ne wYork .24 8p . Järnefelt,H .1925 .Zu rLimnologi eeinige rGewässe rFinnlands .I .Ann .Soc . zool-bot.fenn .Vanam o2 :185-356 . Järnefelt,H .1953 .Di eSeetype ni nbodenfaunistische rHinsicht .Ann .Soc . zool-bot.fenn .Vanam o15 :1-38 . Jensen,S .1978 .Samplin gmethod san dnumerica ltreatment sapplie dt oa classificationo flake si nsouther nSwede nbase do nmacrophyt ecompo ­ sition.Thesi sDept .o fPlan tEcology ,Univ .o fLund . Jensen,S .1979 .Classificatio no flake si nSouther nSwede no nth ebasi so f theirmacrophyt ecompositio nb ymean so fmultivariat emethods .Vegetati o 39:129-146 . Johnson,M.G ., J.H .Leach ,CF . Minss& C.H .Olve r1977 .Limnologica l characteristics ofOntari olake si nrelatio nt oassociation so fWalley e (Stizostedionvitreu mvitreum) ,Norther nPik e (Esoxlucius) ,Lak eTrou t (Salvelinusnamaycush) ,an dSmallmout hBas s (Micropternusdolomieui) .J . Fish.Res .Boar dCan .34 :1592-1601 . •97-

*Jonasson, P.M. 1963.Th e growth of Plumatella repens and P. fungosa (Bryozoa, Ectoprocta) inrelatio n to external factors inDanis h eutrophic lakes. Oikos 14:121-137 . *Jonasson, P.M. 1964.Th e relationship between primary production of profundalbotto m invertebrates ina Danis h eutrophic lake.Verh . Int. Verein. Limnol. 15:471-479 . *Jonasson, P.M. &J . Kristiansen 1967.Primar y and secondary production in Lake Esrom. Growth of Chironomus anthracinus inrelatio n to seasonal cycles ofphytoplankto n and dissolved oxygen. Int.Revu e ges.Hydrobiol . Hydrogr. 52:163-217 . Kansanen, P.H., J. Aho & L. Paasivirta 1984.Testin g thebenthi c lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods.Ann . Zool. Fennici 21:55-76 . Kersting,K . 1983.Bimoda l diel dissolved oxygen curves and thermal stratification inpolde r ditches.Hydrobiologi a 107:165-168 . Kuznetsov, S.I. 1970.Th emicroflor a of lakes and its geochemical activity. University of Texas Press,Austi n & London. 503p . Lamoot, E. 1977.Donnée s limnologiques sur quelques écosystèmes aquatiques caratéristiques de la région de Lamto (Côte d'Ivoire). Le milieu et la faunehéléoplanctonique . Ann.Univ . Abidjan, E.X.: 27-41. Lang, K. 1931.Faunistisch-ökologisch e Untersuchungen in einigen seichten oligotrophen bzw. dystrophen Seen in Südschwedenmi t besonderer Berück­ sichtigung der Profundalfauna. LundsUniv .Arsskrif t N.F.Avd .27 : 1-175. Larson, D.J. 1985.Structur e intemperat e predaceous diving beetle communities (Coleoptera: Dytiscidae). Holarct. Ecol. 8: 18-32. Lastockin, D. 1931.Beiträg e zur Seetypenlehre. Arch.Hydrobiol .22 : 546-579. *Leentvaar, P. 1967.Observation s inguanotrophi c environments. Hydrobiologia 29: 441-489. *Legendre, P., F. Long &A . Beauvais 1980.Ecologica l typology of a group of lakes innorthwester n Quebec.Annls . Limnol. 16: 135-158. Lenz, F. 1925.Chironomide nu . Seetypenlehre. Naturwissenschaften 13:5-10 . *Lenz, F. 1927.Chironomide n ausNorwegische n Hochgebirgsseen. Zugleich ein Beitrag zur Seetypenfrage. NytMagasi n forNaturvidenskabern a62 . Lenz, F. 1928a. Chironomiden ausNorwegische n Hochgebirgsseen. Zugleich ein Beitrag zur Seetypenfrage. NytMag .Naturvid . 66:111-192 . Lenz, F. 1928b. Ökologische Chironomidentypen. Biol. Listy 14:413-422 . Lenz, F. 1933.Da s Seetypenproblem und seine Bedeutung für die Limnologie -98-

IV.Hydrologisch e Konf. Balt. Staat. 1-13, Leningrad. Lewis,W.M . Jr. 1983.A revised classification of lakesbase d onmixing . Can. J. Fish.Aquat . Sei. 40:1779-1787 . Linkola,K . 1916. Studienübe r den Einfluss derKultu r auf die Flora in den Gegenden nördlich von Ladogasee I.Allgemeine r Teil.Akad . Sc. Fauna Flora Fenn.45 : 1-149. Lohammar, G. 1938.Wasserchemi e undhöher e Vegetation schwedischer Seen. Symb. Bot.Ups . Ill: I.Uppsala . Lundbeck, J. 1926.Di e Bodentierwelt norddeutscher Seen.Arch .Hydrobiol . Suppl. 7: 1-473. Lundbeck, J. 1936.Untersuchunge nübe r die Bodenbesiedlung der Alpenrand­ seen.Arch .Hydrobiol . Suppl. 10:208-358 . Lundh,A . 1951a. Studies on thevegetatio n andhydrochemistr y of Scanian lakes I. Higher aquatic vegetation. Bot.Notise r Suppl. 2: 1-141. Lundh,A . 1951b. Studies on thevegetatio n andhydrochemistr y of Scanian lakes III.Distributio n ofmacrophyte s and some algal groups.Bot . Notiser Suppl. 3: 138p . Margalef,R . 1958. 'Trophic' typologyversu s biotic typology, as exemplified in the regional limnology ofNorther n Spain.Verh . Int.Verein .Limnol . 13: 339-349. *Margalef,R . 1975.Typolog y of reservoirs.Verh . Internat.Verein .Limnol . 19: 1841-1848. Maristo, L. 1941.Di e Seetypen Finnlands auf floristischer undvegetations - fysionomischer Grundlage.Ann . Bot. Soc.Zool .Bot . Fenn.Vanam o 15,5 . 314p . Marshall, E.J.P. 1981.Th e ecology of a land drainage channel 1. Oxygen balance.Wat .Res . 15:1075-1085 . Mathiesen,H . 1969. Soernes plante. In:Danmark s Natur, Band 5. De ferske Vande: 237-280.Politiken s Forlag, Kopenhagen. Miyada, D. 1933.Studie s on thebotto m fauna ofJapanes e lakes:X . Regional characteristics and a system ofJapanes e lakesbase d on thebotto m fauna. Jap. J. Zool.4 :417-437 . *Montecino,V . & S. Cabrera 1984.Limnologica l pilotprojec t for the charac­ terization of temporate lakes inCentra l Chile.Verh . Int.Verein . Limnol. 22:1332-1334 . Murphy, S.M., B. Kessel & L.J. Vining 1984.Waterfow l populations and limnologie characteristics ofTaig a ponds.J . Wildl. Manage.48 : 1156-1163. *Naumann, E. 1919.Nagr a synpunkter angaende planktons ökologi.Medd . •99-

sarskildhänsy ntil lfytoplankton .Svensk .bot .Tidskr .13 :129-158 . Naumann,E .1931 .Limnologisch eTerminologie .Urba n& Schwarzenberg ,Berlin . 776p . *Naumann,E .1932 .Grundzüg ede rregionale nLimnologie .Di eBinnengewässe r Bd.11 .Stuttgart . Nygaard,G .1949 .Hydrobiologica l studieso nsom eDanis hpond san dlakes : PartII .Th equotien thypothesi san dsom eo fth elittl eknow nphyto - planktonorganisms .Biol .Skrifte r7 :1-293 . Nygaard,G .1958 .O nth eproductivit yo fth ebotto mvegetatio ni nLak eGran e Langso.Verh .Internat .Verein .Limnol .13 . Odum,E.P .1971 .Fundamental so fEcology .3r ded. ,Saunders ,Philadelphia . Ohle1958 .Di eStoffwechseldynami k derSee ni nAbhängigkei tvo nde r Gasausscheidung ihresSchlammes .Vo mWasse r25 :127-194 . Pagast,F .1943 .Übe rdi eBodenchironomide nde sLunze rUntersees .Int .Revu e ges.Hydrobiol .Hydrogr .43 :470-479 . Patalas,K .1971 .Crustacea nplankto ncommunitie s inforty-fiv e lakesi nth e ExperimentalLake sArea ,northwester nOntario .J . Fish.Res .Bd .Canad a 28:231-244 . Pearsall,W.H .1921 .Th edevelopmen to fvegetatio ni nth eEnglis hlakes , considered inrelatio nt oth egenera levolutio no fglacia llake san droc k basins.Proc .R . Soc.92 :259-284 . Pearsall,W.H .& W.H .Pearsal l1925 .Phytoplankto no fth eEnglis hlakes . Journ.Limn .Soc .Bot .97 :55-73 . *Pennak,R.W .1958 .Regiona llak etypolog yi nnorther nColorad oU.S.A .Verh . Int.Verein .Limnol .13 :264-283 . Pesta,0 .1929 .De rHochgebirgsse ede rAlpen .Binnengewässe r 8:1-156 . Stuttgart. Reiersen,J . 1942.Investigation s ofth efreshwate rvegetatio no fSouther n Troms0.Troms oMus .Aarsb .61 :2-BF . Remane,A .1934 .Di eBrackwasserfauna .Zool .Anz .Suppl .7 :34-74 . Reynolds,CS . 1984.Phytoplankto nperiodicity :th einteraction so fform , functionan denvironmenta lvariability .Freshwat .Biol .14 :111-142 . Reynoldson,T.B .1958 .Triclad san dlak etypolog y innorther nBritain . Qualitativeaspects .Verh .Int .Verein .Limnol .13 :320-330 . •100-

Ringelberg,J . 1981.Introductio nt oth eresearc harea .Hydrobiol .Bull .15 : 5-9. Rintanen,T .1982 .Botanica llak etype si nFinnis hLapland .Ann .Bot . Fennici19 :247-274 . *Rohde,W .1949 .Th eioni ccompositio no flak ewaters .Verh .Int .Verein . Limnol.10 :377-386 . Rohde,W .1958 .Primärproduktio nun dSeetypen .Verh .Int .Verein .Limnol . 13:121-141 . Rosén,G .1981 .Phytoplankto nindicator san dthei rrelatio nt ocertai n chemicalan dphysica lfactors .Limnologic a13 ,2 :263-290 . Rott,E .1984 .Phytoplankto na sbiologica lparamete r forth etrophi c characterizationo flakes .SI L22 :1078-1085 . Round,F.E .1958 .Alga laspect so flak etypology .Verh .Int .Verein .Limnol . 13:306-310 . Ruttner,F .1952 .Planktonstudie nde rDeutsche nLimnologische nSunda - Expedition.Arch .Hydrobiol. ,Suppl .21 :1-274 . *Ryder,R.A . 1965.A metho dfo restimatin g thepotentia lfis hproductio no f north-temperatelakes .Trans .Ann .Fish .Soc .94 :214-218 . Saether,O.A . 1975.Nearcti cchironomid sa sindicator so flak etypology . Verh.Int .Verein .Limnol .19 :3127-3133 . Saether,O.A . 1979.Chironomi dcommunitie sa swate rqualit yindicators . Holarct.Ecol .2 :65-74 . Samuelsson,G .1925 .Untersuchunge nübe rdi ehöher eWasserflor avo nDalarme . SvenskaVäxtsociologisk a sällskapetsHandlinga rIX :3 1p . Sauer,F .1937 .Di eMakrophytenvegetatio nostholsteinische r Seenun dTeiche . Archiv.Hydrobiol .Suppl .Bd .6 :431-574 . Savage,A.A .1982 .Us eo fwaterboatme n (Corixidae)i nth eclassificatio no f lakes.Biologica lConservatio n23 :55-70 . *Schanz,F .1984 .Chemica lan dalgologica lcharacteristic s offiv ehig h mountainlake snea rth eSwis sNationa lPark .Verh .Int .Verein .Limnol . 22:1066-1070 . Schleuter,A .1985 .Untersuchunge nde rMakroinvertebratenfaun astehende r Kleingewässer desNaturpark sKottenforst-Vill eunte rbesondere r Berücksichtigungde rChironomidae .Thesi sBonn .21 7p . Schroevers,P.J . 1966.Kontak tzwische noligotrop hun deutrop h ineine m Hochmoorgebiet.Verh .Int .Verein .Limnol .16 :612-618 . *Sprules,W.G .1984 .Toward sa noptima lclassificatio no fzooplankto nfo r lakeecosyste m studies.Verhand .Int .Verein .Limnol .22 :320-325 . Stahl,J.B . 1959.Th edevelopmenta lhistor yo fth echironomi dan dchaoboru s -101-

faunaso fMyer sLake .Invest .Indian aLake sStream s5 :47-102 . Stahl,J.B . 1966.Characteristic so fNort hAmeric aSergenti alake .Gewässe r undAbwässe r41/42 :95-122 . Steinbock,0 .1953 .Ei nneure rSeetyp :de rkryoeutroph e See.Mem .Ist .Ital . Idrobiol.7 :153-163 . Steinbock,0 .1958 .Grundsäzliche szu m 'kryoeutrophen'See .Verh .Int . Verein.Limnol .13 :181-190 . *Suzuki,S .1981 .Characteristic so fth edistributio no faquati cphycomycete s inth ebotto mmud so fJapane slakes .Environ .Pollut .Ser .A .25 : 249-257. Tailing,J.F . 1984.A novervie wo fphytoplankto nseasonalit y inAfrica n lakes.Verh .Int .Verein .Limnol .22 :1174 . Tailing,J.F .& I.B .Tailin g1965 .Th echemica lcompositio no fAfrica nlak e waters.Int .Revu eges .Hydrobiol .50 :421-463 . Thienemann,A .1913 .De rZusammenhan gzwische nde mSauerstoffgehal tde s Tiefenwassersun dde rZusammensetzun gde rTierfaun aunsere rSeen .Int . Revueges .Hydrobiol .Hydrogr .6 :243-249 . Thienemann,A .1918 .Untersuchunge nübe rdi eBeziehunge nzwische nde m Sauerstoffgehaltde sWasser sun dde rZusammensetzun gde rFaun ai n NorddeutschenSeen .Arch .Hydrobiol .12 :1-65 . Thienemann,A .1925 .Di eBinnengewässe rMitteleuropas .Ein elimnologisch e Einführung.Binnengewässe r 1:1-255 . Thienemann,A .1931 .Tropisch eSee nun dSeetypen .Arch .Hydrobiol .Suppl .9 : 205-231. Thienemann,A .1954 .Chironomu sLeben .Verbreitun gun dwirtschaftlich e Bedeutungde rChironomiden .Binnengewässe r 20:1-834 . Thunmark,S .1945 .Zu rSoziologi ede sSüsswasserplanktons .Ein e methodologische ökologische Studie.Fol .Limnol .Skand .3 . Tonn,W.M. ,J.J .Magnuso n& A.M .Forbe s1983 .Communit yanalysi s infisher y management:a napplicatio nwit hNorther nWisconsi nlakes .Trans .Amer . Fish.Soc .112 :368-377 . Torenbeek,R. ,P.F.M .Verdonscho t& L.W.G .Higle r1987 .Biologisch eeffecte n vanvergrotin gva nwaterinlaa t inDrenthe .RIN-rappor t87/20 .Rijksinsti ­ tuutvoo rNatuurbeheer ,Leersum .7 6p .+ annexes . *Tundisi,J.G . 1981.Typolog yo freservoir s inSouther nBrazil .Verh .Int . Verein.Limnol .21 :1031-1039 . •102-

Unesco1978 .Worl dwate rbalanc ean dwate rresource so fth eearth . UnescoPress . Valle,K.J . 1927.ökologisch-limnologisch eUntersuchunge nübe rdi eBoden - undTiefenfaun a ineinige nSee nnördlic hvo mLadogase e I.Act azool . fennica2 ,Helsingforsiae . Vallentyne,J.R . 1972.Freshwate r suppliesan dpollution :effect so fth e demophoricexplosio no nwate ran dman .In :N .Poluni n (ed.),Th e EnvironmentalFuture .MacMilla nPress :181-211 . Walter,H .& S.W . Breckle1983 .Oekologi ede rErd eBd .I .Oekologisch e Grundlageni nglobale rSchicht .Fischer ,Stuttgart . Ward,J.V . 1985.Therma lcharacteristic s ofrunnin gwaters .Hydrobiologi a 125:31-46 . Wiederholm,T .1980 .Us eo fbentho si nlak emonitoring .J .Wate rPoll . Contr.52 :537-547 . Wiggins,G.B. ,R.J .Macka y& I.M .Smit h1980 .Evolutionar y andecologica l strategieso fanimal si nannua ltemporar ypools .Arch .Hydrobiol./Suppl . 58:97-206 . Williams,W.D .1964 .A contributio nt olak etypolog y inVictoria ,Australia . Verh.Int .Verein .Limnol .15 :158-168 . *Yoshimura,S .1936 .A contributio nt oth eknowledg eo fdee pwate r temperatureso fJapanes elakes .Jap .J .Astr .Geophys .13 :61-120 ; 14:57-83 . •103-

APPENDIXI I

Ecologicaltype so frunnin gwate rbase do nstrea mhydraulic si n TheNetherland s - 10l+ -

HYDROBIOLOGICAL BULLETIN 18(1): 51- 57 (1984)

ECOLOGICAL TYPES OF RUNNING WATER BASED ON STREAM HYDRAULICS IN THE NETHERLANDS

LW.G. HIGLER and A.W.M. MOL

INTRODUCTION

Incommo n parlanceon espeak so f streamsan d rivers,meanin gsmalle r and larger running waters. For many purposeshowever , amor edetaile d division in runningwater s isneede dan d hereth e problemo f the definitiono f typesarises .On eo f thesepurpose s is the water quality assessment by meanso f biological criteria which requiresframe s of reference.T o avoidcircula r argumentsa thoroug h analysiso f thefactor stha t determine life conditionsfo r organisms has tob emade . Inthi sstud y we réstrictourselve st o runningwater s inTh e Netherlands, butth e method is applicable to most runningwate r systems inth eworld .

LIFE CONDITIONS IN RUNNING WATERS

Except for the largeriver sal l runningwater s inTh e Netherlands arefe d bygroun d water. Thegroun d water level in itstur n is fed by the precipitation surplusaveragin g some 200-400 mm.yr-1. This is the mainclimatologica lparamete r determiningth edischarg eo f Dutchstreams . Thecompositio n of the soilsan dth e slopeo f theterrai n form sink andsourc efunction s determining placean dquantit y of thevisibl edischarge .Th e Dutch streamsar e situated in areas with sandy soilswher e impermeable clay and loam layerspreven t thedisappearanc eo f watert o greater depths. In the hierarchical schemeo f Fig. 1th eclimatologica l and geomorphological parametersfeatur eth e Dutch situation.The y defineth echaracteristic so f

Climate and rainfall ground slope ' soil composition (d.O. J) Ceomorphology precipitation (surplus) 200-400 mm/year ___+ __ _ • ' Characteristics structure of regime properties storage capacity discharge area (Faber 1972) sources, seepage of the discharge (Horton 1945) permanence of stream area (de Vries 1977) ,L___ '' Characteristics stream dimensions water chemistry shore vegeta tion (a.o. R) —autumn shed leaves

• r stream velocity —P bottom type *. —temperatur e

aquat. v *n- 1 fauna H= Fig. 1.Schem eo f factorscontrollin g thecondition sfo r theaquati c fauna in runningwaters . J= measurefo r the slopeo f astream ;R = hydraulic radius;n = measureo f the roughness (instream sfro m 0.025t o 0.050); v= meanvelocity . - 105 -

dischargearea ssuc ha s the patterno f the branchingwate r courseso f amai nstrea man d its tributaries. Thispatter nca n bea widel y branched systemwit h numeroustributaries ,fe d init s turn by smaller tributariesetc . It canals o beforme d by astrea m ina longan d narrowvalle y with only primary tributariestha t run more or lessparalle l to themai nstream .Thes espatia l characteristics aresummarize d as'structur e of dischargearea' . The temporal characteristics, indicateda s'regim e properties', point to the yearly dischargepattern . Many streamshav elo w discharges insumme r and highdischarge s inwinte ro r spring;other shav edeviatin g dischargepattern s (FABER, 1972). At this levelo f the hierarchical systemw ear edealin gwit h phenomena like the storageo f groundwater , springs,seepag e and lastingo r stagnantdischarge . The spatial andtempora l characteristicso f dischargearea sdirectl y influence the dimensionso f streamso f which the hydraulic radius (R) isa n important mean.Togethe r with theslop eo f theterrai n (virtually theslop eo f the energy line),her erepresente d byJ , thisradiu s determinesth e streamvelocit y asindicate d byth e well-known formula of Manning.A number of other factors influenceth e streamvelocit y by meanso f the roughness(n) . In consideringth e life conditions for invertebrates inrunnin gwater sw e havet o dealwit h secondary factorssuc h as water chemistry, canopy,etc . asi sindicate d in Fig. 1. For the purposeo f thisstudy , however, wefocu so n streamhydraulics , beingth e basicparameter sfo r aclassificatio no f runningwaters .

STREAM HYDRAULICS

Manning'sformul a runsa s follows: v = 1/nj1/2.R2/3 (1) inwhic h v = meancurren t velocity (in m.s-1) n = roughness J = groundslop e R = hydraulic radius (inm )

Thefactor sdefinin gth ecurren t velocity can bedivide d into two groups.Groun d slope and roughnessar eloca l conditions, whereasth e hydraulic radiusi s the result of factorsconcernin g thetota l discharge areaan dth e amount of precipitation. Ground slopean droughnes sar etake n together asa singl e localfactor , the 'terrain factor' Ct.

Ct= 1/n.J1/2 (2)

From (1) and (2) follows:

v = Ct.R2/3 or

log R= 3/2 logv - 3/2 logC t (3)

In alogarithmi c CtR-diagram therefore thecurren t velocity isrepresente d by straight lineswit h aslop eof-3/ 2 (Fig. 2). Of thetw o components of Ctth egroun d slopeca nb e measured easily. It is the difference inheigh t between two stream localities,divide d byth edistanc ealon gth e streamcourse . The roughness (n) isexperimentall y determined asvaryin g between 0.01 and 0.05 (NORTIER and VAN DER VELDE, 1968). The extremesar efoun d in straightconcret egutter s with little resistanceo nth e one handan d in natural,meanderin g streamswit h stonesan d vegetationo nth eother . In natural streamsn ma yvar y from 0.035 to 0.05 dependingo nth e seasonan d soilconditions . - 106 -

As a consequence,ther e isa variatio n in Ctdescribe d by

Ct(max) l/n(max)-Jl1/2

A Ct = logCt(rnax ) - logCt(mj n) = 'og = log Ct(min) l/n(min)-J21/2

Ata certainlocalit y the ground slope is aconstan t factor. The natural variation of Ct,therefore , causedb y micro-geologicalfactors , may bedescribe d by

n(min) 0.050 ACt = log = log = 0.155 n(max) 0.035

0,155x scale unit log. Ct

Fig.2 . Localization of asamplin gstatio n inth e CtR-diagram (explanation inth e text).

Therefore,al l localities with the samegroun dslop e inth e CtR-diagram canb efoun d in a vertical beltwit h awidt h of 0.155 timesth e scaleuni t (Fig.2) . Thehydrauli cradiu s(R ) iscompose do f thewe t cross-sectional areao f the stream (A), dividedb yth e wet outline of thiscros ssectio n (0). Ri sno ta constant , but it varieswit hth e water level,a s variation of the water depth affects both A and 0 indifferen tways . In most streamsther e isa larg edifferenc e between maximum andminimu mwate rdepth , if measuredove r longer periods.Thi svariatio n ratedecrease srapidly , however,whe nth e - 107 -

extremes areexclude d (Fig. 3). The natural variation rateo f Ft,A Ft,o f alocalit y mayb e reduced to A RX %(Fig .2) . Owingt o the specificvalue so fA Ct andA Rx %, eachstrea m locality canb erepresente d inth e CtR-diagramb y a limited area, including x % of all natural conditions occurringo ntha t locality (hatched area in Fig.2) . The maximuman dminimu m meanvelocit y (v~max; v"mjn) ontha t very locality canb erea dfro m Fig.2 .

Waterlevel Lobith in m+ NAP Fig. 3. Waterlevel duration-curve of the river Rhine at Lobith in 1982. Sub-normal level inthi s casemean sth e number of dayswit h awate r level lower thanth e level indicated by thecurve . NAP= Normal Amsterdam Level.

APPLICATIONS FOR A TYPOLOGY OF RUNNING WATERS

If observations of alarg e number of water coursesar eplotte d ina CtR-diagram ,isolate d clusterso na world-wid e scalear e not to beexpected . All featuresinvolve dsho w agradua l variation. Obviously, water courseswit h about the samefeature sar efoun dtogethe r incertai npart s of the diagram.Whethe r isolatedo r not,grouping s of observationsenabl eu s to distinguishtype s of runningwate r which arerepresente d by blocks inth ediagram . Vertical border-lineso f these blocksseparat etype so f landscapewherea shorizonta l borderlines separatewate r courseso f different dimensions. The hydraulic radiusha sprove nt o bea usefu ltoo l todefin eth e horizontalsubdivision . Aclassificatio no f Dutch runningwate r basedo nth e methoddescribe d ispresente d in Fig. 4. A large number of data from literature andow n measurementsprovide d the meansfo r clear definitions of well-known, but sofa r woolly describedwate r typessuc ha s'larg erivers' , 'foothill brooks'o r 'lowlandstreams' . - 108 -

1 uu - --<â\

Tr1J V _.Sz :::^= - oS N 1—=vH r-t-fc =V=- \ ^_--1 . larg \ e rivers Ê <5>\ \ s \ v '0, N 1 %\ \ \ \ \ C anals \\ \ \ v \K \ \ > \ S \ 1 \ ^ smal rivers ^ V V t-VH 1—1-\- -A \— "nS —i- \ "™1 IM II 'g "A- \ \ ~: laVgèN S s \ 1 arge k s \' owland ' IUUIIIIII v\ \ \ . streams streams» s ditches \ \ \ \\\ \ \ A S \ fa Dthill \ N 1 reams \ 0,1 - lowlan -V -<* strean1S-X — _v V V V t^sr ^ \' , \ 05 -< \ \ 1^ V 2 V i \ ^ V \ \V \ \ \ \ A \ v \ N i m< irs ie s seepag e areas sprim Is \ \ \ S \ —— \ \ ,01 L , \ V 0,01 0,05 0,1 0,5 1 10 50

Ct

Fig.4 .Th e CtR-diagram,definin gtype so f runningwate r inTh e Netherlands based on measurementso fth e slopeo fth e water surface andth e hydraulic radius.Th e meancurren t velocity follows from thediagona l lines. Further explanation inth e text.

Fig. 4cover sa wid e rangeo f implications. Apart from specificwate r types,ther ear e intermediate ones. These intermediates may befoun d betweenth evertica l border-lines,e.g. betweenfoothil l brooksan d lowland streams. Anexampl e is found inth e 'Rodebeek' in the central eastern parto fth e provinceo f Limburg. Larger streamsan d riversca nfollo w apat h fromsourc et olowe r reachesrunnin gthroug h several blocks. Inou r concept therefore,a rive r cannotbelon gt oon ecertai ntype . - 109

The right part of the diagramoffer s the possibility to incorporate mountain streams, a type not present inTh e Netherlands. In Fig.4 there is a right-left gradient leadingfro mfas t runningt o stagnant waters,and ,besides ,a top-botto m gradient leadingt o nearly terrestrial systems.

BIOLOGICAL IMPLICATIONS

In the frameo f thisarticl e we shall not dealwit h detailed listso f speciesa s canb efoun d for thedifferen t categorieso f streamhabitat ,define db y theCtR-diagram .W eonl y makesom e generalremarks . No running water species is present inal l partso f the CtR-diagram.Som e havea ver y restricted distribution andar eonl y to befoun d ina smal l areao f thediagram ,ofte n only in one block. Othersar e moretoleran t andar et o befoun d intw o or more blocks.Suc h differences can befoun d within onegenus ,a si sindicate d for specieso f thecaddisfl y genus Hydropsyche (HIGLER and TOLKAMP , 1983), as well asi nhighe r taxonomie levels. In Ephemeroptera, for example, wefoun d speciesrestricte d to foothill brooks,other sonl y occurring'inlowlan d streamsan dals o aspecia l groupo f species,characteristi c in itscombinatio n for the intermediate type asmentione d before (Rodebeek). The zonationo f streams is awel l established phenomenon (ILLIE San d BOTOSANEANU, 1963; BOTOSANEANU, 1979). In thisligh t itwil l beobviou s that asuccessio no f species groupsfro m bottom right to theto p canb evisualize d in Fig.4 inaccordanc ewit h thisconcep t of zonation. In The Netherlands,w eonl y havehistorica l data about theoccurrenc e of insect larvae inth e lower stretcheso f the largerivers . Eventhen ,a successio n in largegroup so f caddis, mayfly andstonefl y larvaeca nb e demonstrated.

ABSTRACT

The factorsdeterminin g lifecondition s in runningwater sca nb earrange d ina hierarchica l scheme. Oneo f the mainfactor s isstrea mvelocity , which isdescribe d by Manning'sformula . By transformation of the formula ase to f variables isacquire dwit h which adiagra mi s constructed to contain all hydraulic conditions in runningwater . By measuringth e groundslop e andth e hydraulic radiusa t acertai n station thisstatio nca nb eplace d inth e diagram.Dat afro m Dutch streamsan d riversfor m definite clustersenablin gu s to describetype s of runningwater s onthi s base.Th e distribution patternso f streamorganism s inaccordanc ewit h stream hydraulicsca nb efi t into the diagrama s well.

REFERENCES

BOTOSANEANU, l_„ 1979. Quinze années de recherches sur la zonation des cours d'eau: 1963-1978. Bijdragen tot de Dierkunde, 49: 109-134. FABER, TH., 1972. Regimes and regime-related basin properties of some Dutch small rivers.Thesi s V.U., Amsterdam: 186 p. HIGLER, L.W.G. and H.H. TOLKAMP, 1983. Hydropsychidae as bio-indicators. Environmental Monitoring and Assessment, 3: 331-341 . ILLI ES, J. and L. BOTOSANEANU, 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistique. Mitt. Internat. Verein. Limnol., 12: 1-57. NORTIER, I.W. and H. VAN DER VELDE, 1968. Hydraulica voor waterbouwkundigen. Stam, Culemborg: 321 p. Vries,J.J .DE ,1977 .Th estrea mnetwor ki nTh eNetherland sa sa groundwaterdischarg ephenomenon .Geol .Mijnb. ,56 ;103-122 .

-111-

APPENDIXII I

Questionsan dcomment so nth eRive rContinuu mConcep t 112 -

PERSPECTIVES

Questions and Comments onth eRive r Continuum Concept

Bernhard Statzner Zoologisches InstitutI der Universität,Postfach 6380, D-7500 Karlsruhe, Fed. Rep. Germany and Bert Higler Rijksinstituutvoor Natuurbeheer, Postbus 46, 3956 ZR Leersum, The Netherlands

Statzner, B.,an d B. Higler. 1985.Question s andcomment s on the River Continuum Concept. Can.J . Fish. Aquat. Sei.42 : 1038-1044. The River Continuum Concept (RCC)i s a generalized conceptual framework for characterization of pristine runningwate r ecosystems.O fth e numeroustenet s ofth econcep tw eparticularl y reevaluatedth e following: biological analogueso fenerg y equilibrium andentrop y inth ephysica lsystem ; maximizationo f energy consumption through continuous species replacement over ayear ; absence of succession in stream ecosystems,whic h can thus beviewe d ina time-independen t fashion; and maximization of biotic diversity inmidreache so f streams asa resul t ofth e occurrence ofhighes t environmental variability there together with spatial abundance shiftso f insects, molluscs,an dcrustaceans .Whe n emphasis isplace do n rapid changes in the downstream hydraulics dependent on discharge and slope (both of which are expressed by stream order inth eRC C and areke yfactor s of theconcept ) ando n results from tropical studies, some ofthes e tenets arepartl y refuted ornee d extension. Someo fthe m arei nconflic t withth e current state of knowledge in other domains of stream ecology or are atleas t open tovariou s interpre­ tations. Therefore, weadvocat e modifications ofth e theoretical background ofth e RCC.

Leconcep t decontinuu m du milieu fluvial (CCMF) estu ncadr econceptue l généralisé pour lacaractérisa - tion des écosystèmes lotiques vierges. Parmi les nombreux principes de ce concept, les auteurs ont réévalué en particulier lessuivant s : lesanalogue s biologiques de l'équilibre énergétique etd e l'entropie dans lesystèm e physique; lamaximalisatio n del aconsommatio n d'énergie parl eremplacemen t continu des espèces aucour s d'une année; l'absence desuccessio n dans lesécosystème s lotiques qui peuvent donc être considérés indépendamment dutemps ; etl amaximalisatio n del adiversit é del afaun e etd e la flore dans lessection s mitoyennes de cours d'eau, maximalisation dueà l a présence d'une variabilité environnementale optimale enplu s devariation s spatialesd el'abondanc e d'insectes,d emollusque s etd e crustacés.Certain sd ece sprincipe s sonte nparti e réfutéso udoiven têtr eélargi squan do nme t l'accent sur lesvariation s rapides del'hydrodynamiqu e des eaux d'aval quidépen d dudébi t etd el apent e (ces deux facteurs-clés du CCMF sont exprimés selon lapositio n du cours d'eau dans leconcept) ,e tsu r les résultats d'études du milieu tropical. Quelques-uns dece s concepts entrent en conflit avec les connaissances actuellessu rd'autre s aspectsd el'écologi e lotiqueo ua umoin speuven têtr einterprété sd ediverse sfaçons . Les auteurs recommandant donc des modifications des éléments théoriques duCCMF .

ReceivedAugust 10, 1984 Reçule 10août 1984 Accepted January 29, 1985 Accepté le29 janvier1985 (J7909)

he question of how headwater and downstream eco­ 1982; Hauer and Stanford 1982; Taylor and Roff 1982; systems vary in structure and/or function was and re­ Winterbourn 1982; Cole 1983;Gra y et al. 1983;Rounic k and mains a central issue of running water ecology. At the Winterboum 1983; Stanford and Ward 1983;War d and Stan­ 1 T beginning of the 1970's a group of North American ford 1983; Townsend and Hildrew 1984 ).Recen t contributions streamecologist s started ane w approach tothi squestion , which from the RCCproponent s (Cumminse t al. 1983; Cushinge t al. resulted inth e RiverContinuu m Concept (RCC)(Vannot e etal . 1983; Minshall et al. 1983; Bruns et al. 1984) modify some 1980).Th e authorso f the conceptconside r ita sa framewor k for ideas of Vannote et al. (1980), but generally support the RCC. a characterization of pristine running water ecosystems, "de­ From personal discussions and unpublished manuscripts we scribing the structure and function of communities along a river gather that further modifications and clarifications of the RCC system" in relationship to the abiotic environment. The RCC stimulated immediate comment and avid discussion (Winter- 'Paperdelivere da tth eSI Lmeetin gi nLyo n 1983. Herean di nothe r bourn et al. 1981; Barmuta and Lake 1982; Culp and Davies casesw erefe r toth eora lpresentatio n and theabstract . Can. J.Fish. Aquat. Sei., Vol. 42,1985 1038 - 113 -

can be expected from its proponents (e.g. Sedell and Froggatt continuum." And, afac t we regard as very important, the RCC 1984; Cummins et al. 1984).2 isno trestricte d toa certai n geographical area, i.e. weconside ri t During an analysis of the information available on the RCC a concept of worldwide applicability. we realized that some of its basic assumptions or tenets, as we Classification of the benthic invertebrates into functional interpret them, affect the domain of stream ecology to agreate r feeding groups (Cummins 1974) is a fundamental attribute of degree than is evident at first glance and certainly more than is the RCC, and stresses the importance of ecological functions. discussed in the above papers. Some tenets are atvarianc e with We applaud this approach, which, however, poses some our view of the current state of knowledge. Other assumptions practical problems: the diet of a macroinvertebrate species can can be interpreted in various ways and require clarification. be varied, depending on age (e.g. Schröder 1976; Fuller and We will discuss some of these assumptions briefly, concen­ Stewart 1977)a swel l aso nsit e(e.g . Martinson andWar d 1982; trating particularly on five tenets: biological analogues for (1) Williams and Williams 1982). energy equilibrium and (2) entropy pattern in the physical Special problems are posed when ecological study involves system; (3) maximization of energy consumption through assumptions about unperturbed stream conditions, because our continuous species replacement over a year; (4) absence of knowledge of the ecology of pristine headwater streams is succession in stream ecosystems, whichca n thusb eviewe d ina scarce and of pristine rivers is almost nonexistent (see Horwitz time-independent fashion; and (5) maximization of species 1978; Sedell and Luchessa 1982). Hence, such an approach is diversity in midreaches of streams as aresul t of the occurrence necessarily based to some extent on speculation. We explicitly of the highest environmental variability there and spatial welcome the RCC's endeavour to describe natural stream abundance shifts of insects, molluscs, and crustaceans. ecosystems, since in most cases this may be the most appropri­ The aim of this paper ist o suggest somemodification s inth e ate way to illustrate the deviations of our "modern" streams theoretical background of the RCC. But first we would like to from their historic nature. stress that we accept many parts of the RCC as they stand and Today, most lower reaches of streams have been radically respect the scientific ideas that our North American colleagues changed by human activities. The original condition of certain have compiled in their framework. stream systems in North America have been demonstrated ina fascinating way by Sedell and Froggatt (1984) and Triska General Remarks on the RCC (1984): riparian trees from eroded banks formed large organic debris dams, blocking the channel, creating lakes, new side Before we deal with the five RCC tenets mentioned above, channels, and so on. A similar situation occurred in Europe. some of the general aspects of the concept as well as the Behning (1928)describe d auniqu ebiocoenosi s ontree swashe d limitations contained in it will be briefly outlined and com­ into the Volga. And there is historical evidence that in the mented on. twelfth century, servants on horseback had to guide ships The main goal of the RCC is to link fluvial geomorphic through theOde r inorde rt oavoi d collisions withth e dangerous processes, physical structure, and the hydrologie cycle to oak trees lying in the river (Herrmann 1930). Besides the main "patterns of community structure and function and organic channel, smallerone soccurre d withflow characteristic s resem­ matter loading, transport, utilization and storage along the bling those in reaches further upstream (Krause 1976). Similar length of a river." This is very expressively illustrated in conditionshav ebee ndescribe d inth eAmazo n (Junk 1982;Siol i Vannote et al. (1980, Fig. 1),i nwhic h theinfluenc e of riparian 1982) and the Congo (Stanley 1874-77). This "original state" vegetation, the statuso ftrophy , load, transport, andth erelativ e of larger pristine rivers was not considered in Vannote et al. importance of functional feeding groups (shredders, collectors, (1980): thus, we will discuss its consequences for the RCC etc.) is related to stream order (Leopold et al. 1964) as an below. expression of the physical component. However, as stream order is not, in any case, a meaningful description of the physical environment (Gregoryan dWallin g 1973),i tshoul db e On Five RCC Tenets regardedonl ya sa nindicatio no fth erelativ epositio no fa strea m reach within the entire running water system. A physical Tenet I: Energy Equilibrium of the Physical System and characterization of each reach under study must therefore be Biological Analogue added. In our opinion the central statement of the RCC is that The RCC as published in 1980 includes qualifications about "biological communities should become established which certain environmental situations. Some of the criticisms of the approach equilibrium with the dynamic physical conditions of RCC sofa r published areno tappropriat e whenthes e limitations the channel" (Vannote et al. 1980, p. 132). To understand this and modifications (Vannote et al. 1980) to the RCC are taken statement we must go back to Leopold et al. (1964, p. 266 ff) into account: (i) the RCC has been developed for natural, unperturbed stream ecosystems; (ii) streams at high elevations who discussed in detail the physical dynamic equilibrium of and latitudes, xeric regions, and deeply incised valleys may streams: power expended per unit length of a channel and per deviate from the general pattern with regard to autotrophy/ unitare ao fth ebe do f achanne l (Table 1) ar eexpecte d toten dt o heterotrophy; (iii) tributaries entering the main stream have uniformity. Amoda l value of central tendency between thetw o localized effects ofvaryin gmagnitud edependin g onth evolum e will lead to a longitudinal equilibrium profile of the channel. and the nature of the input. Recently, Mangelsdorf and Scheurmann (1980) took a physical-analytical approach to the question of the equilibrium The RCC does not particularly deal with the various typeso f sources (limnocrene, helocrene, rheocrene) and mouths (delta, profile, giving examples and discussing the situation in streams estuary) of stream systems (see Fig. 3) nor does it mention that have almost reached or are far from their equilibrium natural lakes that occupy intermediate positions on the "river profile. They stress that tectonics, lithology, and climate determine the longitudinal profile of each running water in a 2See also Minshall et al. in this issue (Ed.). characteristic way. Thus, for example, theRhin eha sthre e base

Can. J. Fish. Aquat. Sei., Vol. 42, 1985 1039 111+ _

which is expended as frictional heat energy, is "of great importance as energy input in biologic communities." There­ fore the tendency toward uniformity of energy expenditure in river systems will help to explain the stability and diversity of stream communities. Are these ideas covered by the following RCC statement: "The tendency of the (physical) river to maximize the efficiency of energy utilization and the opposing tendency toward a uniform rate of energy use" (Vannote et al. 1980, p. 131), which is another way to express the dynamic equilibrium condition of a channel, has an analogue in the

1000 1200 trade-off of the biological system between the tendency "to nver-km make most efficient use of energy inputs"(e.g . through resource FIG. 1. Rough slope curve of theRhin e and the Neckar (according to partitioning of temperature) and the tendency "towards a Mangelsdorf and Scheurmann 1980). The Rhine has three base levels: uniform rate of energy processing throughout the year" (Van- lake level of Lake Constance (its depth is indicated by the two loops), note et al. 1980, p. 134)? And what is the meaning of "a slate formation at Bingen, and sea level at the mouth (indicated byth e tendency for reduced fluctuations in energy flow" of "river thin straight line). The arrow points toa detai l inth e slope curve ofth e ecosystems" (p. 133) or a tendency of "stream ecosystems ... Neckar above Heidelberg (according to Wilser 1937). towards uniformity of energy flow on an annual basis" (p. 134) (Vannote et al. 1980)? Does this imply an energetic unity of the levels (Fig. 1): Lake Constance, Bingen (due to slate), and, physical and biological system? If so, the annual variations in finally, the sea, i.e. at present the Rhine is approaching an physical energy flow (e.g. discharge) must be counterbalanced equilibrium profile in three sections. This is due to the very by the biological energy flow in order to reach uniformity on "turbulent" history of the Rhine, into which other basins were the ecosystem level (= abiotic + biotic energy flow tend to incorporated (Quitzow 1976-77). The Neckar is included in uniformity). Fig. 1. If we take a closer look at its profile above Heidelberg, Since these energy statements have a great impact on the in an area with a high tectonic diversity, the influence of theoretical background of stream ecology, they require clarifi­ location-specific events on a stream profile can be demon­ cation by its authors. strated. These two examples show that empirical-statistical From the above it iseviden t that the energy expenditure of the models of the physical state of a stream system cannot be used physical system plays an important role in the RCC. However, without checking if the models are valid for these streams. recent contributions on the RCC have not concentrated on System-characteristic runoff patterns, which are assumed to hydraulics. For example, only a short sentence in Minshall et al. modify the progressive and predictable change in the physical (1983 ,p . 18) was devoted tothi s subject. Thus, we used the data system (Minshall et al. 1983), will further complicate the RCC. from the 16 stations investigated in that study to calculate some In Europe, 60 different types of runoff patterns are characterized simple physical parameters such as power expended per unit of (Grimm 1968), which can be altered on the microscale by basin length and area, shear stress, and Froude number, which gives shape and relief (Gregory and Walling 1973, fig. 5.10). an indication of turbulence in streams (streaming or shooting In principle, however, it can be stated (Mangeldorf and flow; see Table 1 for formulae). No modal value of central Scheurmann 1980, p. 148) that a stream does tend towards that tendency between power/reach and power/area is indicated by profile at which, for a given discharge, the material imported the downstream pattern of these parameters (Fig. 2). Neither do will be transported. If material input and transport capacity are Froude number and shear stress exhibit uniform tendencies not in equilibrium the stream starts to erode or to accumulate. (Fig. 2). The causes of this may be that (i) available discharge Generally, a stream with a source in the mountains and no addi­ data are annual means and not bankfull discharges, (ii) the tional base level along itscours e to the mouth can then be divided streams studied were not within the limits set by the dynamic into three sections: an upper reach, where erosion isdominant ; a equilibrium theory of streams, (iii) in three of the four study middle reach, which represents a zone of transition; and a lower sites the lowermost stations did not receive water from the upper reach, where accumulation prevails. Since the ratio of material stations, and (iv) the location-specific lithology and geomorph- input to transport capacity is not constant at a given point of ology modified the general tendency expected at several the stream over time — in addition to more regular annual stations; such atendenc y is, of course, difficult todiscer n at only variations, irregular episodic changes occur (Bergstrom 1982; four stations over stream reaches 35-57 km long. Kelsey 1982) — the limits between these three reaches shift To demonstrate the relationship between stream geomorphol- upstream and downstream according to discharge and material ogy (e.g. slope), the physical properties of flow near the stream load. Hence, the reach with the highest dynamics is the middle bottom, and aquatic invertebrate ecology, we will introduce one where the slope levels off. In this area natural streams are another parameter here: the thickness of the laminar sublayer frequently braided at first and then start to meander. Where a above the stream bottom. Distribution patterns of benthic stream is braided, there is a frequent decrease or increase in invertebrates are related to this indicator of the actual forces channel number and a variety of channel characteristics, acting at the stream bottom, i.e. "hydraulic stress" (Statzner depending on the discharge (Mosley 1982). 1981a, 1981b). This sublayer equation (formula 5 in Table 1) We are not sure whether biological consequences of the incorporates, in principle, the same parameters as the Manning dynamic equilibrium of a stream discussed by Curry (1972. formula (6 in Table 1), which can be transformed into the p. 13), in a paper cited in the RCC under the heading sublayer equation and vice versa (Smith 1975). If the Manning "Derivation of the concept." are implicitly included in the RCC formula is written differently (6') and compared with formula 5, or not. Curry considered that the energy of the physical system. it becomes evident that the thickness of the laminar sublayer is

1040 Can. J. Fish. Äqual. Sei., Vol. 42, 1985 115 -

Froude power/rrr shear stress TABLE 1. Formulae used for the expression of physical pat­ [300 ternsalon gth ecours eo f streams (notetha tth eMannin g formula (6) is written for wide channels with a simplified roughness parameter).

_ QgsP (1) Pi = QgSp (2) P w

— U (3) T0 = gDSp (4) Fr Vg~D (\2D\ 11.5v5.7 5 log (5) 5' - K r" ' 5 U /const. £>2/3\2

(6) (6') 1 - '' rP S \ U ) FIG. 2. Parameters for energy expenditure (see Table 1 for formulae NOTE: D = channel depth (m), Fr = Froude number, g = andunits ) atth e 16RC C stations considered by Minshall et al. (1983). acceleration due to gravity (m/s2), P. = power per unit length Notetha t nounifor m patterns emerge on thewa y downstream (x-axes: of a channel (W/m), P2 = power per unit area of a channel stream orders), if the complete set of data is considered. 2 (W/m ), Q = discharge (m/s), rp = roughness of channel bottom(m) , 5 = slope(m/m) , U= meancurren tvelocit y(m/s) , delta w = channel width (m), 8' = thickness oflamina r sublayer (m), v = kinematic viscosity (m2/s), p = density of water (kg/m3), 2 T0 = shear stress (N/m ).

also related to slope (Statzner 1981a): an increase in slope helocrene 1st transition in hydraulic stress should reduce the thickness of the laminar sublayer, hence raising the hydraulic stress on the stream bottom and vice versa. limnocrene 2nd transition in hydr. stress estuary We have thereby linked a central tendency of microhabitat large-scale discontinuities transition characteristics in a reach ("hydraulic stress") to a macrohabitat in hydr. stress n ,salinit . y characteristic ("slope"): thelatte r "are major determinants of the \ S \ \> * - * types of microhabitats," to which fish as well as invertebrates respond (Bovee 1982, p. 3). It should be noted here that these FIG. 3. Some typical changes in the central tendency of habitat formulae (5, 6, 6') as written in Table 1ar e not applicable to all characteristics from the source to the mouth in a hypothetical pristine hydraulic situations found in natural streams (Bovee and stream.No tal lo fth ecomponent s shown hereca nb eo rmus tb epresen t in a stream system. Milhous 1978; Statzner 1981a), and they are used here as vehicles to elucidate some of the physical patterns one can expect along a stream course. proposed in Fig. 3 obviously does not represent a "continuous" or "intergrading" gradient as dictated by the RCC (Vannote et Summing up the above, we suggest the following character­ al. 1980; Cushing et al. 1983), and variations on the microscale ization of an "ideal" or "standard" pristine running water course as well as lakes and other additional base levels will complicate (Fig. 3) to which real streams can be compared. The source and matters much more. Thus, the analogies between the physical the first part of its effluent are frequently characterized by and the biological equilibrium of streams cannot be as simple as relatively low hydraulic stress. A transition zone is followed by suggested by the RCC. a reach of high hydraulic stress, which, after the next zone of transition at the break-point of the slope curve (we regard the Tenet II: Entropy Patterns values of bed slope, hydraulic slope, and energy slope as iden­ tical), is then followed by a zone of lower hydraulic stress. In addition to energy statements discussed above, some Further downstream, numerous large-scale discontinuities of clarification is required about a statement on entropy: from the hydraulic stress occur. How the mouth of a stream system headwaters to the mouth there is a constant gain in the physical entering the sea is developed depends mainly on the material variable "entropy." Vannote et al. (1980, p. 132) postulate that exported by the stream and the transport capacity of the marine "the biological organization in rivers conforms structurally and component, including tidal amplitude and other currents (Man­ functionally to kinetic energy dissipation patterns of the gelsdorf and Scheurmann 1980). The role of the stream in this physical system." context has been illustrated in "large-scale experiments": Does this imply a characteristic tendency in biological entropy reduction of material transported by the stream due to artificial from the source to the mouth of a stream? The longitudinal dams reduces the area of the original delta (Baxter 1977). The organization of the gross photosynthesis/respiration ratio in the main types of mouths are estuaries and deltas (Fig. 3), and it is stream (thermodynamic concept of entropy) or the species di­ important to note that the physical characteristics of the stream versity (e.g. Shannon index: entropy concept of information influence in part the salinity at the mouth of the stream. theory) can serve as indicative parameters. Both are considered We conclude that the pattern of physical parameters as in the RCC (Vannote et al. 1980, fig. 2), and in contrast with

Can. J. Fish. Aqua. Sei., Vol. 42, 1985 1041 - 116

the constant entropy gain in the physical system, both show of this, succession in stream ecosystems is absent and these increasing as well as decreasing tendencies on the way down­ systems can be viewed in a time-independent fashion. stream. If we accept cataclysmic events as a factor that causes gains Or does the entropy statement imply that the biological and losses of species, then we might expect that the biological communities will adjust to the physical entropy pattern through community in the stream is reestablished afterwards by means energy consumption and processing, resulting in similar tenden­ of succession (see Fisher 1983) parallel to that in the terrestrial cies in the biological entropy in every reach of the stream? This environment (e.g. after landslides, wildfires, or volcanism). is, of course, a usual tendency of organisms, since "living In our opinion, succession cannot, therefore, be rejected in systems" are "negentropic" (Fränzle 1978). stream communities. As a consequence, stream ecosystems We believe that the absence of this theoretical background cannot always be viewed in a time-independent fashion. And we will not mean a loss in significance of the RCC; thus, we suggest have evidence from long-term studies that time invariance does omitting the above statement on entropy. not occur: this is demonstrated for insects (lilies 1978, 1982) and fish (Grossman et al. 1982). While discussing organic Tenet III: Temporal Sequence of Species Replacement and matter budgets for stream ecosystems, some authors of the RCC Utilization of Energy Inputs drew a similar conclusion in a recent paper (Cummins et al. 1983). After a species has completed its growth "it is replaced by other species performing essentially the same function ... It is Tenet V: Pattern of Biological Diversity this continuous species replacement that functions to distribute the utilization of energy inputs over time" and results in a This tenet of the RCC, discussed at some length, states that composite species assemblage tending to "maximize" energy high environmental variation results in high biotic diversity. consumption (Vannote et al. 1980, p. 134). This tenet may be This concept was actually first formulated early in this century applicable only to stream systems in geographical zones subject by Thienemann in one of his biocoenotic principles (see Hynes to distinct seasonal variations in abiotic factors. 1972, p. 234). A temporal sequence of species replacements, such as In Vannote et al. (1980) the variation of the environment is postulated by the RCC based on experience from North discussed using the example of the diel water temperature America, has already been rejected by Winterboum et al. ( 1981 ) amplitude, which is certainly highest in the midreach of a and Towns (1983) for streams in New Zealand. In equatorial natural stream in temperate climates. The RCC indicates that the regimes, all principal species of a stream system are present biological diversity is therefore also highest in the midreach over the whole year. This is clearly demonstrated by emergence (Fig. 4D). However, if we include the annual amplitude of the data of four insect groups from a stream situated 2°S in Zaire water temperature (i.e. as a second environmental factor), the (Zwick 1976; Statzner 1976; Lehmann 1979; Kopelke 1981); no highest variability no longer occurs in the midreach of our complete temporal replacement occurs, although several spe­ stream. And it is very improbable that all other factors cies show cyclic patterns. The terrestrial vegetation in this mentioned by the RCC, such as riparian influence, substrate, latitude does not exhibit a distinct phenology comparable with flow, and food, show their highest variability exactly in the that of temperate zones, but periodic patterns obviously do midreaches of streams (see also the conclusion at the end of occur (Dieterlen 1978). This suggests some seasonality in the tenet I). The latter holds especially true if we include non- input of course organic material into the stream communities, temperate climates. Tropical streams may have very low diel which is probably processed faster in the tropics than in and annual temperature amplitudes in their middle and even temperate climates (Dudgeon 1982). The question is whether lower reaches (e.g. Sioli 1975; Statzner 1975). such stream communities near the equator have developed other A second explanation of the RCC for the maximum of species possibilities to "maximize" energy consumption. Fittkau ( 1973) diversity in the midreach of streams is the convergence of two suggests that the high efficiency of energy utilization is linked to vectors that illustrate shifts in spatial distribution (Vannote et a high species number and a relatively low abundance of each al. 1980, p. 135): insects are believed to have become aquatic species in Central Amazon streams which are scarce in nutrients. first in headwater streams, while molluscs and crustaceans have Another question is whether the species assemblage of a reached streams from the marine environment through the stream reach really plays the role postulated by the RCC. Mini­ mouth of streams. Later, insect abundance shifted downstream mization of leakage (export of organic compounds) from a and mollusc and crustacean abundance shifted upstream. stream reach is another way to express maximization of energy The confluence of these migratory vectors might cause high consumption. Recent studies have shown that leakage is diversity (e.g. Shannon index) in the midreach only if insects reduced under normal discharge conditions if the invertebrate shifted at the same speed downstream as molluscs and crusta­ fauna is destroyed in experiments or in computer simulations ceans shifted upstream, but not during the phase of complete (Wallace et al. 1982; Webster 1983; see also Meyer and O'Hop overlap of the abundance patterns (Fig. 4A-4C). We see no 1983), i.e. macroinvertebrates decrease the efficiency of stream evidence to suggest that these conditions are fulfilled in nature, ecosystems. especially not in most streams. On the other hand, existing evidence shows that, excluding effects of pollution, diversity in streams may change drastically bearing no relation to the Tenet IV: Time Invariance and Absence of Succession in Stream Ecosystems "order" of that stream (Statzner 1981c) or that diversity is almost constant throughout different "orders" (Minshall et al. Vannote et al. (1980, p. 135) stated that the temporal change 1982). of the biological system of a stream "becomes the slow process A large part of the discussion of this topic dealt with benthic of evolutionary drift" and the community "gains and loses macroinvertebrates, which, of course, contribute only part of species in response to low probability cataclysmic events and in the complete community diversity. It is, for example, a response to slow processes of channel development." As a result well-known fact (and also shown by Vannote et al. 1980, fig. 1)

1042 Can. J. Fish. Äqual. Sei., Vol. 42, 1985 - 117 -

abundance ab placed emphasis on gross photosynthesis andrespiratio n ando n A the status oforgani c matter and the corresponding functional ,Q.\I organization of the community, i.e. on points that we evaluate as major objectives of the RCC. None of these is directly restricted by the recommended modifications. Acknowledgements source mid reach mouth s The "Deutsche Forschungsgemeinschaft" provided financial support D AT.diversity Q for a visit of B.S. to Corvallis (Oregon), where the ideas presented in annual AT _ — - - this paper were delivered in a seminar lecture in July 1983. Various proponents of the RCC as well as several other colleagues discussed several ofth e above ideas with usi na nope n and friendly atmosphere. V. H. Resh and J. Collins (Berkeley) and an anonymous reviewer gave very useful comments on an earlier draft ofth e manuscript. This should not imply that the ideas presented here are always accepted byth e above colleagues. Liz Mole (Weinheim) provided her linguistic advice. Allthi s help is gratefully acknowledged. FIG. 4. (A-C)Hypothetica labundanc edistributio no fInsecta , Crus­ tacea, and Mollusca shifting downstream or upstream, respectively, References and the consequences for a diversity index (e.g. Shannon), which is highest (arrow) where the abundance of all species is the same. (A) BARMUTA, L. A., AND P. S.LAKE . 1982. On the value of the River Continuum Concept. N.Z. J. Mar. Freshwater Res. 16: 227-229. Beginning ofshift , both groups shifting with the same speed; (B) BAXTER, R. M. 1977. Environmental effects of dams and impoundments. completeoverlap ,bot hgroup sshiftin g withth e samespeed ; (C) Insecta Annu. Rev. Ecol. Syst. 8:255-283 . shifting fasterdownstrea mtha nCrustace aan dMollusc aupstream .(D ) BEHNING, A. 1928. Das Leben der Wolga. Binnengewässer 5: 1-162. Development of thedie l andannua l watertemperatur e amplitudean d BERGSTROM, F.W . 1982. Episodic behavior in badlands: its effects on channel the diversity, as suggestedb y the RCC, from the sourcet o the mouth of morphology and sediment yield, p. 59-66. InF . J. Swanson, R.J . Janda, astream . Seetex tfo r discussion of thesepatterns . T. Dunne, and D. N. Swanston [ed.] Sediment budgets and routing in forested drainage basins. U.S. Forest Service, Portland, OR. BOVEE, K. D. 1982. Aguid e to stream habitat analysis using the instream flow that plankton develops mainly in the lower reaches of streams, incremental methodology. U.S. Fish and Wildlife Service (FWS/OBS- andth enumbe ro f fish species increases there also.Thi swill ,o f 82/26), Washington, DC. 248 p. course, influence thediversit ypatter no fth ecomplet ecommun ­ BOVEE, K. D., AND R.T . MILHOUS. 1978. Hydraulic simulation in instream flow studies: theory and techniques. U.S.Fis h and Wildlife Service ity, which is probably atit shighes t inth e lower reacheso f (FWS/OBS-78/33), Fort Collins, CO. 143 p. streams,wher eth elarge-scal e discontinuities inhydrauli c stress BRUNS, D. A, G. W. MINSHALL, C. E. CUSHING, K. W. CUMMINS, J. T. occur (Fig. 3). Furthermore, the environmental variability of a BROCK, AND R. L. VANNOTE. 1984. Tributaries asmodifier s ofth e river particular physical structure may influence the diversity of one continuum concept: analysis bypola r ordination and regression models. group (e.g. insects) in a different way than that of other groups Arch. Hydrobiol. 99: 208-220. COLE, G.A . 1983. Textbook of limnology. 3rd ed. C V. Mosby, St. Louis, (e.g. fish) (Schlosser 1982). Toronto, London. 401 p. CULP, J. M., AND R. W. DAVIES. 1982. Analysis oflongitudina l zonation and the river continuum concept inth eOldman-Sout h Saskatchewan River Conclusion system. Can. J. Fish. Aquat. Sei. 39: 1258-1266. CUMMINS, K. W. 1974. Structure and function of stream ecosystems. The five tenets of the RCC discussed above areope nt o Bioscience 24: 631-641. various interpretations, need extension, orar e unexpectedo r CUMMINS, K. W., W. G. MINSHALL, J. R. SEDELL,C. E. CUSHING, ANDR. C. refuted by the current state of knowledge. The physical PETERSEN. 1984. Stream ecosystem theory. Verh. Int. Ver. Limnol.22 : parameters in streams obviously do not exhibit acontinuou s or 1818-1827. CUMMINS, K. W., J. R. SEDELL, F. J. SWANSON, G. W. MINSHALL, S. G. intergrading gradient (tenet I)i nth edownstrea m direction (Fig. FISHER, C. E. CUSHING, R. C. PETERSEN, AND R. L. VANNOTE. 1983. 3). Thus, biological analogues of the energy equilibrium in the Organic matter budgets forstrea m ecosystems: problems inthei r evalua­ physical system are more complicated than suggested by the tion, p. 299-353. In J. R. Barnes andG . W. Minshall [ed.] Stream RCC. Iti sno tclea rho w theRC Crelate sentrop y patternso f the ecology. Application andtestin g of general ecological theory. Plenum Press, New York, NY. biological to the physical system (tenet II). Since wed o not see CURRY, R.R . 1972. Rivers —a geomorphi c and chemical overview, p. 9-31. an essential need for the statement on entropy in the RCC, we In R.T .Oglesby , C.A .Carlson , and J. A.McCan n [ed.] River ecology recommend its omission from the concept. This willreduc e the and man. Academic Press, New York, NY. theoretical ballast of the RCC. Maximization of yearly energy CUSHING, C. E., C. D. MCINTIRE, K. W. CUMMINS, G. W. MINSHALL, R. C. utilization through species replacement (tenet III), lack of PETERSEN, J. R. SEDELL, AND R. L. VANNOTE. 1983. Relationships succession and time invariance instrea m communities (tenet among chemical, physical, andbiologica l indices along river continua based onmultivariat e analyses. Arch. Hydrobiol. 98: 317-326. IV), and specific mechanisms leading to high biotic diversity DIETERLEN, F. 1978. Zur Phänologie des Äquatorialen Regenwaldes im in midreaches of streams (tenet V)ar e either rejected (IV), Ost-Zaire (Kivu). Diss. Bot. 47: 1-111. unexpected (V), or restricted to particular geographical areas DUDGEON, D. 1982. An investigation ofphysica l and biological processing of (III). We therefore suggest modifying theorigina l RCCb y two species of leaf litter inTa i PoKa u Forest Stream, New Territories, excluding tenets III-V from the concept. This will result in a Hong Kong. Arch. Hydrobiol. 96:1-32 . FISHER, S. G. 1983. Succession in streams, p. 7-27. Ini. R.Barne s and G.W . higher flexibility and larger applicability of the RCC. Minshall [ed.] Stream ecology. Application and testing of general In our opinion, these modifications will hardly conflict with ecological theory. Plenum Press, New York, NY. projects relating to the RCC that have been realized uptil l now FITTKAU, E. J. 1973. Artenmannigfaltigkeit amazonianischer Lebensräume aus ökologischer Sicht. Amazoniana 4: 321-340. (seeMinshal l etal . 1983an dreference s therein; Cummins etal . FRÄNZLE, O. 1978.Di e Struktur und Belastbarkeit von Ökosystemen. 1983; Cushing etal . 1983; Bruns etal . 1984). These projects Amazoniana 6: 279-297.

Can. J. Fish. Aquat. Sei., Vol. 42, 1985 1043 - 118 -

FULLER. R. L... AND K. W. STEWART. 1977. Thefoo d habits of stoneflies SEDELL, J.R. ,ANDJ . L.FROGGATT . 1984. Importance of streamside forests to (Plecoptera) in the Upper Gunnison River. Colorado. Environ. Entomol.6 : large rivers: the isolation ofth e Willamette River, Oregon, U.S.A., from 293-302. its floodplain bysnaggin g and streamside forest removal. Verh. Int. Ver. GRAY, L. J., J. V. WARD, R. MARTINSON, AND E. BERGEY. 1983. Aquatic Limnol. 22: 1828-1834. macroinvertebrates ofth e Piceance Basin. Colorado: community response SEDELL, J.R. ,AN D K. J. LUCHESSA. 1982. Using the historical record as an aid along spatial and temporal gradients ofenvironmenta l conditions. South­ to salmonid habitat enhancement, p. 210-223. In N. B. Armantrout [ed.] west. Nat. 28: 125-135. Acquisition and utilization ofaquati c habitat inventory information. West­ GREGORY, K. J.,ANDD . E. WALLING. 1973. Drainage basin form and process. ern Division American Fisheries Society, Bethesda, MD. E. Arnold, London. 456 p. SIOLI, H. 1975. Tropical rivers as expressions of their terrestrial environments, GRIMM, F. 1968. DasAbflußverhalte n in Europa — Typen und regionale p. 275-288. In F. B. Golley andE . Medina [ed.] Tropical ecological Gliederung. Wiss. Veröff. Dtsch. Inst. Länderkd., N. F.25/26 : 18-180. systems. Springer, New York, NY. GROSSMAN, G. D., P. B. MOYLE, ANDJ. O. WHITAKER. 1982. Stochasticity in 1982. Tropische Flüsse in ihren Beziehungen zur terrestrischen structural and functional characteristics ofa nIndian a stream fish assem­ Umgebung und im Hinblick auf menschliche Eingriffe. Arch. Hydrobiol. blage: ates t ofcommunit y theory. Am. Nat. 120: 423-454. 95: 463-485. HAUER, F. R., AND J. A. STANFORD. 1982. Ecological responses of SMITH, I. R. 1975. Turbulence in lakes and rivers. Freshwater Biol. Assoc. Sei. hydropsychid caddisflies to stream regulation. Can. J. Fish. Aquat. Sei. Publ. 29: 1-79. 39: 1235-1242. STANFORD, J. A.,AN D J. V. WARD. 1983. Insect species diversity asa func­ HERÄMANN, K. 1930. Die Entwicklung der Oder vom Natur-zum Kulturstrom. tion of environmental variability and disturbance in stream systems, Jahrb. Gewässerkd. Norddtschl. Bes. Mitt. 6(2): 1-75. p. 265-278. In J. R. Barnes and G.W . Minshall [ed.] Stream ecology. HORWITZ, R. J. 1978. Temporal variability patterns andth e distributional Application and testing ofgenera l ecological theory. Plenum Press, New patterns ofstrea m fishes. Ecol. Monogr. 48: 307-321. York, NY. HYNES, H. B. N. 1972. The ecology of running waters. 2nd impr. University of STANLEY, H.M . 1874-77. Diary notes, p. 213-214. In H. Pleticha [ed.] Die Toronto Press, Downsview, Ont. 555 p. Entdeckung des Kongos. H. Erdmann, Tübingen. ILLIES, J. 1978. Vergleichende Emergenzmessung im Breitenbach 1969-1976 STATZNER, B. 1975. Zur Longitudinalzonierung eines zentralafrikanischen (Ins.: Ephemeroptera, Trichoptera, Plecoptera). Arch. Hydrobiol. 82: Fließgewässersystems unter besonderer Berücksichtigung der Köcher- 432-448. fliegen (Trichoptera, Insecta). Arch. Hydrobiol. 76: 153-180. 1982. Längsprofil des Breitenbaches im Spiegel der Emergenz (Ins.: 1976. Die Köcherfliegen-Emergenz (Trichoptera. Insecta) aus dem Ephemeroptera, Plecoptera, Trichoptera). Arch. Hydrobiol. 95: 157-168. zentralafrikanischen Bergbach Kaiengo. Arch. Hydrobiol. 78: 102-137. JUNK, W. J. 1982. Amazonian floodplains: their ecology, present and potential 1981a. The relation between "hydraulic stress" and microdistribution use. Rev. Hydrobiol. Trop. 15: 285-301. of benthic macroinvertebrates in a lowland running water system, the KELSEY, H. M. 1982. Hillslope evolution and sediment movement ina forested Schierenseebrooks (North Germany). Arch. Hydrobiol. 91: 192-218. headwater basin. Van Duzen River. North Coastal California, p. 86-96.In 1981b. Ametho d to estimate the population size of benthic macroin­ F. J.Swanson , R. J.Janda.T . Dunne, andD. N. Swanston [ed.] Sediment vertebrates instreams . Oecologia (Berl.) 51: 157-161. budgets and routing in forested drainage basins. U.S.Fores t Service, 1981c. Shannon-Weaver diversity of the macrobenthos inth e Portland, OR. Schierenseebrooks (North Germany) and problems of its use for the KOPELKE, J.-P. 1981. Ökologische Studien anEintagsfliege n am Beispiel der interpretation of the community structure. Verh. Int. Ver. Limnol.21 : Emergenz des zentralafrikanischen Bergbaches Kaiengo (Zaire) (Ephem­ 782-786. eroptera). Entomol. Abh. (Dres.) 44: 9-43. TAYLOR, B.R. , AND J. C. ROFF. 1982. Evaluation of ecological maturity in KRAUSE, W. 1976. Veränderungen im Artenbestand makroskopischer Süßwas­ three headwater streams. Arch. Hydrobiol. 94: 99-125. seralgen in Abhängigkeit vom Ausbau desRheins . Schriftenr. Vegeta- TOWNS, D. R. 1983.Lif e history patterns of six sympatric species of tionskd. 10: 227-237. Leptophlebiidae (Ephemeroptera) in aNe w Zealand stream and the role of LEHMANN, J. 1979. Chironomidae (Dipteral aus Fließgewässern Zentral­ interspecific competition inthei r evolution. Hydrobiologia 99: 37-50. afrikas. Teil I: Kivu-Gebiet. Ostzaire. SpixianaSuppl. (Münch.)3: 1-144. TOWNSEND, C. R., ANDA . G. HILDREW. 1984. Longitudinal pattern in LEOPOLD, L. B., M. G. WOLMAN. AND J. P. MILLER. 1964. Fluvial processes detritivore communities of acid streams: a consideration of alternative in geomorphology. W.H . Freeman. San Francisco. CA. 522 p. hypotheses. Verh. Int. Ver. Limnol. 22: 1953-1958. MANGELSDORF, J.. AND K. SCHEURMANN. 1980. Flußmorphologie. R. Olden­ TRISKA, F. J. 1984. Role ofwoo d debris in modifying channel geomorphology bourg, München. 262p. and riparian areas of a large lowland river under pristine conditions: a MARTINSON, R. J., AND J. V. WARD. 1982. Life history and ecology of historical case study. Verh. Int. Ver. Limnol. 22: 1876-1892. Hesperophylax occidentalïs (Banks) (Trichoptera: Limnephilidae) from VANNOTE, R. L..G. W. MINSHALL.K.W. CUMMINS, J. R. SEDELL, AND C. E. three springs in the Piceance Basin. Colorado. Freshwater Invenebr. Biol. CUSHING. 1980. The River Continuum Concept. Can. J.Fish . Aquat. Sei. 1:41-47. 37: 130-137. MEYEk, J. L.. AND J. O'Hop. 1983. Leaf-shredding insects as a source of WALLACE, J. B., J. R. WEBSTER, AND T. F. CUFFNEY. 1982. Stream detritus dissolved organic carbon in headwater streams. Am. Midi. Nat. 109: dynamics: regulation by invertebrate consumers. Oecologia (Berl.)53 : 175-183. 197-200. MINSHALL. G. W.. J. T. BROCK. ANDT. W. LAPOINT. 1982. Characterization WARD, J. V.,AN D J. A. STANFORD. 1983. The serial discontinuity concept of and dynamics ofbenthi c organic matter and invertebrate functional feed­ lotie ecosystems, p. 29-42. In T. D. Fontaine andS . M. Bartell[ed. ] ing group relationships in the upper Salmon River, Idaho (USA). Int. Rev. Dynamics of lotie ecosystems. Ann Arbor Science Publishers Inc., Ann Gesamten Hydrobiol. 67: 793-820. Arbor, MI. MINSHALL, G. W., R. C. PETERSEN, K. W CUMMINS. T. L. BOTT. J. R. WEBSTER. J. R. 1983. The role of benthic macroinvertebrates in detritus SEDELL. C. E. CLSHING, AND R. L. VANNOTE. 1983. Interbiome dynamics of streams:a compute r simulation. Ecol. Monogr. 53: 383-404. comparison cf stream ecosystem dynamics. Ecol. Monogr. 53: 1-25. WILLIAMS, D. D., AND N. E. WILLIAMS. 1982. Morphological and dietary MOSLEY. M. P. 1982. Analysis ofth e effect ofchangin g discharge on channel variations ina riverine population of Pycnopsyche guttifer (Trichoptera: morphologv and instream uses in a braided river. Ohau River.Ne w Limnephilidae). Aquat. Insects 4: 21-27. Zealand. Water Resour. Res. 18: 800-812. WILSER, J. L. 1937. Beziehungen des Flußverlaufes und der Gefällskurve des QUITZOW, H.W . 1976-77. Die erdgeschichtliche Entwicklung des Rheintals. Neckars zur Schichtenablagerung am Südrand desOdenwaldes . Akad. Nat. Mus. 106: 339-342: 107: 6-12. 33-40. Wiss. Math.-Naturwiss. Kl. (Heidelberg) 37: 3-16. RouNiCK. J. S., AND M. J. WINTERBOURN. 1983. Leaf processing in two WINTERBOURN, M. J. 1982. TheRive r Continuum Concept — a reply to contrasting beech forest streams: effects of physical and biotic factorso n Barmuta and Lake. N.Z. i. Mar. Freshwater Res. 16: 229-231. litter breakdown. Arch. Hydrobiol. 96: 448-474. WINTERBOURN, M. J.,J. S. ROUNICK, ANDB.COWIE. 1981.Ar e New Zealand SCHLOSSER, I.J . 1982. Fish community structure and function along two habitat stream ecosystems really different? N.Z. J. Mar.Freshwate r Res. 15: gradients ina headwater stream. Ecol. Monogr. 52: 395-414. 321-328. SCHRÖDER, P. 1976. ZurNahrun g derLarvenstadie n derKöcherflieg e H\- ZWICK, P. 1976. Neoperla (Plecoptera, Perlidae) emerging from a mountain dropsxche instabilis (Trichoptera: Hydropsychidae). Entomol. Ger. 3: stream inCentra l Africa. Int. Rev. Gesamten Hydrobiol. 61: 683-697. 260-264.

1044 Can. J. Fish. Aquat. Sei., Vol. 42, 1985 •119-

APPENDIXI V

Streamhydraulic sa sa majo rdeterminan to fbenthi c invertebrate zonationpattern s 120

Freshwater Biology(1986 ) 16, 127-139

OPINION Stream hydraulics asa major determinant of benthic invertebrate zonation patterns

BERNHARD STATZNER and BERT HIGLER* Zoologisches Institut I der Universität, Karlsruhe, and *Rijksinstituut voor Natuurbeheer, Leersum

SUMMARY. 1. Studies on the zonation of benthic fauna in fourteen streams situated in avariet y of latitudes from Alaska to New Zealand have been evaluated. 2. We suggest that physical characteristics of flow ('stream hydraulics') are the most important environmental factor governing the zonation of stream benthos on a world-wide scale. 3. From the source to the mouth of a stream, zones of transition in 'stream hydraulics' occur, towhic h the general pattern ofstrea m invertebr­ ate assemblages can be related. In these zones benthic community stability and resilience must be different from those upstream and downstream of the hydraulic transition zones.

1. Introduction physical characteristics of flow which can be summarized under the heading 'stream In 1979 Botosaneanu reviewed what had been hydraulics'.Thi si sproblematical ,becaus ei nth e published on longitudinal zonation patterns of hundredso fpublication so ninvertebrat e stream benthicstrea minvertebrate ssinc ehi slas tsynop ­ zones,dat a from whichhydrauli ccharacteristic s siso fthi stopi c(lilie s& Botosaneanu , 1963).H e can be derived are relatively scarce. Therefore, emphasizesth efac t that major faunistic changes and even though we have included data from a aregenerall y localized inrelativel y short stream wide variety of running waters from Alaska to reaches. One explanation could be that the NewZealand , thenumbe ro fpotentia l examples environment changes rather abruptly and organ­ for this review is relatively low. Also, few of isms more characteristic of upstream or these studies considered species densities or downstreamzone sreac hthei rtoleranc elimit si n other criteria of longitudinal organization and such reaches. Whole community responses to thusw ehav econcentrate d onth edistributio no f the same natural or man-made disturbance species measured merely by presence or should differ between reaches where most absence. It is our main purpose in this paper, species live under sub-optimal conditions and therefore, to focus upon stream hydraulics asa reaches where most species live under optimal factor and to stimulate more interest in it. conditions (Balon &Stewart , 1983). Because this topic is of fundamental and 2. Why choose 'stream hydraulics' as a applied importance in stream ecology, we have major determinant? attempted to establish some generalizations in zonation patterns in the benthic fauna and to Initially, it may seem foolish to concentrate on relatethe m towha tw eregar d asth emajo r abio­ only one abiotic factor, because stream com­ ticfacto r responsible for them: the complex of munities obviously are influenced by numerous Correspondence: Dr B. Statzner, Zoologisches other factors. Temperature, for instance, is Institut I der Universität, Postfach 6380, D-7500 often considered to be very important. Thus, Karlsruhe, Federal Republico fGermany . whyno tgiv ewate rtemperatur eth esam eimpor - 127 121 -

128 Opinion

tance as stream hydraulics in the characteriza­ cal environment in streams. However, this tion of stream zones on a world-wide basis? A usually has been deduced from more or less brief example shows this to be impossible. general considerations. Huet (1949) assumed The zonation concept of lilies (1961) is based that drag forces of stream currents were mainly on changing current velocity and water influenced by slope as well as by width. He rel­ temperature from the source to the mouth of a ated fish zonation to these two parameters. stream. In Fig. 3 of lilies (1961) the rhithron is Gessner (1955) discussed in detail some shown extending to lower altitudes in higher hydraulic factors which affect the ecology of latitudes whilst the potamon behaves conver­ plants in running waters. The longitudinal zona­ sely. Even lakes are incorporated into this sys­ tion of benthic invertebrates was related to tem. Therefore, and because torrential streams stream slope and consequent bed stability by are frequently found at low altitudes in the Hesse (1924). The 'erosion-deposition' (Moon, tropics it is evident that the lilies concept is 1939) and the 'riffle-pool' (Kani, 1944) concepts based solely on water temperature and not, as also reflect stream hydraulics. The same holds suggested, on water temperature and current for the zonation concept of lilies (1961) who velocity. In fact, work in the tropics has shown speculated on the importance of 'current that it is impossible to find a universally valid, velocity at the stream bottom' which can prob­ constant relationship between these two factors ably best be translated into the hydraulic term and zonation (Hynes, 1971; Bishop, 1973; 'friction velocity'. Two years earlier, Ambühl Statzner, 1975; Harrison &Rankin , 1976;Harri ­ (1959) evaluated a similar parameter, the thick­ son, 1978).Thus , both these abiotic factors can­ ness of the boundary layer above the stream not be weighted similarly and hierarchical bottom, asa determinan t of benthic invertebrate patterns must be the basiso f ausefu l world-wide distribution. classification. We put stream hydraulics in the Recent analyses have described micro- toppositio n of thishierarch y for several reasons. distribution of the benthos in relation to various Although rarely stated explicitly, hydraulic hydraulic parameters (Décamps, Larrouy &Tri - properties of stream flow traditionally have been vellato, 1975; Gore, 1978; Statzner, 1981a, b). considered as valuable descriptors of the physi­ Since the physical qualities of microhabitats are

8 -

Thickness of laminar sub-layer (S')(ICT2cm)

1000 Altitude (m above 900 sea level) 800 700 ?^^^^—T-i___ Source 20 40 60 Distance downstream (km) FIG. 1.Slop ecurv eo f theBreg ,whic hstart swit ha rheocren e (seelegen do f Fig.8) ,an d the Upper Danube (the arrowindicate swher eBre gan dBrigac hmee tan dth eDanub ei sformed) .Th erang eo fth elamina rsub-laye r (ô') andit scentra ltendenc y (calculated for medianvelocities )i sshow nabove .Th elamina r sub-layeris ,theoretically , the bottom-most zone of the boundary layerwhic h develops if water flows over asoli d substrate. It iscalculate d from replicated measurementsconducte ddurin gnon-floo d conditions,it sreciproca lvalu ei suse da sa nindicato ro f 1 1 the hydraulic stress, Miscalculatedby<5 '= CT 11.5v 5.7 5 log(12Dr p^. U: current velocity(cms );v :kinemati c 2 -1 viskosity(cm s );D: dept h (cm);rp: substrateroughnes s(estimate dfro m particlesize ,cm) .Calculate d after data from Backhaus &Sande r (1967). 122

Opinion 129

determined by downstream trends in macro- tion zone isfollowe d bya reach of high slope and hydraulics (Bovee, 1982), it is logical to postul­ high hydraulic stress. Another zone of transition ate they will have a major effect on the zonation where the slope levels off, is followed by a zone of the benthos (Statzner, 1981a; Higler & Mol, of lower hydraulic stress. Further downstream, 1984; Newbury, 1984). numerous large-scale discontinuities of the Another reason to suspect that stream hydraulic stress may occur. The character of the hydraulics is the critical factor bringing about mouth of the stream is determined through the biologicalzonatio n isthat , from the source to the material exported by the stream and the trans­ mouth of a stream, hydraulics often exhibits dis­ port capacity of the marine component (delta or tinct changes localized within relatively short estuary). The upper two zones of transition of stretches (Fig. 1). Using the thickness of the hydraulic stress may shift up- and downstream laminar sub-layer and the slope asa descripto ro f with fluctuating discharge. the hydraulic stress at the stream bottom, a It is not easy to describe the above pattern 'standard' pristine running water course, to from physical data published inzonatio n studies. which real streams can be compared, has the Sometimes the power of the water expended per following properties (see Statzner & Higler, unit length (Watt m~') or per unit area (Watt 1985, and top of Fig. 8): the source and the first irr2) of the channel and the Froude-Number part of the headwater are frequently character­ (streaming or shooting flow) could be calculated ized by relatively low hydraulic stress. A transi­ (see Statzner & Higler, 1985, for formulae).

TABLE 1. Short characterization of the zonation studies reviewed here. Latitudes, altitudes, and lengths approximations Altitude Length of (m.a.s.1.) ol Geograph­ reach highest- ical studied lowest Stream latitude Country (km) station Fauna studied Author Atigun 68°N U.S.A. 75 1375-700 Zoobentho s Slack, Naumann & Tilley, 1979 Endrick 56°N Scotland 49 500-10 Macrozoobenthos Maitland, 1966 Hierden 52°N Netherlands 20 26-0 Macrozoobenthos Higler, 1979, 1980; Higler & Repko, 1981 Fulda 51°N F.R.G. 220 850-120 Macrozoobenthos, lilies, 1953; mainly Insecta physiography: Marten, 1983 Schwechat 48°N Austria 68 700-154 Macrozoobenthos Starmuhlner, 1969 Issyk 43°N USSR. 29 4000-700 Mainly Insecta Brodsky, 1980, Fig. 91, Table 62 Tiber 43°N Italy 150 1279-175 Trichoptera Moretti & Cianficconi, 1984 St Vrain 40°N U.S.A. 54 3414-1544 Ephemeroptera, Ward & Berner, Plecoptera, 1980; Ward, 1981, Trichoptera 1982 Arima 11°N West Indies 15 365-17 Mainly Insecta Hynes, 1971 Bandama 10°N Ivory Coast 1000 500-0 Decapoda, Levêque, Dejoux & -5°N (400) Simuliidae, litis, 1983; Gibon & Hydropsychidae, Statzner, 1985 Philpotamidae Tshinganda/ 2°S Zaire 64 2450-850 Trichoptera Statzner, 1975 Luhoho Luanza 10°S Zaire 58 1690-975 Trichoptera Malaisse, 1976; Marlier, 1981 Vaal Dam 27°S South Up to 400 2000-1500 Macrozoobenthos Chutter, 1970 Catchment Africa Cascade/ 37°S New Zealand 6 120-5 Macrozoobenthos Towns, 1979 Waitakere - 123 -

130 Opinion

Sometimes only substrate characteristics or the 3.1. Upperpans of streams slope of the valley are available. These charac­ In a series of figures and short characteriza­ teristics of flow are evaluated by biologists and tions we will relate faunistic zonation to generally not measured as hydrologists would downstream changes in hydraulic properties do. Nevertheless, we have been able to show We have included information on water temp­ where the hydraulic stress in the channel under­ erature as well in order to demonstrate that its goes a distrinct change on the way downstream. role in defining general species distribution pat­ Our results indicate that these transition zones terns along running water courses hasbee n over­ are the critical determinants of species associa­ estimated in the past. tion change. Some simplifications are necessary in the way that faunistic zonation patterns are shown. 3. Examples of faunistic zonation patterns Thus, for each species considered, it will be in a variety of streams assumed that it is distributed in all stream reaches between the highest and lowest station it Natural zonation patterns over long stream was found, even if it was not actually present in reaches are usually obscured by the fact that samples from all stations between these points. more or less intensive human influences on the Single specimens of species found at only one stream or its valley have long been established. station frequently are omitted from the analyses. Most studies accordingly have been more or less For each station a curve is drawn, showing how restricted to the upper parts of streams, and we the particular assemblage of species found at have rather little information on what con­ that station decrease in an upstream and (or) a stituted the original fauna of large pristine downstream direction (see further details in rivers.Therefore , only some general remarks on legend to Fig. 2). A set of such curves covering the latter are possible. the whole reach under study are used to deter-

/oo °C Fulda /oo °C Endrick 50 70 B

O 50 •20 \ a. 30 fc \ 30 •10 \ o 10 10

1 / 70 A 70

D X O 6 , 50 1 / \A " 50 O 6 2 30 30

10 10 - 1 1 1 1 1 1 1 1 1 I I 23456 789 10 II 12 II 10 9 8 7 6 5 4 3 2 I Station number proceeding downstream FIG.2 .Fuld a (F.R.G.) andEndric k (Scotland).(A )Specie scongruit ycurve sdemonstratin gspecie sreplacemen t alongth edownstrea m gradient. Ineac hse to fcurves ,th ecurv efo rth ehighes tstatio na swel la stha trepresentativ e of areac h of relatively little faunistic change and of the lower reach are emphasized bythicke r lines. (B) Fulda: :slope ;— : annualmaximu man dminimu mwate rtemperature .Endrick : : slope;— : annualmea nwate r temperature, number below arrow: maximal weekly amplitude of water temperature. - ^2k

Opinion 131

Wrrf °c (high) Schwechot /?~"~^

15 70

3 5 50 •10 >- a °-S | *~ 30 "5? / 0 ~ a (low) -1- —

10 Fr

^ WrrT2 D ! 1 504-1 £ E 1 i 30|i

100

80 o x O I 60 o ó 40

20

SLa4SLa3SLa2SLal S4 S5 S6 S7 S8 S9 SI0 SU SI2 SI3 SI4 SI5 SI7 SI8SI9 Station number proceeding downstream FIG.3 .Schwecha t (Austria):(A )specie scongruit ycurves ;(B )thic kline :powe rpe runi tarea ;thi nline :Froude - Number; (C) thin line: power per unit length; thick line: mean annual water temperature—half of the maximal annual amplitude. See Fig. 2 for further details.

mine stream zones (lilies, 1953).Thi s method of the uppermost station, is caused by the com­ presenting the data isperhap s more complicated bined sampling of the source and the spring than, for example, cluster analyses, but the total brook. Further downstream, a zone of rapid number of species at each station, and reaches change in species is followed by a zone with a with high and low overlap from upstream and rather stablese to fspecies ,the n therei sa second downstream stations, are indicated clearly. zone of rapid change in species. Apparently, a The studies considered here are characterized change in water temperature cannot explain briefly inTabl e 1.Figs .2- 7 showth e distribution thesepattern s in anycase .No r isi tprobabl e that pattern discovered in nine of them. pollution and weirs, both observed in Fulda, Thespecie scongruit ycurve so f Fulda (Fig. 2), Endrick and Schwechat, would shape the pat­ Endrick (Fig. 2), Schwechat (Fig. 3), and ternso fcongruit y curves insuc h asimila rway . In Tshinganda/Luhoho (Fig. 4) are rather similar the Schwechat obvious industrial pollution and in their general shape. Generally few species increased hydraulic engineering start upstream appear at the spring sources. The deviation from of station S9, the reach downstream of station this pattern in the Fulda, with many species at Sil ishighl y perturbed. Thus, in this stream the 125

132 Opinion

Tshinganda/Luhoho O ui

loo Arima

50 B

30 - ^_-25 O 23 -"" 10*

A

30 -

3 II 20 \JIj \ l0 x V 10

I I I i i i 3 6 7 8 9 10 Station number proceeding downstream FIG 4. Tshinganda/Luhoho (Zaire) and Arima (Trinidad). (A) Species congruity curves. (B) Tshingan­ da/Luhoho: : slope; -—: meano fwate rtemperatur e(measure ddurin gth eday) ,wit hdie lamplitud efo rtw o stations.Arima : : slope;— :increas eo fwate rtemperatur e(measure ddurin gth eday )fro mhighes tt olowes t station.(C )Percentag eweigh to fthre esubstrat efraction sfro mth edominan tbenthi csubstrat etype .Se eFig .2 fo r further details. faunistic transition between station S6 and sta­ changesi nspecie sar efoun d inth euppe rcourse . tion Sil isles s distinct. Both are relatively constant, however, where In the Fulda and the Endrick, slopes are thefaun a isrelativel ystable .Whethe r orno t the availablea sindicator so fhydrauli cpatterns .Th e next change in the fauna is related to changing zone of rapid changes in species composition in hydraulics or to effects of pollution is unclear. theuppe rcours ei ssituate d whereslop echange s The uppermost course of the Tshinganda/ distinctly. Arathe r stable set of speciesi s found Luhoho demonstrates that slope isonl ya rough where the slope is relatively constant. The predictor of stream hydraulics: it failed to indi­ second rapid change in species is observed cate the very different conditions in the source beween the stable zone and the flood-plain, in and in the following reach (see also Fig. 1), as which the lowest sampling stations were indicated by substrate characteristics. Changes established. Inth e Schwechat, asi nothe r exam­ in the latter induce distinct faunistic changes, ples given later, the power expended per unit and the relative stable faunistic zone is situated reach of channel is less helpful in explaining in the stony reach. distribution patterns of benthic macroinverte- In all four streams, species occurred which brates. Froude-Number orpowe r expended per were restricted to the zones of distinct faunistic unit area show distinct changes where rapid changes. Descriptors of the hydraulic situation 126

Opinion 133

Tiber Wirf' 7 52 344 234 316 1593 Fr 0-20 0-25 0-29 0-41 0-23 0-25 Wm"2 23 52 172 39 32 27 °C 6-5 8 9 16 14 6

8 20 21 22 23 26 28 30 32 35 38 39 40 44 46 9 -2527293-25 272 9 3l_1 34,„-3-377 -434547 Station number proceeding downstream FIG.5 .Tibe r (Italy).Specie scongruit ycurve san dphysica lparameters . Powerpe runi tlengt h (Watt m~'),powe r per unit area (Watt irr2), Froude-Number (Fr) and mean annual water temperature (°C) are available only as a mean for several stations. Stationswit h identical speciesassemblage s areplotte d together. SeeFig . 2fo r further details. used above indicate similar conditions at the enter a high plateau and accumulate much silt source and further downstream in Schwechat and sand in the lower reaches. The presence or and Tshinganda/Luhoho, but their assemblages absence of this fine material which is generally of species are rather different. This may be determined by stream hydraulics appears to be because water temperatures (Schwechat: ampli­ the major factor correlated with species tude; Tshinganda: mean) differ between up­ distribution. stream and downstream reaches. Arima (Fig. 4) and Cascade/Waitakere (Fig. In addition to stream types represented by the 6) are short streams. Samples from the upper­ Tshinganda/Luhoho another type characterized most courses were not available and only one by a zone or large waterfalls occurs in the Zaire. zone of faunistic overlap could be discerned. Such a stream is the Luanza (not figured). Its This was situated between the uppermost source discharges into a pond, below which is a station and the flood-plain. In the reach of rapid changes inslop e and species com­ Cascade/Waitakere, species richness decreased position. The Luanza then enters ahig h plateau, distinctly inth e lowest reach, close toth e mouth. where few changes in species are observed. The difference in water temperature was low Some species changes occur where the water (0.2°C)betwee n station 9an d 10i nth e Arima; in falls to a lower plateau, and some species are the Cascade/Waitakere the upper stations were found only around the falls. The effect of the about 5°C cooler than the lower ones during falls on the distribution patterns of fish is much summer. more distinct than on insects. Water tempera­ The Tiber (Fig. 5) is included in our review ture was almost constant over the whole length since results are based on a long-term study at a under study. large number of stations. The source is an artifi­ A similar low significance of water tempera­ cial basin, the river bed is further modified ture on faunal zonation was found in the Vaal downstream, and pollution is recorded. Dam Catchment (not figured). There streams Physiographical data are available only as means 127

134 Opinion

St Vrain //o o Cascade/ Waitakere 70

50

B 30

10

A

0 A f 30 /X^T ÜU y^ >^~ 10 -

! 1 1 1 1 1 1 1 1 3 4 5 6789 10 II oqre I I I Station number proceeding downstream FIG. 6. StVrai n(Colorado )an dCascade/Waitaker e(Ne wZealand) .(A )Specie scongruit ycurves .(B )S tVrain : :slop e; - —: increaseo fmea nsumme rwate rtemperatur efro mhighes tt olowes tstation . Cascade/Waitakere: slope.Se eFig .2 for further details. over longer reaches. We expect the end ofon e (Fig. 6)an dAtigu n (Fig. 7).Thei r uppermost reach andth ebeginnin g ofth e next one to be courses are characterized by relatively low closeri nphysiograph ytha nstation sa tth ebegin ­ speciesnumber san dar eofte n (Bretschko,1969 ) ning and the end of the same reach. Taking this dominated byChironomida e (see also Elgmork into account, Froude-Number and the power & Saether, 1970; Steffan, 1974; Allan, 1975). expended peruni t area indicate anincreas ei n Inth e Issyk the highest speciesnumber s were hydraulic stress from the source to the reach recorded in azon e withtw otransitions :th e first aroundstatio n8 an da decreas ei nthi sparamete r whereconiferou s forest isreplace db yhardwoo d further downstream. Water temperature rises forest and the second between the torrent zone distinctlyaroun d station8 .Du et oa lac ko fdat a and the debriscon ezone .Th e Issyki sa n exam­ weca nonl yspeculat e that thehydrauli cstres si s pleo fa stream inwhic h discharge decreases on distinctlyreduce d inth elowe rreac ho fth eTibe r thewa ydown :i tenter sa stepp ean dthe na semi - (anartificia l lakei ssituate d5 k mdownstrea mo f desert inth eplain ,wher ei tdisappear s (wateri s station 36). Abrupt faunistic changes were used for irrigation). In thelowe r reaches,th e observed around station 8and , less pronounced number of torrential benthic species gradually ones, above thereservoi r (upstream of station decreases. Inth e St Vrain adistinc t increase in 47). numbers of specieswa sobserve d until the slope The next three streams we will deal withar e wasalmos tunifor m around station7 ,an da clea r fed by glaciers: Issyk (notfigured) , St Vrain change inth efaun a occurred where theslop e - 128

Opinion 135

Wm"z reaches. A north-south gradient in the length of — Atigun the period without flow exists, while the differ­ ences in water temperature are insignificant between northern and southern reaches. Addi­ tional species are added to the fauna in the — =J south, without the loss of northern species. The a» -o lowest reach lacksriffles , and ashar p decrease in ^ o lotie species is observed there.

3.2. Large rivers Fittkau & Reiss (1983) recently attempted to ;£ Wrrf' reconstruct the ecological characteristics that occurred in large pristine rivers and their flood- plains. Besides the main channel "lotie and len- tic, static and astastic, summer-cold and sum­ mer-warm, small and large' freshwaters occurred in a relatively restricted area, which contained a rich fauna. This species richness is also well documented by observations from the Rhone (Richardot-Coulet, Richoux & Roux, 1983)a swel l asb y apalaeo-limnologica lstud y in the Rhine (Klink, 1983). In the main channel, various species assemblages occur in different habitats (Mordukhai-Boltovskoi, 1979),som eo f these are extremely specialized, for instance, to shifting sand (Barton & Smith, 1984). The large debris dams and the resulting lacustrine condi­ tions (Sedell & Froggatt, 1984; Triska, 1984) Ai A2 A, A4 A, A6 Stotion number proceeding downstream created numerous 'lake out-flows' and, pre­ sumably, lake out-flow communities (Müller, FIG. 7. Atigun (Alaska). (A) Species congruity curves. (B) : slope; -—: power per unit length; 1955; lilies, 1956), which are overlap com­ : water temperature (measured during the day). munities between lentic and lotie aquatic sys­ (C) :Powe r per unit area; —-: Froude-Number. tems (Statzner, 1978). See Fig. 2fo r further details. Thus we assume that the species richness of the benthic fauna in the pristine large river, flattens out near to and on the plains. The which in our view includes the adjacent fresh- Atigun is braided especially in the mid-reach waters of the flood-plain, is much higher than in (?A3-A4) , where slope levelsoff , Froude-Num­ the upper parts of the same stream. Again it is ber as well as power expended per unit area primarily the physics of the flow which creates indicate a reduction in hydraulic stress, and the richness of habitats and thereby the high water temperature rises. In this mid-reach biological diversity in large rivers. Running species richness ishighest . Below station A5 the waters like the Issyk, which ends in a desert, or stream is influenced by lake drainage. the Bandama, which builds up high dams from The last two streams considered lack well- material deposited at the bank (due to high tur­ defined sources. In the Hierden stream (not bidity under a seasonally dry climate), represent figured), stations near bridges or weirs with exceptions from the above picture of a large stony substrata and high velocities are inhabited pristine river. by a unique set of species in addition to species present over the largest part of the stream. The 3.3. Mouths of streams Bandama River system (not figured) runs from north to south and lacks well-defined changes in Stream hydraulics determine in part the its gentle slope. Discharge is very variable and geomorphological features of the mouth the northern parts are temporary stream (whether a delta or estuary is formed). These 129

136 Opinion

Delta

Braided reach

Helocrene

Limnocrene

FIG. 8.Proposa lfo r agenera lfaunisti c zonation pattern ofth ebentho s inpristin e streams(aeria lvie wan dslope ) with 'standard' flow characteristics. Source types: rheocrene—source discharges directly into a channel; helocrene: source discharges into a marshy pond; limnocrene—source discharges into a pond. Not all of the componentsshow n here can be or must be present in astream . The species distribution in arunnin g water that startswit ha helocren ean dend swit ha nestuar yi sindicate di nou rexample .Specie soccurrin gi nth esprin g(A )an d in the reach of high slope (B) overlap at the first transition in hydraulic stress. Species of group B and species occurringi nth estrea m after itha sentere d theflood-plai n (C)overla pa tth esecon d transition inhydrauli cstress , where pristine streams are frequently braided. Patterns in the large river are rather speculative due to sparse information. Inth ebrackis hzon ea thir doverla pi sfoun d betweenspecie so fgrou pC an dth emarin efaun a (D).I n allthre e zoneso f speciesoverla p few speciesoccu r which are solely found inthes e reacheso f transition (Tl, T2, T3). Specieswhic h do not characterize azon e are omitted.

features in turn are largely responsible for the reaches of streams under brackish conditions pattern of species present through the resulting (Remane & Schlieper, 1958;Wolff , 1983). This salinity gradient: it is a well-known fact that a transition zone in salinity once more shows a relative scarcity of species exists in the lowest distinct overlap of species: freshwater species 130 -

Opinion 137

disappear and marine species show up, and few The patterns elaborated in this paper reflect specialists of brackish conditions are found here. what is predicted by Thienemann (1918, 1920) who linked species richness to environmental harshness and variability, ideas represented 4. Conclusions more recently in the 'intermediate disturbance' hypothesis (see Stanford & Ward (1983) and Although patterns of faunistic stream zonation Reice (1984)). Under ecologically extreme con­ and abiotic parameters are relatively diverse, ditions, such as the headwaters of glacier-fed one general aspect emerges: distinct changes in streams or in a brackish river mouth, species species assemblages are often linked to changes numbers are relatively low. Under less extreme in parameters associated with stream hydraulics. conditions high species richness is found in the In a 'stereotyped' stream such as that described zones of transition of hydraulic stress, where we at the end of part 2th e faunistic zonation pattern expect a considerable inconstancy of this factor should be liketha t depicted inFig . 8. It iseviden t (Statzner & Higler, 1985). In these transition that this pattern has to be modified if additional zones species assemblages overlap and a base levels, for example lakes, in the stream's relatively large number of species live near the course occur or ifsingl e components in the order limitso f their ecological tolerance. Thus in these of reaches shown in Fig. 8 do not exist. Streams zones of major hydraulic and faunistic change which lack well-defined sources and abrupt (transition zones) the potentials of community changes in the slope are such examples. Because stability and resilience must be different from no distinct faunal zones were observed in these those in zones upstream and downstream. type of streams (Hierden stream; Bandama In conclusion, we suggest that more emphasis River; seeTabl e 1 for references) they represent should be placed on hydraulics in future stream a null model against which zonation patterns studies. They should include measurements of linked to changes in hydraulics can be tested. current velocity, depth, substrate roughness, Under similar hydraulic conditions but surface slope, and hydraulic radius (see Gore, different water temperature regimes different 1978, and Newbury, 1984, for methods). From faunistic communities are found even in the these simple parameters hydraulic characteris­ same geographical area (Stoneburner, 1977). tics can be calculated according to formu­ Other abiotic and biotic variables will compli­ lae given, for example, in Smith (1975), cate the picture even more. Faunistic differences Mangelsdorf & Scheurmann (1980), Newbury in stream reaches with similar hydraulics situ­ (1984) or Statzner & Higler (1985). ated in upper and lower courses should be rel­ ated to these non-hydraulic environmental factors. But on a world-wide scale stream Acknowledgments hydraulics are the major factor affecting stream zonation, i.e. the pattern shown in Fig. 8 is Wethan k LizMol e (Weinheim), Professor Mike applicable in the humid tropics aswel l as in high Dickman (Ontario), Dr Alan G. Hildrew (Lon­ latitudes because water temperature plays only don) and an anonymous referee for comments an inferior role in defining invertebrate zones. on the content and linguistic advice. Our approach differs clearly from the crenon- rhithron-potamon concept (see lilies & Botosa- neanu, 1963), although in a highland stream of References Mid Europe species of group A (Fig. 8) should represent the crenon, group B the rhithron, and Allan J.D. (1975) The distributional ecology and diversity of benthic insects inCemen t Creek, Col­ group C the potamon. However, we were not orado. Ecology,56 , 1040-1053. able to discern the division of rhithron as well as Ambiihl H. (1959) Die Bedeutung der Strömung als of potamon into three biocoenoses, i.e. into ökologischerFaktor . SchweizerischeZeilschrift für components of the same level of organization. Hydrologie, 21,133-264 . Nor did wediscove r apatter n of species distribu­ Backhaus F. & Sander U. (1967) Zur Chemie der Donauquellflüsse Breg und Brigach und des tion as postulated by Vannote et al. (1980) and obersten Donauabschnittes bis zur Versickerung Stanford &War d (1983) who predict the highest beiImmendingen . Archivfür Hydrobiologie, Sup­ faunal diversity in mid-reaches of streams. plement,30 ,228-305 . - 131 -

138 Opinion

Balon E.K. & Stewart D.J. ( 1983) Fish assemblagesi n Higler L.W.G. (1980) Hydrologische, fysische en a river with unusual gradient (Luongo. Africa- chemische gegevens van de Hierdense Beek. Zaire system), reflections on river zonation. and Rijksinstituut voor Natuurbeheer. Leersum. description of another new species Environmental Higler L.W.G. & Repko F.F. (1981) The effects of Biology of Fishes, 9, 225-252. pollution in the drainage area of a Dutch lowland Barton DR. & Smiths.M . ( 1984) Insectso f extremely stream on fish and macro-invertebrates. Ver­ small and extremely large aquatic habitats. The handlungen der Internationalen Vereinigung für Ecology of Aquatic Insects (Eds V. H Rcsh and D. Theoretische und Angewandte Limnologie, 21, M. Rosenberg), pp. 456-183. Praeger. New York. 1077-1082. Bishop J.E.( 1973) Limnology of asmal l Malayan river Higler L.W.G. & Mol A.W.M (1984) Ecological Sungai Gombak. Monographiae Biologicae, 22. types of running water based on stream hydraulics Junk. The Hague. in The Netherlands Hydrobiological Bulletin. 18, Botosaneanu L. (1979 ) Quinze années de recherches 51-57. sur la zonation des cours d'eau: 196."-1978. Huet M. ( 1949) Aperçu des relations entre la pente et Bijdragen tot de Dierkunde, 49, 109-134 les populations piscicoles des eaux courantes. Sch­ Bovee K.D. (1982) A guide to stream habitat analysis weizerische Zeitschrift für Hydrologie, 11, 332- using the instream flow incremental methodology. 351. U.S. Fish and Wildlife Service (FWS/OBS-82/26). Hynes H.B.N. (1971) Zonation of the invertebrate Washington. fauna in a West Indian stream. Hydrobiologia, 38, Bretschko G. (1969) Zur Hydrobiologie 1-8. zentralalpiner Gletscherabflüsse. Verhandlungen lilies J. (1953) Die Besiedlung der Fulda (insbes das der Deutschen Zoologischen Gesellschaft in Benthosde r Salmonidenregion ) nach dem jetzigen Innsbruck, 1968, 741-750. Stand der Untersuchung. Berichte der Lim- Brodsky K.A. (1980) Mountain torrent of the Tien nologischen Flußstation Freudenthal, 5, 1-28. Shan. Monographiae Biologicae. 39. Junk. The lilies J. (1956) Seeausfluß-Biozönosen lappländischer Hague. Waldbäche. Entomologisk Tidskrift, 77, 138-153. Chutter F.M. (1970) Hydrobiological studies in the lilies J. (1961) Versuch einer allgemeinen catchment of Vaal Dam. South Africa. Part 1 biozönotischen Gliederung der Fliessgewässer. River zonation and the benthic fauna. Interna­ Internationale Revue der Gesamten Hydrobiologie, tionale Revue der Gesamten Hydrobiologie, 55, 46, 205-213. 445-494. lilies J. & Botosaneanu L. (1963) Problèmes et Décamps H.. Larrouy G. & Trivellato D. (1975) méthodes de la classification et de la zonation Approche hydrodynamique de la microdistribu­ écologique des eaux courantes, considérées sur­ tion d'invertébrés benthiques en eau courante. tout du point de vue faunistique. Mitteilungen der Annales de Limnologie, II, 79-100. Internationalen Vereinigung für Theoretische und Elgmork K. & Saether O.A. (1970) Distribution of Angewandte Limnologie. 12, 1-57 invertebrates in a high mountain brook in the Col­ Kani T. (1944) Stream classification in 'Ecology of orado Rocky Mountains. Studies of the University torrent-inhabiting insects' (1944): an abridged of Colorado

Opinion 139

Diplomarbeit, Freie Universität Berlin. Statzner B. (1978) Factors that determine the benthic Moon H.P. (1939) Aspects of the ecology of aquatic secondary production in two lake outflows—a insects. Transactions of the Society for British cybernetic model. Verhandlungen der Interna­ Entomology, 6, 39-49. tionalen Vereinigung für Theoretische und Mordukhai-Boltovskoi P.D. (1979) Zoobenthos and Angewandte Limnologie, 20, 1517-1522. other invertebrates living on substrata. The River Statzner B. (1981a) The relation between 'hydraulic Volga and its Life (Ed. P. D. Mordukhai- stress' and microdistribution of benthic macroin- Boltovskoi), pp. 235-268. Junk, The Hague. vertebrates in a lowland running water system, the Moretti G.P. & Cianficconi F. (1984) Zonation of Schierenseebrooks (North Germany). Archiv für Trichoptera populations from the source to the Hydrobiologie, 91, 192-218. mouth of the Tiber River (Central Italy, Rome). Statzner B. (1981b) A method to estimate the popula­ Proceedings of the 4th International Symposium on tion size of benthic macroinvertebrates in streams. Trichoptera, Clemson 1983(Ed . J. C. Morse), pp. Oecologia. 51, 157-161. 243-252. Junk, The Hague. Statzner B. & Higler B. (1985) Questions and com­ Müller K. (1955) Produktionsbiologische Unter­ ments on the River Continuum Concept. Canadian suchungen in Nordschwedischen Fließgewässern. Journal of Fisheries and Aquatic Sciences, 42, Teil 3. Die Bedeutung der Seen und Still­ 1038-1044. wasserzonen für die Produktion in Fließgewässern. Steffan A.W. (1974) Die Lebensgemeinschaft der Report of the Institute for Freshwater Research Gletscherbach-Zuckmücken (Diptera: Chirono- Drotningholm, 36, 148-162. midae)—eine Extrembiozönose. Entomologisk Newbury R.W. (1984) Hydrologie determinants of Tidskrift, Supplement, 95, 225-232. aquatic insect habitats. The Ecology of Aquatic Stoneburner D.L. (1977) Preliminary observations of Insects (Eds V. H. Resh and D. M. Rosenberg), the aquatic insects of the Smoky Mountains: pp. 323-357. Praeger. New York. altitudinal zonation in the spring. Hydrobiologia, Reice S.R. (1984) The impact of disturbance fre­ 56, 137-143. quency on the structure of aotic riffle community. Thienemann A. (1918) Lebensgemeinschaft und Verhandlungen derInternationalen Vereinigung für Lebensraum. Naturwissenschaftliche Wochen­ Theoretische und Angewandte Limnologie, 22, schrift, Neue Folge, 17, 281-290, 297-303. 1906-1910. Thienemann A. (1920) Die Grundlagen der Remane A. & Schlieper C. (1958) Die Biologie des Biozönotik und Monards faunistische Prinzipien. Brackwassers. Die Binnengewässer, 22. Schweizer­ Festschriftfür Zschokke, 4, 1-14. bart, Stuttgart. Towns DR. (1979) Composition and zonation of Richardot-Coulet M.. Richoux P. & Roux C. (1983) benthic invertebrate communities in a New Zea­ Structure et fonctionnement des écosystèmes du land kauri forest stream. Freshwater Biology, 9, Haut-Rhône français. 29. Structure des peuple­ 251-262. ments de macroinvertebrésbenthique s d'un ancien Triska F.J. (1984) Role of wood debris in modifying méandre. Archiv für Hydrobiologie, 96, 363-383. channel geomorphology and riparian habitats of a Sedeil J.R. & Froggatt J.L. (1984) Importance of large lowland river under pristine conditions: a streamside forests to large rivers: the isolation of historical study. Verhandlungen der Interna­ the Willamette River, Oregon. USA, from its tionalen Vereinigung für Theoretische und floodplain. Verhandlungen der Internationalen Angewandte Limnologie, 22, 1876-1892. Vereinigung für Theoretische und Angewandte Vannote R.L., Minishall G.W.. Cummins K.W., Limnologie, 22, 1828-1834. Sedell J.R. & Cushing CE. (1980) The river con­ Slack K.V., Naumann J.W. & Tilley L.J. (1979) tinuum concept. Canadian Journal of Fisheriesand Benthic invertebrates in a north-flowing stream Aquatic Sciences, 37, 130-137. and a south-flowing stream, Brooks Range, Ward J.V. (1981) Altitudinal distribution and abun­ Alaska. Water Resources Bulletin, 15, 108-135. dance of Trichoptera in a Rocky Mountain stream. Smith I.R. (1975) Turbulence in lakes and rivers. Series Entomologica, 20, 375-381. Scientific Publication No. 29. Freshwater Biologi­ Ward J V. ( 1982) Altitudinal zonation of Plecoptera in cal Association, Ambleside. a Rockv Mountain stream. Aquatic Insects, 4, 105- 110. Stanford J.A.& WardJ.V . (1983) Insect species diver­ sity as a function of environmental variability and Ward J.V. & Berner L. (1980) Abundance and altitudinal distribution of Ephemeroptera in a disturbance in stream systems. Stream Ecology Rocky Mountain stream. Advances in Ephemerop­ (Eds J. R. Barnes and G. W. Minshall), pp. 265^ tera Biologv (Eds J. F. Flannagan and K. E.. 278. Plenum Press, New York. Marshall), pp. 169-177. Plenum Press, New York. Starmühlner F. (1969) Die Schwechat. Notring, Wien. Wolff W.J. (1983) Estuarine benthos. Estuaries and Statzner B. (1975) Zur Longitudinalzonierung eines Enclosed Seas (Ed. B. H. Ketchum), pp. 151-182. zentralafrikanischen Fließgewässersystems unter Ecosystems of the World, 26. Elsevier, besonderer Berücksichtigung der Köcherfliegen Amsterdam. (Trichoptera, Insecta). Archiv für Hydrobiologie, 76, 153-180. (Manuscript accepted 5 September 1985) •133-

APPENDIXV

Floraan dfaun ao fEuropea nrunnin gwater s

A.Mo l (consultant) Councilo fEurop e (EXP/Eau/ff (78)4 •134-

CONTENTS

I. Introduction

II. Biologicalsectio n 1.Som enote so nth einterpretatio no fth eliste ddat a 2.Centra lan dWester nEurop e 3.Britis hIsle s 4.Norther nEurop e 5.Souther nEurop e

III. Classificationo fEuropea nrunnin gwater s-surve y •135-

INTRODUCTION

Inrepor tEXP/Eau/f f (77)1 5rev .a divisio no fEurop eint ofou r zoneswa sadopted ,basicall yo nclimatica ldifferences .I twa sagree d thatthi sdivisio nwa snecessar ya sa firs tste pt oth eclassificato no f Europeanrunnin gwaters .A mor eprecis edelimitatio no fth earea si s giveni nfig .V 1 .Som einvestigation s inSpain ,Franc ean dNorwa yshowe d thatth eborderline sbetwee nzone so fterrestria lvegetatio n(viz . mediteraneanzon ei nth esout han dconiferou szon ei nth enorth )wer e verysuitabl ea shydrobiologica l demarcationlines .Th edifferenc e between "CW"an d"B "(fig .V 2)i smor esubtl ean ddoe sno tsho wi nth e terrestrialvegetation .I nIcelan dman y importantgroup so faquati c organismsar elackin go rver ypoorl yrepresented .A classificatio nan d descriptiono fit sfreshwate rcommunitie swil lno tb ecomparabl e toan y otherpar to fEurope .Wit hrespec tt obiologica lcharacter ,th eEuropea n streamsca nreadil yb edivide d inthre emai ncategories .Ever ycategor y isi nfac ta separat esequenc eo fstrea msyste mdevelopmen twit h temperature (generalleve lan dannua lfluctations )a sth eprincipa l differentiatingfactor : a)th ehig haltitud eserie s (KRYON). wateroriginatin g frommeltin gsno wo rglacier-ice , maximum temperature (monthlymean )ver ylo w (0-8 C), wateroligotrophic ,primar yproductio nver ylow , nosurroundin gvegetation . Theoretically astrea msyste mo fthi styp eca ndevelo p fromsmall ,stee p torrentt olarg eslow-flowin g stream (a"col dpotamon") . Inth etemperat e climaticalregio nth elas tpossibilit y isneve rrealized ,becaus ethi s streamtype isnecessaril yhig hu pi nth emountains .A thighe rlatitude sa diversificationo fth eKryon-serie sca nb eseen ,cause db ybreakdow no f thecorrelatio nbetwee nth eparameter scold-small-steep-torrential . - 136 -

I = IcelaIcelann d

N = northern Europe

B= Britisch Islands

CW= cental and western Europe

S = southern Europe

CW- centra lan dwester nEurope , B =Britis hIslands , N -Norther nEurope , S -Souther nEurope ,( I= Iceland) . Fig.V 1 .Hydrobiologica l regionso fEurope .

2000m

1500m

1000m

Fig.V 2 .Generalize dCentra lEuropea nstream ,(include stype sI ,(II) , IV (V),VI) . -137- b)medium-altitud eserie s (RHITHRONan dPOTAMON) , wateroriginatin gfro msource s (orcontinuatio no fpreviou s type), temperatureregim eevolve sfro mcold/stabl e towarm/instable , upperreache soligotrophic ,lowe rreache seutrophic , streamsidevegetatio nrangin gfro mpastur et odeciduou sforest . Allochthonous inputimportant . Zonationo fflor aan dfaun ai srelativel yclea ri nserie sa )an db) . A generalized scheme isgive ni nfig .V 2 . c)lowlan dseries , wateroriginatin g fromsource so rdirec tsurfac erunoff .Firs t orderstream so fth esyste mo nlowe raltitudes , temperaturesdependin go norigi no fwate ran dinsolation .Generall y higha scompare dt opreviou stypes . Froma biologica lpoin to fvie wstreamsystem so fthi styp eca nhardl y befitte dint oth erhithro npotamon-scheme .

Kryon Rhithron Potamon maximummonthl y meantemperatur e 8° 8°-20° moretha n2 0 gradient (/oo ) >100 100-2 <2 width 0-1m 1-5m 5-100m currentvelocit y <1m/se c 0,5-1m/se c <0,5m/se c dominantmicroflor a attachedalga e attachedalga e plankton dominantmacroflor a - mosses,liverwort s phanerogams dominant invertebrate Diamesinae, Plecoptera, Ephemeroptera, Plecoptera Ephemeroptera Trichoptera, Trichoptera, Coleoptera, Elminthidae Heteroptera Mollusca dominantfis h - Salmonidae Cyprinidae -138-

II BIOLOGICALSECTION .

II.1 Somenote so nth einterpretatio no fth eliste ddata . Origino fwater .Onl yth emos ttypica lfor mo fstrea msyste minitiatio n isgiven .Ther ear ealway sothe rcontribution s likedirec tsurface-runof f ormeltin gsno wi nspring . Average gradient.i.e .average dove ra tleas tsevera lhundred so fmetre s streamlength . Currentvelocity .Indicate dfo rcentr eo fstream ,tha ti shalfwa ybetwee n thebank san dhalfwa ybetwee nsurfac ean dbottom . Organismsar eliste di nfou rmajo rgroups : PLANKTON (trueplankton ,free-floatin gan dnormall ygrowin gan d reproducing infre ewater ) STREAMBEDVEGETATIO N (includesonl ytrul yaquati cforms ) INVERTEBRATEBENTHI CFAUN A FISH

Withineac hmajo rgrou pth ehighe rtax a("mosses" ,"Plecoptera" )ar e roughlyliste di ndescendin gorde ro fimportance ,bein gth eamoun to f generao rspecie sthe ycontribut et oth etota lbiocoenosis .Onl ygener a andspecie sar egive ntha toccu rmos tfrequentl y ina watertype .Th e presenceo fvegetatio ni sver ydependen to nligh texposure .Plant sca nb e quitenaturall yabsen tfro mshade dpart so fa stream . -139-

II.2 Centralan dWester nEurope . Centralan dwester nEurope ,typ e1 .Glaciertorrent .

tOOOm

2500m

1000m

Fig. V 3.

origino fwater : meltingic eo fglacie r averagegradient : >200°/oo currentvelocity : >0, 5m/sec . Maximumtemperatur e amplitude (monthlymean) : 8°C width: 0 -3 m dominantsubstrat e: rock,pebble s nutrientstatu s: oligotrophic energetictype : autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga e (e.g.Chamaesipho nsp. , Diatomahiemal evar .mesedon . -140-

Achnantessp .etc. ) mosses (Fontinalissp .an dothers ) INVERTEBRATEFAUN A someinsect-larva eonl y (most characteristic speciesunderlined ) Diamesasteinböcki .Diames agr . latitarsis Eukiefferiellasp . Prosimiliumsp . Nemourasp . Drusussp. ,Rhyacophil asp . additionally otherTrichopter a otherSimuliida e otherPlecopter a Blepharoceridae Totalamoun to fspecies :1 0- 1 5 FISH

Centrale nWester nEurope ,typ eII .hig haltitud etorrent .

4000m

2500m

1000m

Fig.V 4 . origino fwater : meltingsno wo rsourc e averagegradient : >200°/oo •141- currentvelocity : >0, 5m/sec . max.annua ltemp .ampl . (monthlymean) : 8°C width: 0 -3 m dominantsubstrate : rock,pebble s nutrientstatus : oligotrophic energetictype : autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga e (Cyanophyceae Chlorophyceae Diatomae,Desmidiaceae ) mosses INVERTEBRATEFAUN A Plecoptera Protonemurasp . Amphinemurastandfuss i Perlidae,Leuctr asp . Ephemeroptera:Ecdvonuru ssp . Rhithrogenasp. ,Baeti s sp. Diptera Simuliidae Chironomidae (Diamesini, Eukiefferiellasp. ) Dicranotasp . Atherixsp . Tipulidae,Tabanida e Tricladida: Crenobiaalpin a Tubificidae: div.sp .

Totalamoun to fspecie s1 0- 25 . FISH

Centralan dWester nEurope ,typ eIII .High-altitud e lakeoutflows . -142-

itOOOm

2500m

1000m

Fig. V 5. origino fwater : high-altitudelak e averagegradient : >200 /oo currentvelocity : >0, 5m/sec . max.annua ltemp .ampl . (monthlymean) : 15°C width: 0 -1 0m dominantsubstrate : rock pebbles nutrientstatus : oligotrophic energetictype : allotrophic substrateactivity : eroding Oxygencontent : around100 %saturatio n •143-

PLANKTON phytoplankton Chlorophyceae Scenedesmussp . Pediastrumsp . Cosmariumsp . Chrysophyceae Mallomonassp . Chromulinasp . Bacillariaophyceae zooplankton Cladocera Copepoda Ostracoda STREAMBEDVEGETATION : similart otyp eII . INVERTEBRATEBENTHI CFAUNA : Trichoptera Hydropsychepellucidul a Rhvacophiladiv .sp . Philopotamusmontanu s Potamophylaxsp . Diptera Simuliidae Diamesini Orthocladiinae Blepharoceridae Ephemeroptera Baetissp . Ecdvonurussp . Rhithrogenasp . Tricladida Crenobiaalpin a Oligochaeta Tubificidae Lumbriculidae totalamoun to fspecies :2 0-3 0 note:directl yafte rlake-outflo whig h biomasso fSimuliida ean dnet-spinnin g Caddisflies.Bac kt onorma lnumber s withinth efirs tsevera lhundred so f meterso fth estream . FISH •144-

Centralan dWester nEurop etyp eIV .Smal lmountain -an dhillstream s (soft water).

1000m

500m

Fig. V6 .

origino fwater : sources averagegradient : 100- 2°/o o currentvelociy : >0,5m/sec . maximum temperatureamplitud e (monthlymean) : 20°C width: 0,5 -5 m dominantsubstrat e: pebbles,g r types) waterhardness : <2°d

nutrientstatus : oligotrophic energetictype : autotrophicwit hvariabl e allochthonousinput . substrateactivity : eroding oxygencontent : around100 %saturatio n •145-

PLANKTON none STREAMBEDVEGETATIO N dominatedb yattache dalga ean d mosses. attachtedalga e:Dlatom ahiemal evar . mesodon Ceratoneisarcu s Achnantessp . Lemaneafluviatili s Hlldenbrandia rlvularis Ulothrixzonat a Cladophoraglomerat a mosses: Fontinalis antipyretlca Chiloscvphus rivularis Additionally liverworts (Pelliasp. ) andi nth elowe rreache shighe rplant s (Callitrichesp. ,Myriophyllu msp. , Potamogetonsp. ) INVERTEBRATEFAUN A dominatedb yinsec torder sPlecopter a Ephemeroptera, Trichopteraan d Diptera+ Gammarida e (Crustacea) Plecoptera: Nemouradiv .sp . Protonemurasp . Brachypteraris i Perlidae Ephemeroptera: Ecdyonurussp . Baetissp . Rithrogenasp . Ephemerellaignit a Trichoptera: Hydropsychesp . Rhvacophilasp . Ephemerellaignit a •146-

Diptera Simuliidae Liponeurasp . Atherixsp . Dicranotasp . Prodiamesaolivace a Brilliamodest a Gammaridae: Gammarussp .o rdiv . sp. Additionally somespecie so fth e groupsPlatyhelminthes ,Mollusca , Oligochaeta,Heteroptera ,Coleopter a andChironomida ema yb epresent . Totalamoun to fspecie s5 0- 10 0 FISH Characteristically: Cottuspobio .Salm otrutt afario . Phoxinusphoxinus .Noemacheilu s barbatulus.Leuciscu sleuciscus .Lot a lota.Gobi ogobio .Leuciscu scephalus . Chrondrostom anasus .Thymallu s thymallus

Centralan dWester nEurope ,tvp eV .Mountain -an dhillstream s (hard water) origino fwater : sources averagegradient : 200- 2°/oo currentvelocity : >0, 5 m/sec. max.temp ,amplitud e (monthlymean) : 20°C width 0,5-5 m dominantsubstrate : pebbles,grave l (ofcalcareou stype ) waterhardnes s: >2° D nutrientstatus : meso- toeutrophi c energetictyp e: autotrophicwit hvariabl e allochthonousinpu t substrateactivity : eroding oxygencontent : arond100 %saturatio n •147-

PLANKTON: STREAMBEDVEGETATIO N attachedalgae : Vaucheriasessill s Cladophoraplomerat a Cocconeispediculu s Diatomavulgar e Synedrauln a mosses: Rhvnchosteglum rusciforme higherplant s (onlyi nlowe r parts,wher eth e currenti swea k enought oallo w growtho f phanerogams) Zannichellia palustris Siumerectu m Ranunculussp . Veronicasp . INVERTEBRATEBENTHI CFAUNA : similart otyp eIV . FISH: similart otyp eIV . •148-

Centralan dWester nEurope ,TYP EVI .Uplan drivers .

1000m

500m

Fig.V 7 .

Origino fwater : smallerstream s averagegradient : < 2°/oo currentvelocity : < 0,5m/se c max.temp .arapl . (monthlymean) : > 20°C width: 5 -5 0m dominantsubstrate : pebbles,sand ,mu d nutrientstatus : eutrophic energetictype : autotrophicwit hvariabl e allochthonousinpu t •149- substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON: Phyto- andzooplankto npresent . Phytoplankton:Asterionell asp . Stephanodiscussp . Fragillariasp . Botrvococcussp . Anabaenasp . zooplankton: Dinobryonsp . Ceratiumhirundinell a Notholcalongispin a Asplanchnasp . Leptodorakindti i Diaphanosomasp . Daphniasp. ,Bosmin a sp.,Diaptomu ssp . Cyclopssp . STREAMBEDVEGETATIO N higherplant smor e important,bu t algaean dmosse s (asi ntyp eV )stil l present. Higherplant s: Sparganiu msp . Potamogetondiv .sp. ,Butomu s umbellatusan dothers . INVERTEBRATEFAUN A manygroup srepresente d Ephemeroptera:Pothamanthu sluteus . Epheronvirg o Rhithrogenadiv .sp . Heptageniasulphure a Baetisdiv .sp. ,Caeni s div.sp. ,Ephemerell a ignita Plecoptera: Taeniopteryxnebulos a Brachvpteraris i Isoperlagrammatic a Trichoptera: Rhyacophilasp . Hydropsvchesp . Leptocerussp . •150-

Neureclipsisbimaculat a Heteroptera: Aphaelocheirus aestivalis.Corixidae , Notonectidae Coleoptera: Elminthidae,Dytiscida e Diptera: Simuliidae Chironomidae Odonata: div.sp . Oligochaeta: div.sp . Tricladida: div.sp . Hirudlnea: div.sp . Mollusca: Gastropodadiv .sp . Lamellibranchiadiv.sp . Crustacea: Gammarussp. ,Asellu s aquaticus.Asellu s meridianus.Astacu ssp .

Totalamoun to fspecie smor etha n100 . FISH Characteristican ddominan tar eth e Cyprinidae,e.g .Barbu sbarbus . Chondrostomanasus .Rhodeu ssericeu s amarus.Leuciscu sleuciscus .Rutilu s rutilus.Scardiniu serythrophthalmus . Tineatinea .Abrami sbram a Additionally:Lot alota .Perc a fluviatilis.Eso xlucius .Blicc a bjoerkna+ anadromou sfis h(Petromyzo n marinus.Lampetr afluviatilis .Salm o salar.Salm otrutta .Alos aalosa . Osmeruseperlanus ) -151-

Centralan dWester nEurope ,typ eVII . Rain-fedlowlandstreams .

100m

50m

Fig.V 8 .

Origino fwater : surfacerun-of f averagegradient : < 2%>o currentvelocity : <0, 5m/sec . maximum temperatureamplitud e (monthlymean) : > 20°CB width: 0,5- 2 0m dominantsubstrate : sand,mu d nutrientstatus : oligotrophic -->eutrophi c energetictyp e: autotrophicwit hvariabl e allochthonousinpu t substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON STREAMBEDVEGETATIO N higherplant s Callitrichehamulata . Siumerectu mf .submersum .Veronic a -152-

anagallisaquatica .Mvriophvllu m alternifolorum mosses Fontinalisantipyretic a INVERTEBRATEBENTHI CFAUN A Ephemeroptera Baetissp . Centroptilumluteolu m Procloeon pseudorufulum.Cloeo n sp.,Brachycercu s harrisella Trichoptera Hydropsychesp . Halesussp. ,Anaboli a nervosa.Plectrocnemi a sp. Diptera Simuliidae Orthocladiinae Tipulidae,Tabanida e Odonata Caloptervxsplenden s Coenagrionidae Heteroptera Corixidae Vellacaprai .Gerri s najas Coleoptera Dytiscidae,Dryopida e Elminthidae Crustacea Gammarus sp.,Asellu s sp. Oligochaeta Tubificidae Lumbriculidae Hirudinea dlv.sp . Mollusca Ancylus fluviatilis Acroloxuslacustri s Lymneasp. ,Planorbi s sp.,Pisidiu msp . Sphaerlumsp . Hydracarina Lebertiasp. ,Spercho n sp. FISH Salmotrutt afarl o Cottuspobi o Noemacheilus •153-

barbatulus.Lampetr a planeri.Leuciscu s idus.Gobi opobio . Umbrapvgmaea .Perc a fluvlatilis.Eso x lucius.Cobiti staenia . Gasterosteusaculeatus . Pungitiuspungitiu s

Centralan dWester nEurope ,typ eVIII .source-fe dlowlandstream s

Origino fwater : sources averagegradient : <2°/o o currentvelocity : < 0,5m/sec . maximumtemperatur eamplitud e (monthlymean) : <20° C width: 0,5 -5 m dominantsubstrate : pebbles,sa n nutrientstatus : eutrophic energetictype : autotrophicwit hvariabl e allochthonousinpu t substrateactivity : depositing oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N higherplant s Ranunculusfluitans .R . circinatus.R .tricho - phvllus Zannichelliapalustri s Potamogetondiv .sp . Slumerectu mf . submersum attachedalga e INVERTEBRATEBENTHI CFAUN A Ephemeroptera Ephemerellaipnit a •154-

Baetisdiv .sp . Heptageniasulphure a Centroptilumsp . Cloeonsp. ,Caeni ssp . Odonata Caloptervxvirgo . C. splendens.Ischnür a elegans Coenagrionidae Libelluiasp . Plecoptera Nemourasp. ,Leuctr a sp.,Perlida e Mollusca Lymneadiv .sp . Planorbisdiv .sp . Physafontinali s Ancylus fluviatilis Sphaeriumsp. ,Pisidiu m sp.,Anodont asp . Dreissenasp . Coleoptera Dytiscidae,Gyrinidae , Haliplidae,Elminthida e Diptera Chironomidae Orthocladiinae Tanypodinae Simuliidae,Dicranot a sp.,Atheri xsp . Trichoptera Rhyacophilasp . Agapetusfuscipe s Polycentropidae Hydropsvchesp . Limnephilidae Hydracarlna Sperchonsp. ,Leberti a sp.,Limnesi asp . Hygrobatessp . Crustacea Gammarussp. ,Asellu s div.sp . Tricladida Polycelissp ., Dugesi a sp.,Dendrocoelu m lacteum Hirudinea Piscicolageometr a •155-

Erpobdelladiv .sp . Helobdellastagnali s Glossiphoniadiv .sp . FISH Lampetraplaneri .Salm otrutt afario . Gobiogobio .Rutilu srutilus . Noemacheilusbarbatulus .Cottu sgobio . Cobitistaenia .Anguill aanguilla . Gasterosteusaculeatus .Pungitiu s pungitius.Eso xlucius .Perc a fluviatilis

Centralan dWester nEurope ,typ eIX .Lowlan driver s

100m

50m

Fig.V 9 . Origino fwater : smallerstream s averagegradient : <2°/o o •156-

currentvelocity : <0, 5m/sec . maximum temperatureamplitud e (monthlymean) : > 20°C width: 0,5 -2 0m dominantsubstrate : sand,mu d nutrientstatu s: eutrophic energetictype : autotrophic substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON somephyto -an dzooplankto n STREAMBEDVEGETATIO N higherplant s Glyceriamaxim a Phragmitesaustrali s Nymphaeaalba .Calth a palustris.Elode a canadensis attachedalga eCladophor asp . INVERTEBRATEBENTHI CFAUN A Mollusca Physafontinali s Viviparusdiv .sp . Lymneasp. ,Planorbi s sp.,Valvat asp . Bithyniasp. ,Acroloxu s lacustris.Uni odiv . sp.,Anodont adiv .sp . Dreissenasp . Sphaeriumsp. ,Pisidiu m sp. Ephemeroptera Cloeonsp. ,Caeni sdiv . sp. Trichoptera Leptoceridae,Anaboli a nervosa.Molann a angustata Polycentropidae Diptera Chironomidae, Simuliidae,Chaoborida e Crustacea Gammarussp . Asellusdiv .sp . -157-

Astacusastacu s Hirudinea Erpobdelladiv .sp . Helobdellastagnali s Piscicolageometr a Glossiphoniadiv .sp . Coleoptera Dytiscidae,Gyrinida e Elminthidae Heteroptera Corixidae,Gerrida e FISH Lampetraplaneri .Noemacheilu s barbatulus.Gobi ogobio .Rutilu s rutilus.Cottu sgobio .Cobiti staenia . Anguillaanguilla .Gasterosteu s aculeatus.Pungitiu spungitius .Eso x luejus.Perc afluviatili s

II.3 . BritishIsle s -typ eI .mountain -an dhillstream s (softwater )

Origino fwater : sources averagegradient : 200- 2°/o o currentvelocity : 0,5m/sec . maximum temperatureamplitud e (monthlymean) : 15°C width: 0,5 -5 m dominantsubstrate : rock,pebb L flowregime : instable nutrientstatu s: oligotrophic energetictype : autotrophicwit hvariabl e allochthonousinpu t substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga eDiatom ahiemal e Ceratoneisarcu s -158-

Achnantes sp.,Eunoti a div.sp. ,Tabellari a div.sp . mosses Eurhvnchiumsp . Hygroamblvstegium fluviatile liverworts Pelliaepiphyll a Conocephalumconlcu m INVERTEBRATEBENTHI CFAUN A Plecoptera Nemourasp . Brachypterarls i Amphinemurasp . Protonemurasp . Leuctradiv .sp . Perlidae Ephemeroptera Baetisdiv .sp . Ephemerellaignit a Rhithrogenasp . Ecdvonurussp . Heptageniasp . Trichoptera Rhyacophilasp . Hydropsvche instabilis Plectrocnemiadiv .sp . Wormaldiasp . Diptera Simuliidae Orthocladiinae Tipulidae,Atheri xsp . Dicranotasp . Coleoptera Veliacaprai .Gerri s sp. Mollusca Ancvlus fluviatilis Hydracarina Lebertiasp. ,Spercho n sp. Tricladida Crenobiaalpin a Polycelisfelin a Crustacea Gammaridae FISH Salmotrutt afario .Phoxinu sphoxinus . Noemacheilusbarbatulus .Gobi ogobi o -159-

BritishIsle s -typ eII .mountain -an dhil lstream s (hardwater )

Origino fwater : sources averagegradient : 200- 2%> o currentvelocity : <0, 5m/se c maximumtemperatur eamplitud e (monthlymean) : 15°C width: 0,5 -5 m dominantsubstrate : rock,pebb l flowregim e: instable nutrientstatu s: eutrophic energetictype : autotrophicwit hvariabl e allochthonousinpu t substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga eCocconei splacentul a Ulvellafrequen s Chamaesiphonsp . Svnedraulna .Navicul a viridula.Surirell a ovalis.Cvmbell asp . Gomphonemasp . mosses liverworts INVERTEBRATEBENTHI CFAUN A similart otyp eI similart otyp eI

BritishIsle s -typ eIII .Intermediat etyp e

Origino fwater : smallerstream s averagegradient : 20- l°/o o currentvelocity : <0, 5m/sec . •160- maximumtemperatur eamplitud e (monthlymean) : >15° C width: 5 -2 0m dominantsubstrate : pebbles,grave l flowregime : relativelystabl e nutrientstatu s: eutrophic energetictype : autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalgae ,mosse sa si ntyp eI higherplant s Apiumnodifloru m Callitrichediv .sp . Berulaerecta .Menth a aquatica.Groenlandi a densa.Zannichelli a palustris.Potamogeto n crispus INVERTEBRATEBENTHI CFAUN A Plecoptera Leuctrasp. ,Dinocra s cephalotes.Chloroperl a sp. Ephemeroptera Habrophlebiafuse a Baetisdiv .sp . Ecdyonurussp . Ephemerellaignit a Caenissp . Trichoptera Tinodeswaener i Agapetusfuscipe s Lepidostomahirtu m Cyrnustrimaculatu s Hydropsychesp . Rhyacophilasp . Diptera Simuliidae Chironomidae Tipulidae,Tabanida e Atherixsp. ,Dicranot a •161-

sp. Tricladida Crenobiaalpin a Dendrocoelumlacteu m Hirudinea Glossiphonia complanata.Erpobdell a sp.,Helobdell a stagnalis Mollusca Potamopyrgusjenkins i Ancvlus fluviatilis Planorbis sp.,Lymne a sp. Oligochaeta Eisenlellatetraedri s Tubiflcidae Hydracarina Lebertiasp . Hygrobatessp . Coleoptera Elminthidae,Dytiscida e FISH Salmotrutt afarlo .Lampetr aplaner! . Phoxinusphoxinus .Noemacheilu s barbatulus.Anguill aanguilla . Gasterosteusaculeatu s

BritishIsle s -typ eIV ,mai nrivers .

Origino fwater : smallerstream s averagegradient : <2o/o o currentvelocity : < 0,5m/sec . maximumtemperatur eamplitud e (monthlymean) : >15o C width: 20- 10 0m dominantsubstrate : gravel,sand ,mu d flowregime : relativelystabl e nutrientstatu s: eutrophic energetictype : autotrophic substrateactivity : depositing oxygencontent : 50- 150 %saturatio n -162-

PLANKTON phytoplankton Asterionellasp . Cyclotellasp . Stephanodiscussp . Synedrasp . Dinobryonsp. ,Ceratiu m sp. zooplankton Asplanchnasp . Leptodorakindti i Daphniasp. ,Bosmin a sp. STREAMBEDVEGETATIO N higherplant s Sagittaria sagittifolia.Scirpu s lacustris.Roripp a amphibia.Sparganiu m ernerstun.Nupha rlute a algae Enteromorphasp . INVERTEBRATEBENTHI CFAUN A Ephemeroptera Baetisdiv .sp . Habrophlebiafuse a Cloeonsp. ,Caeni ssp . Centroptilumpennulatu m Trichoptera Polycentropus f1avomaculatus Phryganeasp . Hydroptilidae Leptoceridae Odonata Ischnüraelegan s Cordulegasterboltoni i Plecoptera Nemouracinere a Taeniopteryxnebulos a Leuctrafusca .Isoperl a grammatica Coleoptera Dytiscidae,Gyrinida e Heteroptera Corixidae Notonectidae,Nepida e Mollusca Lymneasp. ,Planorbi s sp.,Bithyni asp . Physafontinali s Acroloxus lacustris •163-

Crustacea Gammaridae,Asellu s aauaticus.Asellu s merldlanus Oligochaeta Tubificidae,Naidida e Hirudinea FISH Gobiogobio .Perc afluvlatllls .Eso x lucius.Lampetr aplaneri .Tine atinea . Rutilusrutilus .Scardiniu s ervthrophthalmus.Abrami sbrama . Anguillaanguill a (anadromous: Petromyzonmarinus .Lampetr a fluviatilis.Alos aalosa .Alos a fallax.Salm osalar .Salm otrutta . Osmeruseperlanus )

BritishIsle s- typ eV .Chal kstream s

Origino fwater : sources averagegradient : <2°/o o currentvelocity : <0, 5m/sec . maximum temperatureamplitud e (monthlymean) : > 15°C width: 1 -2 0m dominantsubstrate : gravel,silt ,mu d flowregime : relativelystabl e nutrientstatu s: mesotrophic energetictype : autotrophic substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON STREAMBEDVEGETATIO N higherplant s Ranunculuspenicillatu s var.calcareus ,Apiu m nodiflorum.Roripp a nasturtiumaquaticum . -164-

Batrachiumsp . Potamogetondlv .sp . INVERTEBRATEBENTHI CFAUN A Ephemeroptera Baetisdiv .sp. ,Cloeo n sp.,Ephemer adanica . Paraieptophle bi a submarginata Heptageniasulphure a EphemerellaIgnit a Trichoptera Rhyacophilasp . Agapetussp . Plectrocnemla conspersa.Hydropsych e sp.,Polycentropu ssp . Molannaangustat a Plecoptera Nemouracinere a Leuctradiv .sp . Isoperlagrammatic a Perlamicrocephal a Odonata Calopteryxsplenden s Pyrrhosomanymphul a Ischnüraelegan s Sympetrumsp . Coleoptera Dytiscidae,Haliplida e Gyrinidae,Elminthida e Heteroptera Corixidae Aphelocheirus montandoni Diptera Simuliidae Chironomidae Hydracarina Eylaissp. ,Spercho n sp.,Leberti asp . Hygrobatessp . Atractidessp .

Crustacea Gammaruspule xpule x Asellusaquaticu s Asellusmeridianu s Tricladida Dugesialugubri s Polycelissp .

FISH upperpart s: Cottusgobio .Salm o •165-

truttafario .Phoxinu s phoxinus.Noemacheilu s barbatulus.Thymallu s thymallus lowerpart s: Rutilusrutilus .Gobi o gobio.Leuciscu s leuciscus.Anguill a anguilla

BritishIsles ,typ eVI .winterbourne s

Inal lrespect swinterbourne sar ever ymuc hlik enorma lchal kstream s (type V), onlyth eflo wregim e isver yunstable .Du et oth eporou s substratean dth esinkin ggroundwate r leveli nsummer ,Winterbourne sar e stagnanto rdr ydurin ga considerabl epar to fth eyear .Som eo fthe monl y carrywate rfro mMarc ht oJuly .

A fewweek safte rflo wstarts ,flor aan dfaun aar ea fragmen to fa chalkstream-biocoenosis:

PLANKTON STREAMBEDVEGETATIO N higherplant s Oenanthecrocat a attachedalga eTribonem asp. ,Melosir a sp.,Fragillari asp . INVERTEBRATEBENTHI CFAUN A Eiseniellatetraedra .Planorbi s 1eueostoma.Zonitoide snitidus .Baeti s vernus.Stenophvla xsequax .Haliplu s lineatocollis.Agabu ssp. ,Dytiscidae , Lymneatruncatul a

Ofth emos tstabl ewinterbourne s (3t o4 month so fcontinuou s flow,neve r completelydry )flor aan dfaun aar ecomparabl e tothos eo fa chalkstrea m (typeV) . •166-

BritishIsles ,typ eVII .Rainfe dlowlandriver s

Origino fwater : surfacerun - averagegradient : <2°/o o currentvelocity : <0, 5m/sec . maximumtemperatur eamplitud e (monthlymean) : > 15°C width: 0,5- 1 0m dominantsubstrate : sand,mu d fluctuations inflow : strong nutrientstatu s: oligo- >eutrophi c energetictype : autotrophicwit hvariabl e allochthonousinpu t substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON STREAMBEDVEGETATIO N upperreaches :Apiu mnodifloru m Callitrichesp . Phalarisarundinace a Sparganiumerectu m Veronicabeccabung a lowerreache s: Elode acanadensi s Sagittaria sagittifolia.Scirpu s lacustris.Sparganiu m emersum.Sp .erectu m Lemnaminor .Nupha r lutea INVERTEBRATEFAUN Aan dFIS H seetyp eVII ,centra l& wester nEurop e

II.4 . NorthernEurop e

Generaldifference swit hcentra lEuropea nstream s: watertemperature sgenerall ymuc hlower ;n ocorrelatio nbetwee nlo w temperaturean dhig haltitud e (c.q.hig hgradien tan dcurren t velocity). •167-

thegrea tmajorit yo fwater s issoft-oligotrophic , allochthonous inputa sa nenerg ysourc ei smuc hmor e importanttha n primaryproduction , insectlarva ear eth emos timportan tcomponen to fth ebenthi cfauna .

Suggestedclassification :

a.Glacie rstreams . b.Mountai nstream sabov ebirch-zone . c.Stream si nbirch -o rconiferou szone . d.Larg erivers .

N-Europe,typ ea .Glacierstreams .

Origino fwater : meltingglacie r averagegradient : veryvariable ,dependin go nlatitude , c.q. altitudeo fglacie ran dstrea m currentvelocity : veryvariable ,dependi i maximum temperature amplitude (monthlymean) : 4°C width: 0,5 -2 0m dominantsubstrate : rock,pebble s nutrientstatu s: oligotrophic energetictype : allotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalgae ,mosse s INVERTEBRATEBENTHI CFAUN A onet osevera lspecie so f Orthocladiinae (Diamesasp. ,Diames a lindrothi.Eukiefferiel asp . Simuliidae (lowerparts ) FISH Salvelinusalpinu s -168-

N-Europe,typ eb .mountainstream sabov eth eBirchzone .

Origino fwater : meltingsnow ,rai n averagegradient : 200- 2°/o o currentvelocity : >0, 5m/sec . width: 0,5 -1 0m dominantsubstrat e: rock,pebble s nutrientstatu s: oligotrophic energetic type: autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N Cyanophyceae (Lvngbyasp. ,Stigonem a sp.) Bacillariophyceae (Achnantessp. , Ceratoneisarcus ) Chlorophyceae (Ulothrixzonata . Oedogoniumsp. ) mosses (Fontinalissp. ,Aulacomniu m sp.) INVERTEBRATEBENTHI CFAUN A Plecoptera Nemourasp. ,Leuctr a div.sp. ,Nemurell a picteti.Perlida e Ephemeroptera Heptageniasp. ,Baeti s sp. Trichoptera Rhyacophilasp . Hvdropsvchesp . Diptera Orthocladiinae FISH Salmotrutt afario .Phoxinu sphoxinus . Lotalot a •169-

N-Europe.typ ec. .Stream s inth eBirch -o rconiferou szon e

Origino fwater : meltingsno wo rsources /surfac e run-off(dependin go nseason ) averagegradient : 200- 2°/o o currentvelocity : 30- 7 0cm/sec . width: 0,5- 5 0m dominantsubstrate : pebbles,grave l nutrientstatu s: oligotrophic energetictype : mainlyallotrophi c+ som eprimar y production substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga eUlothri xzonat a Achnantessp . Ceratoneisarcu s Hydrurusfoetidu s Lemaneafluviatili s Nostocsp . mosses Fontinalisdiv .sp . Scapaniaundulat a higerplant s Callitrichesp . Ranunculuspeltatu s Potamogetonsp . INVERTEBRATEBENTHI CFAUN A Plecoptera Perlidae,Leuctr adiv . sp.,Capni asp . Nemouradiv .sp . Ephemeroptera Baetisdiv .sp . Heptageniasp . Siphlonurussp . Leptophlebiasp . Ephemerellaipnit a Trichoptera Hydropsychesp . Rhyacophilasp . •170-

Sericostomapersonatu m Drusussp . Limnephilldae Diptera Simuliidae Orthocladiinae Hydracarina div.sp . Mollusca Ancylus fluvlatllis Tricladlda Crenobiaalpin a

FISH Salmotrutt afario .Cottu sgobi o(no t Norway),Phoxinu sphoxinus ,Leuciscu s div.sp. ,Lot alota .Thvmallu s thymallus.Lampetr aplaner i (not Finland),Salm osalar .Salm otrutta . Salvelinusalpinu s

Northern-Europetyp ed. .Larg eriver s

Origino fwater : smallerstream s averagegradient : <2°/o o currentvelocity : <0, 5m /sec . width: > 50m dominantsubstrate : pebbles,gravel ,mu d nutrientstatu s: meso-eutrophi c energetictype : autotrophic substrateactivity : depositing oxygencontent : around100 %saturatio n

PLANKTON somephyto -an dzooplankto n STREAMBEDVEGETATIO N higherplant s Potamogetondiv .sp . Sparganium angustifo1ium.Scirpu s sp.,Sagittari a sagittifolia Callitrichesp . •171-

Ranunculusdiv .sp . mosses Fontlnalisdalecarlic a Calliergonellasp . attachedalga e INVERTEBRATEBENTHI CFAUN A Plecoptera Amphinemuraboreali s Leuctradiv .sp. ,Dlur a nanseni.Perlida e Brachypterarls i Ephemeroptera Baetisdiv .sp . Siphlonuruslacustri s Heptageniasulphure a Nemurellapictet i Ephemerellaignit a Trichoptera Polycentropussp . Limnophilidae Stenophvlaxsp . Rhyacophilasp . Hydropsychesp . Halesussp . Diptera Orthocladiinae Simuliidae,Tipulida e Tabanidae Hydracarina div.sp . Mollusca Lymneaperegr a Pisidiumsp . FISH Esoxlucius ,Leuciscu sdiv .sp. , Rutilusrutilus .Abrami sbrama . Alburnusalburnus .Anguill aanguilla . Lotalota .Perc afluviatilis .Acerin a cernua.Petromvzo nmarinus .Lampetr a fluviatilis.Accipense rsturio .Alos a alosa.A .fallax .Salm osalar .S . trutta.Salvelinu salpinus .Osmeru s eperlanus •172-

II. 5 SouthernEurop e

Mostmediterranea nstream sar ebiologicall ycomparabl e toCentra l Europeantypes ,provide dtha tthe ycarr ywate rfo rmor etha nhal fa yea r continuously.Owin gt oth ever ydr yclimat ethi si softe nno tth ecase . Accordingly,man ymediterranea nstream sar eintermitten to rver y irregular.

Suggestedclassification :

A.High-altitud etorrents . B.High-altitud e lakeoutflows . C.Mountain -an dhillstream s (rhithron). D.Mai nriver s (Potamon) E.Intermitten to rhighl y irregularstream s

SouthernEurope ,type sA & B .

A.Hig haltitud estrea m

Origino fwater : meltingsno w averagegradient : >200°/o o currentvelocity : > 1m/sec . maximalannua ltempertur e ampl. (monthlymean ) 8°C width 0-3m dominantsubstrate : rock,pebble s flowregim e verylo wt odr yi nsum i

nutrientstatus : oligotrophic energetictype : autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON •173-

STREAMBEDVEGETATIO N attachedalga eHvdruru sfoetidu s Ceratoneisarcu s Hydrococcussp . Chamaesiphonsp . Hildenbrandiasp . INVERTEBRATEBENTHI CFAUN A Dlamesagr .latitarsis .Simuliidae , Protonemurasp. ,Rhvacophil asp. , Drusussp. ,Leuctr asp. ,Perlida e FISH

B.Lak eOutflow s

Origino fwater : higho rmediu maltitud e averagegradient : > 200°/oo currentvelocity : > 1m/sec . maximalannua ltempertur e ampl. (monthlymean ) 15°C width: 0 -1 0m dominantsubstrate : rock,pebble s flowregime : relativelystabl e nutrientstatus : eutrophic energetictype : allotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON phytoplankton Scenedesmussp . Pediastrumsp . Cosmariumsp . Mallomonassp . Chromulinasp . Diatomaceae zoöplankton Cladocera,Copepoda , Ostracoda STREAMBEDVEGETATIO N similart otyp eA . -174-

INVERTEBRATEBENTHI CFAUN A Simuliidae,Hydropsvch esp. , Plecoptera,Ephemeroptera , Trichoptera,Crenobi aalpina . Oligochaeta FISH

Southern-Europe,type sC. .D. .an dE .

C.Mountain - andhillstream s

Origino fwater : sources averagegradient : 200 2°/oo currentvelocity : >0, 5m/sec . width: 0,5 -1 0m dominantsubstrate : pebbles,grave l nutrientstatus : eutrophic energetic type: autotrophic substrateactivity : eroding oxygencontent : around100 %saturatio n

PLANKTON STREAMBEDVEGETATIO N attachedalga eDiatom ahiemal e Meridioncircular e Achnanteslanceolat a Gomphonemasp . Hildenbrandiasp . Cladophorasp . mosses Fontinalissp . Platvhvpnidiumsp . higherplant s (lowerreache sonly ) Callitrichesp. ,Apiu m sp.,Myriophyllu msp . INVERTEBRATEBENTHI CFAUN A similart ocentral-Europea nrhithro n FISH Cottusgobio .Salm otrutt asubsp. , Phoxinusphoxinu s (onlyIber.) , Lampetraplaner i •175-

D.Mai nriver s

Origino fwater : smallerstream s averagegradient : <2°/o o currentvelocity : <0, 5m/sec . width: 10- 10 0m dominantsubstrate : pebbles,sand ,mu d nutrientstatus : eutrophic energetictype : autotrophic substrateactivity : depositing oxygencontent : 50- 150 %saturatio n

PLANKTON generalEuropea npotamoplankto n STREAMBEDVEGETATIO N similart ocentral-Europea npotamo n INVERTEBRATEBENTHI CFAUN A similart ocentral-Europea npotamon , withth eexceptio no fAphelocheiru s aestivalis FISH Percafluviatili s (notIber.) .Tine a tinea.Rutilu srubili o (not Iber.), Scardiniuserythrophthalmu sscardaf a (notIber.) ,Blenniu sfluviatilis . Anpuillaanpuill a anadromous: Petromvzonmarinus .Lampetr a fluviatilis.Alos aalosa .Alos afalla x nilotica.Salm osala r (only Iber.), Salmotrutt a (onlyIber.) ,Osmeru s eperlanus (onlyIber. )

TypeE. .Intermitten tstreams . noplankto nan dn oaquati cvegetation ;faun aa fragmen to fth e rhitron-fauna(typ eC. ) •176-

III. CLASSIFICATION OFEUROPEA NRUNNIN GWATER S -SURVE Y Central& Wester nEurop e BritishIsle s S-Europe N-Europe 1.glacie rtorren t a.glacie rstream s

2.high-altitud e A.high-altitud eb .stream sabov e streams streams birch-zone

mountainstreams inbirch -o r coniferouszon e 3.lake-outflow s B.lake-outflow s

4.mountain -an dhill - I.mountain -an d streams (softwater ) hill-streams (softwater )

5.mountain -an dhill - II.mountain - mountain-an d streams (hardwater ) andhill - hill-streams streams (hardwater)

III.interme ­ diarytyp e

6.uplan driver s IV.mai nriver s D.mai nriver s (potamon)

V.chal kstream s

VI.winterbourne sE .intermitten t streams

7.rainfe dlowland - VII.rainfe dlow ­ streams landstream s

8.source-fe dlow ­ landstream s

9.lowlan driver s •177-

REFERENCES

Albrecht,M.L.1953 .Di ePlan eun dander eFlämingbäche . Z.Fisch. ,N.F .1 :389-476 . Arnold,F.& T.T .Maca n1969 .Studie so nth efaun ao fa Shropshir ehil l stream.Fiel dStudie s3 :159-184 . Badcock.R.M.1953 .Comparativ estudie so nth epopulation so fstreams . Rep.Inst .Fresh .Res. ,Drottninghol m 35:38-50 . Berg.K.1948 .Biologica lstudie so nth erive rSusaa .Foli aLimn .Scan d 4:1-318 . Beyer,H.1932 .Di eTierwel tde rQuelle nun dBäch ede sBaumbergegebietes . Abh.Westfäl .Prov .Mus .f .Naturk .3 :1-185 . Carpenter,K.E.1928 .Lif ei ninlan dwaters .Sidgwic kan dJackson , London. Castenholz.R.W.& CE . Wickstrom 1975.Therma lstreams .In :B.A .Whitto n (ed.),Rive rEcology .Blackwell ,Oxford . Décamps,H.1967 .Ecologi ede sTrichoptère sd el avallé ed'Aur e (Hautes Pyrénées).Annls .Limnol .3 :399-577 . Dittmar.H.1955 .Ei nSauerlandbach .Arch .Hydrobiol .50 :305-552 . Dorier,A.1937 .L afaun ede seau xcourante salpines .Verh .Internat . Verein.Limnol .8 :31-41 . Egglishaw.H.J.& N.C .Morga n1965 .A surve yo fth ebotto mfaun ao f streams inth eScottis hHighlands ,par tII ,th erelationshi p ofth e faunat oth echemica lan dgeologica lconditions .Hydrobiologi a26 : 173-183 Eidel.K.1933 .Beiträg ezu rBiologi eeinige rBäche rde sSchwarwalde smi t besondererBerücksichtigun gde rInsektenfaun ade rEl zun dKinzig . Arch.Hydrobiol .25 :543-615 . Fahy,E.1975 .Quantitativ easpect so fth edistributio no finvertebrate s inth ebentho so fa smal lstrea msyste mi nWester nIreland .Freshw . Biol.5 :167-182 . Flanagan,P.J.& P.F .Tone r1972 .Note so nth echemica lan dbiologica l analysiso fIris hRive rwaters .A nFora sForbarthe r -wate r resourcesdivision . Furse.M.T.1977 .Th eecolog yo fth eGussage ,a line dwinterbourne .Ann . Rep.Freshw .Biol .Ass .45 :30-36 . Geijskens.D.C.1935 .Faunistisch-ökologisch eUntersuchunge na mRöseren - bachbe iLiesta li mBasle rTafeljura .Tijdschr .Entom .78 :249-382 . -178-

Ghetti.P.F.1974 .L'acqu anell 'ambient euman od iVa lParma ."Studiu m Parmense",Parma . HarrisonChurch,R.J .e tal .1967 .A nadvance dgeograph yo fNorther nan d WesternEurope .Hulto nEducationa lPublications ,London . Hawkes.H.A.1975 .Rive rzonatio nan dclassification .In :B.A .Whitto n (ed.),Rive rEcology .Blackwell ,Oxford . Hawkes.H.A. 1976.Determinant s infreshwate recosystem san dman - modifiable factorsinducin gchang ei nhydrobiocoenoses .In :R.Amavi s &J.Smeet s (eds.),Principle san dmethod sfo rdeterminin gecologica l criteriao nhydrobiocoenoses .Pergamo nPress ,Oxford . Hynes,H.B.N.1958 .Th eeffec to fdrough to nth efaun ao fa smal l mountainstrea m inWales .Verh .Internat .Verein .Limnol .13 : 826-833. Hynes,H.B.N.1961 .Th einvertebrat efaun ao fa Wels hmountai nstream . Arch.Hydrobiol .57 :344-388 . Hynes,H.B.N.1970 .Th eecolog yo frunnin gwaters .Liverpoo lUniversit y Press. lilies,J.1958 .Di eBarbenregio nmitteleuropäische rFliessgewässer . Verh.Internat .Verein .Limnol .13 :834-844 . lilies,J.1961 .Gebirgsbäch e inEurop aun di nSüdamerika ;ei nlimnolo - gischerVergleich .Verh .Internat .Verein .Limnol .14 :517-523 . lilies,J.1963 .Limnofaun aEuropaea .Fischer ,Stuttgart , lilies,J.& L .Botosanean u1963 .Problème se tméthode sd el aclassifi ­ catione td el azonatio nécologiqu ede seau xcourantes ,considérée s surtoutd upoin td evu efaunistique .Mitt .Internat .Verein .Limnol . 12:1-57 . Jones,H.R.6 eJ.C .Peter s (undated).Physica lan dbiologica ltypin go f unpollutedrivers , (reproduced indoc .EXP/Eau/f f(76 )Misc .1 Councilo fEurop e1976 ) Kawecka.B.e tal . 1971.Genera lcharacteristic so fth ebiocoenose si n thestream so fth ePolis hHig hTatras .Act aHydrobiol .13 :465-476 . Kownacka.M.& A.Kownack i 1972.Vertica ldistibutio no fth ezoocoenose s inth estream so fth eTatra ,Caucasu san dBalka nMts .Verh . Internat.Verein .Limnol .18 :742-750 . Klein,L.1957 .Aspect so fRive rPollution .Butterworth ,London .82 1p . Lauterborn,R.1916 ,1917 ,1918 .Di egeographisch eun dbiologisch e Gliederungde sRheistrom sI ,II ,III .Teil .Sitzungsber .Heidelb . Adak.wiss .Bd .VI IB ,VII IB ,I XB . leGrand,H.E .1973 .Hydrologica lan decologica lproblem so fKars t -179-

regions.Scienc e 179 (4076):859-864 . Lehmann,J.1971 .Di eChironomide nde rFulda .Arch .Hydrobiol .suppl .Bd . 37:466-555 . Liebmann,H.1960 .Handbuc hde rFrischwasse run dAbwasserbiologie .B dI , II.Oldenbourg ,München . Macan.T.T.1961 .A revie wo frunnin gwate rstudies .Verh .Internat . Verein.Limnol .14 :587-602 . Macan.T.T.1974 .Runnin gwater .Mitt .Int .Ver .Limnol .20 :301-321 . Maitland.P.S.1966 .Studie so nLoc hLomon dII .Th efaun ao fth erive r Endrick.Blackie ,Glasgow . Marlier.G.1951 .L abiologi ed'u nruissea ud eplaine :L eSmohain .Mém . Inst.r .Sei .nat .Belg .114 :1-98 . Minshall,G.W.& R.A .Kuehn e1969 .A necologica lstud yo finvertebrate s ofth eDuddon ,a nEnglis hmountai nstream .Arch .Hydrobiol .66 : 169-191. Möller,L.1955 .Geographisch eVerteilun gde rKonzentratio ngelöste r Substanzenvo nGrun dun dOberflächengewässer nSüdwestdeutschland s in Limnologischer Sicht.Verh .Internat .Verein .Limnol .12 :351-359 . MollerPillot.H.K.M .1971 .Thesis :Faunistisch ebeoordelin gva nd e verontreiniging inlaaglandbeken .Pillot-Standaardboekhandel , Tilburg. Moretti.G.1953 .I fattor iecologic ich eregolan ol avit anell eacqu e correntidell eAlp ie degl iApennini .Mem .Ist .Ital . Idrobiol7 : 229-316. Moretti.G.1955 .Idrobiologi acomparat adell eacqu ecorrent isudalpin e edappenniniche .Verh .Internat .Verein .Limnol .12 :588-592 . Morgan.N.C.& H.J . Egglishaw1965 .A surve yo fth ebotto m faunao f streams inth eScottis hHighlands ,par tI ,Compositio no fth efauna . Hydrobiologia 25:181-211 . Müller,K.1955 .Di eregional eGliederun glappländische rFliessgewässer . Arch.Hydrobiol .suppl .B d22 :439-441 . Nietzke.G.1938 .Di eKossau .Hydrobiologisch-faunistisch eUntersuchunge n anSchleswig-holsteinische n Fliessgewässer.Archi vHydrobiol .32 : 1-74. Nisbet.M.& J .Verneau x1970 .Composante schimique sde seau xcourantes . Annls.Limnol .6 :161-190 . Pennak.R.W.1971 .Toward sa classificatio no floti ehabitats . Hydrobiologia 38:321-334 . Pinder.L.C.V.1977 .Th eChironomida ean dthei recolog y inchal kstreams . •180-

Ann. Rep.Freshw .Biol .Ass .45 :62-69 . Pomeisl,E.1961 .ökologisch-biologisch eUntersuchunge na nPlecoptere ni m Gebietde rnieder-österreichische nKalkalpe nun dde sdiese m vorgelagertenFliessgebietes .Verh .Internat .Verein .Limnol .14 : 351-354. Redeke.H.C.1948 .Hydrobiologi eva nNederland .D eBoer ,Amsterdam . Ricker,W.E.1934 .A necologica lclassificatio no fcertai nOntari o streams.Univ .Toront oStudies ,Biol ,serie s37 :7-114 . Scheele,M.1952 .Systematisch-ökologisch eUntersuchunge nübe rdi e Diatomeenflorade rFulda .Arch .Hydrobiol .46 :305-423 . Schmitz,W.1957 .Di eBergbach-Zoozönose nun dihr eAbgrenzung ,dargestel t amBeispie lde robere nFulda .Arch .Hydrobiol .53 :465-498 . SLadecek.V.1973 .Syste mo fwate rqualit yfro mth ebiologica lpoin to f view.Arch .Hydrobiol .Beihef t7 :1-218 . Smissaert.H.R.1959 .Limburgs ebeken .Natuurh .Maandbla d48 :7-78 . Steinbock,0.1938 .Arbeite nübe rdi eLimnologi ede rHochgebirgsgewässer . Int. Rev.ges .Hydrobiol .u .Hydrogr .37 :467-509 . Thiel,K.D.& H.J . Subklew1976 .De rBierbac h imNaturschutzgebie t "Eldena"be iGreifswald .Limnologic a (Berlin)11 ,1 :101-123 . Thienemann.A.1925 .Di eBinnengewässer ,Bd .1 . Thienemann.A.1942 .Lappländisch e Chironomidenun dihr eWohngewässer . Arch.Hydrobiol .supppl .B d17 :1-253 . Thorup.J.1963 .Growt han dlif ecycle so finvertebrate sfro mDanis h springs.Hydrobiologi a 22:55-84 . Tittizer.T.G.1976 .Compariso no fbiological-ecologica lprocedure sfo r assessmento fwate rquality .In :R.Amavi s& J.Smeet s (eds.),Pinci - plesan dmethod sfo rdeterminin gecologica lcriteri ao nhydrobiocoe - noses.Pergamo nPress ,Oxford . Verneaux.J.1973 .Cour sd'ea ud eFranche-Comt é (Massifd uJura) . Faculté desScience sd eBesançon .25 7p . Verneaux.J. 1976,1977 .Biotypologi ed el'écosystèm e "eaucourante" . CR. Acad.Sc .Pari st .283/284 ,séri eD .1663 ,1791 ,77 ,675 . -181-

APPENDIXV I

Tableswit hdat ao nmorphometr yo flarg ewate rbodie s

Unesco197 8 - 182 -

2.6. Major rivers

The development of a drainage network depends on climate, relief and geological formations. The distribution of networks over the globe is closely related to the degree to which the land surface of the earth has been disturbed. Conventionally, rivers are classified as large, medium or small, accor­ ding to the size of their catchment areas, their lengths and the volume of their discharge. Table 6 includes data on large- and medium-sized rivers that flow in­ to the seas and oceans, and also on large rivers that flow into closed in­ land seas (Volga, Amu Darya, Syr Darya, etc.); it also includes data on lakes (Hi, Chari, Cooper's Creek, etc.) and other depressions without external run-off (Sarysu, Okovango, etc.) [5, 13, 16 to 18, 23 to 25, 27,30] .

Table 6. Basic morphometric data on large- and medium-sized rivers that flow into oceans, seas and inland water bodies

Europe Volga 360 3 350 Dal .... 29.0 520 Danube 817 286 0 Kem .... 27.7 191 Dnepr 504 2 200 Jucar 22.4 506 Don 422 1870 Severn .. 21.0 390 Northern Dvina 357 744 Mino 17.7 340 Pechora 322 1810 Tiber 17.2 405 Neva 281 74 Tana 16.2 344 Ural 237 2 430 Segura 16.1 341 Rhine 224 1360 Shannon 15.7 368 Vistula 198 1 090 Thames 15.3 405 Elbe 148 1 110 Loire 120 1 110 Asia Oder 112 907 Ob (with Irtysh) .... 299 0 3650 Rhône 99.0 810 258 0 349 0 98,2 Yenisei Neman 937 Lena 249 0 4400 Duero 95.0 925 282 0 87.9 Amur 1855 Western Dvina .. 1020 Yangtze 1800 552 0 Garonne 86.0 650 86.8 Gangas (with Brahma­ Ebro 930 putra) 1730 3000 Tagus 80.9 1010 78.6 Indus 960 318 0 Seine 780 Mekong 810 4500 Mezen 78.0 966 1 75.0 Shatt-al-Arab« ) (Tigris Po 650 and Euphrates) 750 276 0 Dnestr 72.1 1350 72.0 Hwang Ho 745 467 0 Quadiana 800 Kolyma 647 213 0 Kuban 57.9 870 57.1 Tarim (Yarkend) 446 2000 Guadalquivir 560 Chutsyan 2 130 Onega 56.9 416 437 56.2 Irrawaddy 410 230 0 Narva 77 Khatanga 1636 Maritsa 53.8 630 364 52.0 Indigirka 360 1726 Kemi 550 Salween 2820 Weser 46.0 724 325 43.2 Godavari 314 1500 Terek 623 Amu Darya 309< 2> 1415 Glama 40.5 611 Tornio 39.5 510 Krishna (Kistna) 256 1290 Kiumi 37.8 600 Helmand 250 115 0 <'> The length of the Shatt-al-Arab proper (below the junction of the Tigris and Euphrates rivers) is about 145 km. <2' Extent of the catchment area as far as Kerki. - 183 -

Table 6 (contd.)

Area of Area of Length Length basin River basi1 n 1 River UV km') (km) (10 km ) (km)

Asia (contd.) Yana 238 872 Moulouya 52.0 450 Liao Ho 231 1350 Omo 46.7 800 Hwai Ho 220 900 Gourits 44.0 310 Olenek 219 2270 Sebu 40.0 460 Syr Darya'" 219 2210 Chélif 35.0 700 Anadyr 191 1 150 Oum-er-Rbia 34.4 556 Kura 188 1360 Pangani 33.8 480 Pyasina 182 818 Kovali 28.8 480 Menam (Chao Phraya) 160 1200 Medjerda 22.0 460 Taz 150 1400 Mono 21.0 360 Hong Ha (Red River) 145 1200 Hi 140 1000 North America Mahanadi 133 858 Mississippi (with Mis­ Taimyra 124 754 souri) 322 0 598 5 Kerulen 120 1264 Mackenzie (with Atha- Pur 112 389 baska) 1 800 424 0 Narmada 102 1300 St. Lawrence 1 290 3 060 Anabar 100 939 Nelson (with Saska­ Sarysu 81.6 761 tchewan) 1 070 260 0 Kyzyl Irmak 75.8 1 151 Yukon 852 300 0 Penzhina 73.5 713 Columbia 669 1 950 Tedzhen 70.6 1 124 Colorado (State of Ari­ Alazea 64.7 498 zona) 635 218 0 Nadym 64.0 545 Bravo del Norte (Rio Yalu 62.6 1500 Grande) 570 288 0 Uda 61.3 457 Churchill 281 1600 Chu 60.8 1 190 Fraser 220 1 110 Sakarya 56.5 790 Telon 142 — Kamchatka 55.9 704 Albany 134 975 Koksoak 133 1300 Africa Rio Grande de Santia­ Congo 382 0 4 370 go 125 960 Nile (with Kagera) .. 287 0 667 0 Grijalva (with Usu- Niger 209 0 4 160 macinta) 122 — Zambezi 1 330 266 0 Mobile (Alabama) .. 115 1 064 Orange 1 020 1860 Brazos 114 1400 Chari 880 1400 Moose 108 — Okavango (Cubango) 785 1800 Hayes 108 — Juba (with Shaballe) 750 1600 Back 107 960 Senegal 441 1430 Balsas 106 — Limpopo 440 1600 Severn 101 976 Volta 394 1600 Colorado (State of Te­ Ogowe 203 850 xas) 100 1450 Gambia 180 120 0 Fort George 97.7 — Rufiji 178 1400 Saguenay 90.1 — Cuanza 149 630 Panuco 84.0 — Ruvuma 145 800 San Joaquin 80.1 560 Cunene 137 830 Churchill (Hamilton) 79.8 560 Sanaga 135 860 Sacramento 73.0 610 Save 107 680 Susquehanna 72.5 733 Bandoma 97.0 780 Kazan 71.5 — Dra 95.0 1 150 Winisk 67.3 740 Tana 91.0 720 Nottaway 65.0 — Kam 76.5 1 160 Copper 61.8 360 Sassandra 72.0 660 Saint John 55.4 640 Kouilou 62.0 600 Skeena 54.9 510 Lurio 57.6 560 Apalachicola 51.8 880

(i) Extent of the catchment area as far as Tyumen-Aryk station. - 18U -

Table 6 (contd.)

Area of Area of basin Length basin Length River (103 km») (km) (10* km») (km)

North America (contd.) Magdalena 240 1530 Essequibo 155 970 Attawapiskat 50.2 810 520 Chubut 138 850 Stikine 49.2 Rio Negro 130 ' '1000 Eastmain 46.4 680 520 Mearim 89.7 ~800 Manicouagan 45.6 Doce 81.3 ~600 George 44.8 550 465 Colorado 65.0 ' '1000 Humboldt 43.9 Paraiba 59.0 800 Rupert 43.2 700 Atrato 32.2 644 Great Whale 43.2 Bio Bio 24.3 380 Leaf 43.0 200 St. Maurice 42.7 Australia and Oceania Papaloapan 37.4 350 Hudson 35.0 490 Murray (with Darling) 1 060 3 490 Weiss 31.3 Cooper's Creek 285 2000 Penobscot 30.0 340 Diamantina 156 896 Potomac 30.0 460 Fitzroy (Eastern) 143 960 Harricanaw 29.3 460 Burdekin 131 680 Connecticut 29.0 552 Flinders 108 830 Savannah 27.2 505 Fitzroy (Northwest).. 86.5 520 Ashburton 82.0 640 South America Sepik (in New Guinea) 81.0 700 Gascoyne 79.0 770 Amazon (with Uca- 570 628 0 Victoria 77.5 yali) 691 5 Mitchell 69.3 520 La Plata (with Para­ Murchison 68.3 700 na and Uruguay).. 297 0 4 700 (in New Guinea) 64.4 620 Orinoco 1 000 2 740 Fortescue 55.0 670 Sâo Francisco 600 280 0 Ciutha (in New Zea­ Parnaiba 325 1450 land) 22.0 338

Table 14. Water reserves in large lakes of the world Number of lakes with a water surface2 area Water reserves (km') >100 km Total area Continent (103 km2) Total Investigated Fresh water Salt water

Europe 34 30 430.4 202 7 7800 0 Asia 43 24 209.9 2778 2 316 5 Africa 21 15 196.8 3000 0 — North America 30 20 392.9 2562 3 19 South America 6 2 27.8 913 2 Australia and New Zealand 11 41.7 154 174 Total 145 92 1300 86 500 81360 - 185 -

Table 7. Basic morphometric data on larger lakes'1'

Max. depth Volume Lake Country Area (km*) (m) (km3)

Europe Caspian Sea* U.S.S.R., Iran 37400 0 102 5 7820 0 Ladoga U.S.S.R 17 700 230 908 Onega , 9 630 127 295 Vanern Sweden 555 0 100 180 Chudskoye with Pskov- U.S.S.R 355 0 15 25 skoe Vättern Sweden 1 900 119 72 Saimaa Finland 1 800 58 36 Beloye U.S.S.R 1 290 20 5.2 Vygozero 1 140 18 7.1 Mälaren Sweden 114 0 64 10 Urnen U.S.S.R 1100 10 12 Päijänne Finland 1065 93 — Inari 1000 80 28 Imandra U.S.S.R 900 67 11 Balaton Hungary 596 12 1.9 Geneva (Leman) Switzerland, France .... 581 310 90 Constance Germany, Fed. Rep., Swit­ zerland, Austria 538 252 48 Hjâlmaren Sweden 484 22 — Storsjön 464 74 8.0 Kubena U.S.S.R 407 13 1.7 Lough-Neagh N. Ireland 396 31 — Garda Italy 370 346 50 Mjösa Norway 363 434 56 Scutari Albania, Yugoslavia 362 10 2.2 Ohrid 350 256 61 Sniardwy Poland 331 47 2.8 Torneträsk Sweden 330 168 17 Neusiedler See Austria, Hungary 323 2 — Prespansko Greece, Albania, Yugosla­ via ,. 288 54 4.0 Neuchâtel Switzerland 216 152 — Maggiore Italy, Switzerland 214 372 — Femunden Norway 202 131 6.0 Como Italy 146 410 ""~

Asia Aral Sea* U.S.S.R 64 100 68 1020 Baikal , 31500 1741 2300 0 Balkhash* 18 200 26 112 Tonlé Sap Cambodia 10 000 <2> 12 40 Issyk-Kul U.S.S.R 620 0 702 1730 Tung Ting China 600 0 <3> 10 — Rezaiyeh (Urmia)* Iran 580 0 16 45 Zaisan U.S.S.R 551 0 8.5 53 Taimyr 456 0 26 13 Koko Nor* China 4 220 38 — Khanka U.S.S.R., China 4 190 10.6 18.5 Van* Turkey 3 760 145 — Lop Nor* China 350 0 5 (5) Ubsa Nor* Mongolia 335 0 Poyang China 270 0 20 Alakol* U.S.S.R 265 0 54 58.6 Khubsugul Mongolia 262 0 270 480 Chany* U.S.S.R 250 0 10 4.3 Tuz* Turkey 250 0 Nam Tso* China 246 0 Tai Hu China 2210 Kara-Ussu-Nor Mongolia 1 760 186 -

Table 7 (contd.)

Max. depth Volume Lake Country Area (kmJ) (m) (km3)

Asia (contd.) Tengiz* U.S.S.R 1590 Ebi Nor China 1420 Kirgiz Nor Mongolia 1 480 Sevan U.S.S.R 1 230 86 38 Dalai Nor China 1 100 Uliungur China 1000 Dead Sea* Israel, Jordan 940 400 188 Seletyteniz U.S.S.R 777 3.2 1.5 Sasykkol* »» * • - 736 Pyasina 735 10 Kulunda* 728 4.9 — Biwa Japan 688 103 27.5 Gandhi India 663 64 39.2 Karnaphuli Bangladesh, India 656 33 13.8 Buir Nor Mongolia 610 11 — Markakol U.S.S.R 449 30 — Ubinsk 440 3 — Karakul 380 238 — Tungabhadra India 378 47 12.4 Phumiphol Thailand 300 123 29.7 Kronotskoye U.S.S.R 245 128 — Teletskoye 223 325 40

Africa Victoria Tanzania, Kenya, Uganda 6900 0 92 270 0 Tanganyika Tanzania, Zaire, Zambia, Rwanda, Burundi 3290 0 435 1890 0 Nyasa Malawi, Mozambique, Tanzania 3090 0 706 772 5 Chad Chad, Niger, Nigeria .... 16600«) ~12 44.4 Rudolf Kenya 8 660 73 — Albert Uganda, Zaire 530 0 57 64.0 Mweru Zambia, Zaire 5 100 15 32.0 Bangweulu Zambia 492 0 <5> 5 5.00 Rukwa Tanzania 450 0 Tana Ethiopia 3 150 14 28.0 Edward Zaïre, Uganda 250 0 131 78.2 Kivu Zaïre, Rwanda 237 0 496 569 Leopold II Zaïre 232 5 6 — Katnit Nigeria 1 270 60 14.0 Abaya Ethiopia 116 0 13 8.20 Shirwa Malawi 1 040 2.6 45.0 Tumba Zaïre 765 Faguibini Mali 620 14 3.72 Gabel Auliya Sudan 600 12 — Chamo Ethiopia 551 12.7 — Upemba Zaïre 530 3.5 0.90 Zwai Ethiopia 434 7 1.10 Shala , 409 266 37.0 Langana 230 46.2 3.82 Guiers Senegal 213 7 0.64 Hora Abiata Ethiopia 205 14.2 1.56 Naivasha Kenya 140 Awasa Ethiopia 130 21 1.34

North America Superior Canada, U.S.A 8268 0 406 11600 Huron 5980 0 229 358 0 Michigan U.S.A. .."...'.'.'.'.'.'.'.'.'.'. 58 100 281 468 0 - 187 -

Table 7 (contd.)

Max. depth Volume Lake Country Area (km!) (m) (km3)

North America (contd.) Great Bear Canada 3020 0 137 1010 Great Slave , 27 200 156 1070 Erie Canada, U.S.A 25 700 64 545 Winnipeg Canada 24 600 19 127 Ontario Canada, U.S.A 1900 0 236 1710 Nicaragua Nicaragua 8 430 70 108 Athabasca Canada 790 0 60 110 Reindeer 6 300 Winnipegosis 5 470 12 16 Nipigon 480 0 162 — Manitoba 472 0 28 17 Great Salt* U.S.A 466 0 14 19 Lake ot the Woods Canada, U.S.A 441 0 21 — Dubawnt Canada 4 160 Mistassini 2 190 120 _ Managua Nicaragua 1490 80 — Saint Clair Canada 1 200 7.2 5.3 Lesser Slave 1 190 3 — Chapala Mexico 1 080 10 10.2 Winnebago U.S.A 818 6 4.1 Marion 465 — 2.8 Winnipesaukee 181 55 3.8

South America Maracaibo Venezuela 13 300 35 Titicaca Peru, Bolivia 8 110 230 710 Poopó* Bolivia 253 0 3 2 Buenos Aires Chile, Argentina 240 0 Lago Argentino Argentina 1400 300 Valencia Venezuela 350

Australia Eyre* 1500 0 (max.) 20 Amadeus* 8 000 Torrens* 580 0 Gairdner* 478 0 George 145 0.3

New Zealand Taupo 611 159 Te Anau 352 276 Wakatipu 293 378 Wanaka 194 Manapouri 130 Hawea 119

(,) The asterisk (*) next to the name of a water body indicates that it is a salt lake. <2> At low levels, 3,000 km2, at high levels, 30,000 km2. <3>A t low levels, 4,000 km2, at high levels, 12,000 km2. <4> At low levels, 7,000—10,000 km2, at high levels, 18,000—22,000 km2. <5>A t low levels, 4,000 km3, at high levels, 15,000 km2. - 188 -

Table 8. Larger reservoirs of the world

Volume (km')

Reservoir Country River, Lake P _ Total Useable = fc re

Europe Kuibyshev U.S.S.R. Volga 58.0 34.6 645 0 25 1957 Volgograd U.S.S.R. Volga 33.5 8.65 350 0 27 1962 Kanevsk U.S.S.R. Dnepr 28.1 6.00 — 15 1963 Rybinsk U.S.S.R. Volga 25.4 16.6 455 0 18 1947 Tsimlyansk U.S.S.R. Don 23.8 11.5 2 320 27 1954 Kakhovka U.S.S.R. Dnepr 18.2 6.80 2 160 16 1956 Upper Svir U.S.S.R. Svir — 17.5 970 0 17 1952 Cheboksary U.S.S.R. Volga 14.2 5.70 229 5 19 U.C. Kremenchug U.S.S.R. Dnepr 13.5 9.07 225 0 17 1960 Kuma U.S.S.R. Kuma Kovda .... 13.3 8.68 1910 38 1962 Lower Kama U.S.S.R. Kama 13.0 4.40 285 0 19 1970 Saratov U.S.S.R. Volga 12.9 1,75 1950 15 1970 Upper Tuloma U.S.S.R. Tuloma 11.5 3.86 745 62 1965 Imandrovsk U.S.S.R. Niva 11.2 2.80 876 — 1953 Kama (Perm) U.S.S.R. Kama 10.7 9.20 1570 21 1957 Votkinsk U.S.S.R. Kama 9.36 3.70 113 0 23 1963 Gorki U.S.S.R. Volga 8.70 2.80 1500 17 1957 Tainionkoski Finland Vuoksa 7.20 — — 8 1949 Vygozero U.S.S.R. Lower Vyg 7.10 1.14 1159 — 1933 Sheksna U.S.S.R. Sheksna 6.51 1.85 1.670 — 1968 Randsfjord Norway Etna 5.97 — 136 — —• King Paul (Kremasta) Greece Achelous 4.70 3.30 81 136 1966 Asia Bratsk U.S.S.R. Angara 169 48.2 550 0 106 1966 Pa Mong Laos Mekong 107 40.0 — 115 U.C. Krasnoyarsk U.S.S.R. Yenisei 73.3 30.4 200 0 100 1970 Zeya U.S.S.R. Zeya 68.4 32.1 242 0 90 U.C. Sansia China Yangtze 67.8 — — 154 — Badi Tartar Iraq Tigris 67.0 — 200 0 — 1956 Sanmensia China Hwang Ho 65.0 55.0 350 0 80 1962 Sanmen China Yangtze 64.1 — — 100 U.C. Ust Ilimsk U.S.S.R. Angara 59.4 2.8 1870 88 U.C. Bukhtarminsk U.S.S.R. Irtysh, Lake Zaisan 53.0 31.0 550 0 67 1967 Irkutsk U.S.S.R. Angara, Lake Baikal 48.5" 46.4 3297 0 31 1959 Dantsianhow China Hanshui 51.6 38.5 1020 130* 1962 Vainganga India Hanshui 40.7 — — — — Tabka Syria Euphrates 40.0 11.0 830 60 U.C. Kalabagh Pakistan Indus 36.6 — — — — Vilvuisk U.S.S.R. Vilyui 35.9 14.8 2 180 68 1968 Keban Turkey Euphrates 30.5 22.0 750 160 1971 Sayan U.S.S.R. Yenisei 29.1 14.7 583 220 U.C. Kapchagai U.S.S.R. Hi 28.1 6.60 1850 40 1970 Toktogul U.S.S.R. Naryn 19.5 14.0 265 180 U.C. Tsintian China Autsian 19.5 — — 135* 1961 Sinantsian China Sinantsian 17.8 8.8 580 106* 1964 Mangla India, Pakistan Jhelum 16.7 — 256 116* 1973 Mingechaura U.S.S.R. Kura 16.1 7.50 525 62 1954 Tarbela Pakistan Indus 13.6 6.00 260 148* U.C. Kolyma U.S.S.R. Kolyma 13.0 4.40 — — U.C. Phumiphol (Yanhi) Thailand Pong Chao Praiya 12.2 — — 152* 1964 Suifun Korea Yalu 11.6 7.50 180 107* 1966 Nagarjuna Sagar India Kistna 11.5 5.45 285 123* 1966 Sinfintsian China Duntsian 11.5 0.39 390 102* U.C. Khaishansia China Hwang Ho 11.4 — 101 140* U.C. Rikhand India Rikhand 10.6 8.97 466 91* U.C. Nureka U.S.S.R. Vaksh 10.5 4.50 400 275 U.C. Bhakra Nangal India Sutlej 9.87 7.77 226 168 1967 Finman China Sungari 9.70 5.60 487 92* 1956 Lunyantsia China Hwang Ho 9.00 — — 176* 1963 Novosibirsk U.S.S.R. Ob 8.85 4.40 1070 20 1959 Srisailem India Krishna 8.75 4.25 700 122* 1971 ** The volume of the lake up to the level of the backwater has not been calculated. - 189 -

Table 8 (eontd.)

Volume (km') '5— >— Country River, Lake Reservoir 0) JE 1 Total Useable (9 capacit y W3 « X Yea r rese reache d f i

Asia (contd.) Ukai India Tapti 8.51 7.10 — 69 1971 Gandhisagar India Chambal 8.45 7.68 663 64* 1962 Huanshen China Huantsian 8.30 5.90 435102 * 1958 Bias India Bias 8.14 6.90 — 134* U.C. Hirakud India Mahanadi 8.10 5.80 637 66* 1959 Dokan Iraq Little Zab 6.80 5.40 270117 * 1961 Hirfanlar Turkey Kyzyl Irmak 6.00 2.00 277 81* 1960 Chardarinsk U.S.S.R. Syr Darya 5.70 4.70 900 25 1966 Liudziasia China Hwang Ho 5.70 4.10 130146 * 1961 Giumiusha U.S.S.R. Razdan 5.60 4.10 — 297 1953 Africa Owen Falls Tanza­ Victoria River nia, Nile, Lake Vic­ Kenya, toria 205** 68.0 69 000 22 1968 Uganda Murchison Falls Tanza­ Lake Albert, Nile 195 — 5300 — U.C. nia, Kenya, Uganda Kariba Zambia, Zambezi 160 46.0 4 450 100 1963 Southern Rhodesia Nasser Egypt, Sudan Nile 157 74.0 5 120 95 1971 Volta Ghana Volta 148 90.0 848 0 70 1967 Cabora Bassa Mozam­ bique Zambezi 66.4 51.7 2 700 100 U.C. Roseires Sudan Blue Nile 36.3 290 70* 1966 Sunda Congo Niari 35.0 35.0 1600 100 1961 Kossu Ivory Coast Bandama Blanc .. 30.0 25.9 1740 60 U.C. Kainji Nigeria Niger 15.1 11.5 1240 66* 1971 Suapiti Guinea Conkoure 11.0 118* Hendrik Ver- South woerd Africa Orange 5.67 1.62 372 87* 1971 North America Daniel Johnson Canada Manicouagan Ri­ (Manicoua- ver and Lake; gan-5) Mushalagan Lake 142 36.0 1940 195 1968 Gordon Croome Canada Peace River 108 37.0 1660 165 1968 (Bennet) Kanuti U.S.A. Yukon 46 58 Lake Mead U.S.A. Colorado 37.5 34.0 637 159 1938 (Hoover) Winar Grue Canada Peace River 37.0 37.0 — 2300 1952 Nechako-Kemalo Canada Nechako 35.0 24.8 860 783 1966 Lake Powell U.S.A. Colorado 34.5 31.1 664 200 1966 (Glen Canyon' Churchill Falls Canada Churchill, Lake Michikamo and others 31.1 28.0 6 650 33 1968 Ontario Canada St. Lawrence, (Iroquois) LaneOntari o 30.0 30.0 19 470 21 1959 ** The volume of the lake up to the level of the backwater has not been calculated. - 190 -

Table 8 (contd.)

Volume (km3)

Country River, Lake a^ E Reservoir t- 0J — Total Useable t.-13 » s « &

North America (contd.) Garrison Dam U.S.A. Missouri 30.6 24.5 1 560 46 1954 (Lake Saka- jawea) Oahe U.S.A. Missouri „ 29.1 22.2 1500 61 1963 Fort Peck U.S.A. Missouri 24.8 21.1 1000 62 1943 Mica (Mica Canada Columbia 24.4 14.8 183 U.C. Creek) Baie de 1'Estu- Canada Salmon Grey — — 15.5 18 3 1969 aire Netsaualcoitl Mexico Grijalva 13.0 — 238 100 1964 (Presa de Mal- paso) Lake Portage Canada Lake Nipigon .... 12.4 496 0 32 1954 Infiernillo Mexico Balsas 12.0 9.75 400 101 1966 Franklin U.S.A. Columbia 11.7 6.44 321 107 1942 Roosevelt (Grand. Coulee) Bersimis I Canada Bersimis 11.7 4.74 267 1958 Sardis U.S.A. Little Takahechi.. 11.7 230 1940 Grand Rapids Canada Saskatchewan .. 11.0 8.00 410 0 39 1968 Gardner Canada South Saskatche­ wan 10.0 47 1969 Manicouagan-3 Canada Manicouagan .... 10.0 0.7 95 U.C. Rapid He Canada Ottawa 9.83 27 1967 Gouin (La Canada St. Maurice .... — 8.00 1295 Lioutre) Arrow Lake Canada Arrow Columbia.. 8.76 7.80 Miguel Aleman Mexico Papaloapan 8.00 — 1955 Lake of the U.S.A. Winnipeg 7.60 7.60 382 0 1905 Woods Fort Randall U.S.A. Missouri 7.60 5.80 415 40 1956 Wolf Creek U.S.A. Lake Cumberland 7.50 2.65 257 49 1955 Kentucky U.S.A. Tennessee 7.40 4.95 690 15 1945 Lake Texoma U.S.A. Red River 7.24 2.20 370 31 1945 (Denison) Amistad Mexico Rio Bravo del Nor­ te 7.05 5.89 80 1968 Boundary U.S.A. Pend Oreille 6.80 0.12 76 Ï967 Bull Shoals U.S.A. White 6.65 5.60 290 73 1953 Lake Shasta U.S.A. Sacramento .... 5.55 5.37 120 146 1948 Shipshaw 2 Canada Peribonca 5.50 63 1943 Sam Rayburn U.S.A. Angelica 5.50 296 U.C. (MacGee Bend) He Maline Canada Saguenay 5.30 — 51 1937 Chutes des Pas- Canada Peribonco 5.20 165 1960 ses Lake Okeechobee U.S.A. Lake Okeechobee 5.16 1.00 1820 — 1958 Falcon Mexico Rio Grande (Bra­ vo del Norte) .... 5.04 — — — 1953 South America ElMantec o Venezu Caroni Ill 55.0 — 136 1968 (Guri) ela Cerros Argen­ Neuquén 43.5 5.60 620 79 U.C. Colorados tina IlhaSolteir i Brazil Parana 21.2 12.9 1230 43 1965 Furnas Brazil 18.7 1600 95 1965 Grande 21.0 - 191 -

Table 8 (contd.)

Volume (km-5)

Reservoir Country River, Lake Total Useable

South America (contd.)

Tres Marias Brazil Sâo Francisco .. 21.0 18.0 1350 55 1965 El Chocon Argen- Limay-Rio Negro 20.0 2.35 825 62 U.C. tina Silto Grande Uruguay Uruguay 20.0 — — 33 — Van Blanstein Surinam Surinam 12.4 — 1500 U.C. Rincon del bo- Uruguay Rio Negro 11.00 6.60 1400 32 1946 nete Boa Esperanza Brazil Parnaiba 5.00 4.00 — 35 —

Australia and Oceania Ord Australia Ord 19.0 5.67 720 100» 1972 Main Gordon Australia Gordon 11.8 — 167 142* U.C. Eucumbene Australia Eucumbene 6.90 4.30 — 119* 1958

Note. Figures with an asterisk (*) indicate the height of the dam U.C. indicates under construction.

The United States has over 1,560 reservoirs, with a useful capacity of about 450 km3 and a water-surface area equal to 60,000 km2 [6, 27]. Asia, Africa and Australia have about 3,700 reservoirs, the larger of which are situated in the U.S.S.R., Egypt, Ghana, China, Rhodesia and Iraq. Details of large reservoirs of the world, which fulfil various needs (hydro-power, water supply, irrigation, navigation) and the full volume of which exceeds 5 km3, were listed by continents in Table 8 Fl to 3 6 to 10,19,21,23,25,27,28,30].

Table 16. Basic information on the reservoirs of the world in 1972

Reservoirs with a Ratio of volume >5 km' Total annual volume of run-off of reservoir to Continent rivers volume of Total Total Useful (km3) river run-off number volum3 e volum3 e (km ) (km ) (%)

Europe 25 422 170 3210 13.1 Asia 48 135 0 493 14410 9.4 Africa 12 124 0 432 457 0 27.1 North America 45 950 210 820 0 11.6 South America 10 286 123 1176 0 2.4 Australia & Oceania 3 38 10 239 0 1.6 Total .. 143 4 286 1438 44 540 9.6

The total capacity of the 10,000 reservoirs of the world now in opera­ tion, or under construction, amounts to about 5,000 km3 and the useful capacity to about 2,000 km3. The total water-surface area of the reservoirs is approximately 400,000 km2, and, taking into account the lakes included in the backwater, the area amounts to 600,000 km2 [1, 2]. Most of the wa­ ter reserves are concentrated in the larger reservoirs, each with a capacity exceeding 5 km3 (Table 16). The total capacity of reservoirs controls approximately 14% of total annual river run-off while the useful capacity controls about 7%. - 192 -

Table 12. Natural amounts of ground water in the upper part of the earth's crust, by hydrogeological zones

V -o ^4> ~ •o 3 a« o « 3 73 Zone Thickness >>* (Aî * tntr S _ Continent « -n £ ai w E of zone c classifica­ O V) E c s- — .* >- tion (m) U O 03N„ «MÜ. S g > je>,2 SMJÏ S â

10.5 300 1st 100 15 0.2 2nd 200 12 0.3 3rd 2 000 5 1.1 1.6 43.5 950 1st 200 15 1.3 2nd 400 12 2.1 3rd 2 000 5 4.4 7.8 30.1 650 1st 200 15 1.0 2nd 400 12 1.5 3rd 2 000 5 3.0 5.5 North America 24.2 700 1st 200 15 0.7 2nd 400 12 1.2 3rd 2 000 5 2.4 4.3 South America 17.8 580 1st 100 15 0.3 2nd 400 12 0.9 3rd 2 000 5 1.8 3.0 Australiaan d 8.9 350 1st 100 15 0.1 2nd 200 12 0.2 3rd 2 000 5 0.9 1.2

Total 23.4

Table 13. Natural ground-water resources renewed annually, by continents ^ 04 E ±. . u u s >.

Continent •a— ^ ua l vo of f of f i n ive r of f f rive r ' ) und-wa i £"cg 2= °c OCÏ

Europe 321 0 35 1 120 Asia 1441 0 26 3 750 Africa 4 570 35 1600 North America .. 7 450"> 29 2 160 South America .. 11 760 35 4120 Australia 239 0 24 575 Total 4379 0 30 13 320 (1> Excluding polar regions.

The average proportion of ground water in the river run-off of the world is close to 30%. It follows that the total quantity of annually re­ charged ground water in the active and relatively active zones of water exchange amounts toabou t 13,000 km3pe ryear . - 193 -

Table 11. Water reserves in surface ice

Territory Area of ice (km1) Water reserves (km3)

Antarctica 13980000 2160000 0 Greenland 180 240 0 234 000 0 Arctic islands 22609 0 8350 0 Franz Josef Land 1373 5 253 0 Novaya Zemlya 2442 0 920 0 Severnaya Zemlya 1747 0 462 0 Spitsbergen (Western) 21240 1869 0 Small islands 400 60 Canadian Arctic archipelago 14882 5 4840 0 Europe 21415 409 0 Iceland 11785 300 0 Scandinavia 5000 645 Alps 320 0 350 Caucasus 1430 95 Asia 10908 5 1563 0 Pamir Alai 11255 1725 Tien Shan 7115 735 Dzungarian Alatau, Altai, Sayan Mountains 1635 140 Eastern Siberia 400 30 Kamchatka, Koryak Range 1510 80 Hindu Kush 620 0 930 Karakoram Range 1567 0 218 0 Himalayas 3315 0 499 0 Tibet 3215 0 482 0 North America 6752 2 1406 2 Alaska (Pacific Coast) 5200 0 1220 0 Inland Alaska 1500 0 1800 U.S.A 510 60 Mexico 12 2 South America Venezuela, Colombia, Andes of Ecuador, Andes of Peru, Andes of Chile and Argentina, Tierra del Fuego 710 0 270 0 Andes of Patagonia 1790 0 405 0 Africa (Kenya, Kilimanjaro, Ruwenzori mountains) 22.5 3 New Zealand 1000 100 New Guinea 14.5 7

Total 1622 750 0 2406 410 0

Table 9. World water reserves Share of world reserves(% ) Area covered Volume Depth of Form of water (km«) run-off of total of reserves flun') (m) water reser­ of fresh ves water

World ocean 36130000 0 133800000 0 370 0 96.5 Ground water (gravitational and ca­ pillary) 134 80000 0 2340000O' ) 174 1.7 Predominantly fresh ground water 13480 0 000 1053 0 000 78 0.76 30.1 Soil moisture 8200 000 0 16 500 0.2 0.001 0.05 Glaciers and permanent snow cover: 16 22750 0 2406 4 100 1 463 1.74 68.7 Antarctica 13980000 21600000 1546 1.56 61.7 Greenland 180240 0 234 000 0 1298 0.17 6.68 Arctic islands 226100 8350 0 369 0.006 0.24 Mountainous areas 22400 0 40600 181 0.003 0.12 Ground ice in zones of permafrost strata 21000 000 300000 14 0.022 0.86 Water reserves in lakes 205 870 0 17640 0 85.7 0.013 Fresh water 123 640 0 91 000 73.6 0.007 0.26 Saltwater 82230 0 8540 0 103.8 O.006 — Marsh water 268 260 0 11 470 4.28 0.0008 0.03 Water in rivers 148 800000 2 120 0.014 0.0002 0.006 Biological water 51000 000 0 112 0 0.002 0.0001 0.003 Atmospheric water 510000000 12900 0.025 0.001 0.04 Total water reserves 510000000 1385984610 2718 Freshwater 148 80000 0 35 02921 0 235 2.53 100 "> Not taking into account ground-water reserves in Antarctica, broadly estimated at 2 million km3 (including about 1 million km3 of predominantly fresh water). •194-

APPENDIXVI I

Appendiceswit hdat ao nsalin elake si nth eworl d

Hammer198 6 - 195 -

Appendix A Climatic data for centres representative ol dry elimates.

Locality Latitude l.oimitudc Altitude Temperature ("(') Precipi­ Annual Annual Annual (ASL. m) tation potential sunshine radiation Mean Mean (mm) evaporation (h) (kcal m :) daily monthly (mm) range

Africa Biskra. Algeria 34 51 ' N 5 44' I; 122 21.8 33.3-11.2 148 2592 3468 160* Faya l.argeau. Chad l S" 00 ' N 19" ni' i; 233 28.6 34.2-20.6 504 5000* 3800" 210* Addis Ababa, Ethiopia 09"02'N 38 45'E 2450 1256 1861 2336 170* Nairobi, Kenya or is's 36 45'E I79S 1066 1502 2503 160* Kimberlcv, S.A. 28" 48' S 24" 46' E 1197 431 2968 3468 184.7 Cairo, Egypt 30" OS' N 31' 34'E 95 20.8 27.7-12.3 24 3613 3504 190* Salisbury, Zimbabwe 17" 50'S 31-01'E 147(1 18.6 21.4-13.8 868 2040 2884 188.7

Asia China Beijing 39" 57' N I16"19'E 52 12.1 -4.7-26.1 623 2705 925

Urumchi 43° 47' N 87° 37' E 913 5.3 - 15.8-23.9 276 2607 - _ 36° 35' N 101°55'E Xining 2244 6.9 -6.4-18.3 377 2619 700 - India Jodpur 26° 18' N 73°01'E 224 26.7 17.1-34.5 380.1 3322 2847 _ Sprinigar 34° 05' N 74°50'E 1586 13.3 1.1-23.9 564 2190 - - Iran Shiraz 29° 36' N 52°32'E 1491 16.6 5.8-27.5 350.3 _ _

Tabriz 38°08'N 46°15'E 1362 12.7 1.2-26.1 296.2 - _ _

Jordan, Wadi Husban 31°49'N 35°39'E - 185 23.5 14.5-30.9 150-250 - - _ 39° 57' N 32°53'E Turkey, Ankara 902 11.7 -2.7-19.7 358.5 - - - U.S.S.R. Balkhash 46° 54' N 75° (X)' E 423 5.1 - 15.6-23.9 115 800 Minusinsk 53° 42' N 91°42'E 251 -0.1 -20.3-19.7 316 1716 4(H) _ 49° 38' N 63°30'E Turgay 123 4.2 - 17.2-24.2 177 2491 700 -

Antarctica MeMurdo 77° 3.5'S 166-44'E 24 - 17.4 - 3.4 to 200' -27.8 Australia Mildura. N.S.W. 34° Il'S 142"12'E 54 17.4 10.1-24.4 264 Alice Springs, N.T. 1511 3000' 23° 38'S 132°35'H 579 20.6 11.6-28.1 252 2388 3468 Cloncurry. Old. 20°43'.S 140° 30' E 190.5 193 25.5 17.8-31.3 429 Launceston, Tas. 2743 41°27'S 147"10'E SI 11.2 9.0-13.2 740 800 .Mi" Melbourne, Vic. 37°49'S 144"58'E 35 14.S 9.6-19.9 500 Port Augusta, S.A. Itl(K) 2035 129.6 32° 29'S 137°45'E 5.5 19.0 11.8-25.4 236 2507 3000 Merridin. W.A. 31° 29'S 118° 18' E .119 17.5 10.1-25.1 Alexandra, N.Z. 320 2109 3000" 45° 15'S 169°24'E 158 11.7 9.1-12.8 335 676 2081 North America Canada, Lcth bridge, Alta. 49°38'N I12°48'W 280 5.4 -8.2-18.9 439 2384 910 Saskatoon, Sask. 52°08'N 106"38'W 157 2.0 - 17.6-19.3 352 2381 United States 710 - San Diego, C'alif. 32° 44' N 117"10'W 4 17.2 13.1-21.5 264 Reno, NE 3200 1200 39° 30' N 119°47'W 1342 21.2 16.3-26.5 180 3000 1 Kill Bismarck, N.Dal. 46° 4ft' N 1(M)°45' W 502 5.4 - 12.8-22.3 385 2750 850 133.96 Sail Lake City. Utah 40° 46' N III°4X'W 1286 10.7 -2.1-24.7 354 Walla Walla. Wash. 3000 1000 149.29 46° 02' N I18°20'W 289 12.3 0.7-24.4 395 2700 1000 - 196 -

Appriulix A (Continued)

Locality Latitude ..ongitudc Altitude Temperature (' C) Preeipi- Annual Annual Annual (ASI.. in) - tation potential sunshine radiation Mean Mean (mm) evaporation (h) (kcal m -) daily monthly (mm) ranee

South America Argentina Cordoba 31' 24'S 64' 11 ' W 425 17.4 10.(>-24.2 6S0 12S7 2701 LaPampa 37" OS' S 63' 4I'\V 142 15.2 7.4-23.7 60S 1522 2665 Sarmiento 45" 35' S 69"08'\V 266 10.5 3.9-17.3 153 2336 Brazil Quixcramobim 12'S .w is' w I9S 27.5 26.2-28.8 763 1513" 2800 Bolivia La Paz 16' 30' S 68'UK'W 3642 18 16-19 48S 1480* Chile Iquique 20' 22'S 70° I r w 9 17.9 15.4-20.9 2.1

Europe U.S.S.R. Astrakhan 46° 16'N 48"02'E IS 9.3 -6.9-25.1 190 900 2441 111 Hungary Szeged 46° 15 ' N 20°09' E 79 11.5 -1.4-23.0 558 573 2102 Spain Madrid 40e 25'N 3° 41'E 667 13.9 4.9-24.2 435 1059 2824 110.6

Appendix B World saline lakes: their location, altitude, morphometry and origin. # (ASL = above sea level; S =

surface area; zm = maximum depth; z = mean depth).

Lake Lat Long ASL S zm z V Origin (m) (km:) (m) (m) (x 10* m')

Africa Chad Bodou 13°53'N 14°15'E - 0.75 1.5 - - Interdunal Rombou 14"05'N 15°13'E - 0.125 1 - - Interdunal

Yoan 19°17'N 20°45'E - - 25 - - Interdunal Egypt Hydredrome 31°30'N 29°40'E -3.6 5 7 3 18 Dune, reservoir Mariut 31°07'N 29° 57' E -2.85 84 1.15 1 84 Dune Qarun 29°30'N 30°41'E -44 200 8.5 4 824 Tectonic, deflation Ethiopia Abiata 03° 37' N 38°55'E 1573 204.7 14.2 - - Rift fault Aranguadi 03°54'N 39°07'E 19a) 0.54 32 18.5 10 Maar Kilotes 03° 54' N 39°07'E 2000 0.77 6.4 2.6 Maar Shala 03°26'N 38°51 ' E 1567 409.4 266 - - Rift fault Kenya Bogoria Off 15'N 36°07'E 963 33 12 7.0 231 Rift fault Elmenteita 00°27'S 36°05'E 1776 18 1.9 1.33 24 Rift fault Nakuru 00°24'S 36°05'E 1758 42 3.3 3.58 150 Rift fault Tanzania Big Momela 03° 13' S 36° 54' E 1448 0.9 31 - - Volcanic lahar Manyara 03° 35'S 35°50'E 960 413 3.7 - - Fault scarp Madagascar Ihotry 21°50' S 43°30'E 50 8.65-94.2 2.5-3.8 - - Dunes, tectonic Malawi Chilwa 15°30'S 35-30'E 630 1400 5 - - Tectonic - 197 -

Appendix B (Continued).

Lake Lat Long ASL S zm z V Origin (m) (km:) (m) (m) (x [06m?)

South Africa Blaauwater I 26° 16' S 30° 14' E 0.4 6 Deflation? Banagher 3 26°23'S 30°18'E 0.2 0.3 Deflation? Ronde 34°12'S 18°30'E 1.3 shallow Estuary-dune Zeekoe 34° 12' S 18°32'E 6.0 several Estuary-dune

Chad lakes (litis 1969. 1971); Hippodrome (Elster & Vollenweider 1961); Mariut (El-Wakeel et al. 1970); Qarun (Naguib 1958); Abiata. Aranguadi. Shala (Barker et al. 1965); Kilotes (Presser et al. 1968): Bogoria (Hannington) (Melack 1981. Nogrady 1983); Elmenteita, Nakuru, Big Momela. Manyara (Melack & Kilham 1974); Chilwa (Morgan & Kalk 1969); Ihotry (Mars & Richard-Vindard 1972); Blaauwater, Banagher. Ronde. Zeekoe (Hutchinson et al. 1932); Rocher (Coetzer 1981).

Antarctica Don Juan 77°34'S 161°10'E 122 0.14 <1.5 0.11 0.15 Glacial Frvxell 77° 35'S 163°35'E - - 18 10 - Glacial

Don Juan (Meyer et al. 1962. Tedrow & Ugolini 1963); Frvxell (Angino et al. 1962. Torii et al. 1977) Asia China Chen-Chuan 35°65'N 86°58'E 4784 84 Oinghai 36°50'N 100°10' E 3196 4635 28.7 19.2 854500 Tectonic

India Kar 33° 18' N 78°00'E 4527 15.6 2.0 - - Tectonic Khyagar 33°06'N 78°18'E 4672 6.2 21.2 - - Kettle Panggong 33°42'N 78°45'E 4241 279.2 51 26.1 7.287 Tectonic, glacial

Sambhar 26° 58' N 75°55'E - 190 3.75 - - Erosion, dunes Iran Maharlu 29°26'N 52°48'E 1520 220 0.5 - - Nargiz-Niriz 29°30'N 53°40'E 1525 1210 1.1 0.5 0.605 Urmia 35°30'N 40°30'E 1273 4000 16 4.9 19.5 Mongolia Orog 50°10'N 91°00'E 1425 237.6 42 15 3564 Turkey Burdur 37°45'N 30°11'E 845 180 50 - - Krater Aci 38°47' N 33°25' E 950 1 76.5 - - Crater Tuz 37°42'N 33°07' E 900 1600 2 0.61 976 Deflation playa Van 38°00'N 42°30'E 1720 3600 550 53 190800 Graben L'.S.S.R. Balkhash 46" 30'N 75°00'E 342 17575 26.5 6.13 •107735 Graben, erosion Bolshov Shantropy 187 5.23 4.6 3.4 17.78 Glacial Butash 192 37.7 2.2 1.6 60.32 Glacial Issyk-Kul 425 20'N 77°(K)' E 1609 6206 668 320 1986920 Graben Karakul 39°00'N 73°30'E 3952 370 240 210 77700 Graben

Chen-C'huan (Wei. pers. comm.): Oinghai (Koko Nor) (Academia Sinica 1979); Kar, Khyagar, Panggong (Hutchinson 1937a); Sambhar (Bhagarva & Alaam 1979); Maharlu (Löffler 1961a). Nargiz-Niriz (Löffler 1959a), Urmia (Resaieh) (Greer 1977); Dead (Neev & Emery 1967. Nissenbaum 1975): Orog (Dulma 1979): Burdur (Numann 1960). Krater Aci (Dumont 1981). Tuz (Irion 1973). Van (Gessner 1957. Irion 1%3. Langbein 1961): Balkhash (Ergashev 1979, Greer 1977. Hutchinson 1957). Bolshoy Shantropy and Butash (Letanskaya 1980. Drabkova et al. 1978b). Issyk-Kul (Ergashev 1979, Hutchinson 1957). Karakul (Ergashev 1979. Melack 19S3). - 198 -

Appendix B (Continued).

V Origin Lake Lat Long ASL S z„, z (m) (km:) (m) (m) (x 10* m5)

Australia Eyre (North) 28° 35'S 137°14'E - 15* 8030 6.1 3.99 32000 Subsidence & Eyre (South) 29e 21 'S 137°2I'E - 13* 1300 - - - deflation Eliza 37° 12'S 139°53'E 38.2 Eustasis-dunes Robe 37° 15' S 139°58'E 3.25 Eustasis-dunes Folly 42° 07'S 147e23'E - 0.18 0.51 0.4 0.072 Tunbridge 2a 42e08'S 147=31' E - 0.03 0.05 0.05 0.0002 Bullenmerri 38°11'S 143° 04'E 146 4.88 66 39.3 192 Maar Corangamite 38°13'S 143°25'E 116 233 4.9 2.9 676 Volcanic, tectonic Gnotuk 38° 1)9'S 143=03'E 102 2.08 18.5 15.3 32 Maar Pink 3«° 01' S 143°33'E 115 0.134 0.7 0.5 0.007 Deflation? Red Rock 38°14'S 143°30'E 164 0.008 2.0 1.4 0.011 Maar Werowrap 38"14'S 143e30'E 0.216 1.64 1.35 0.291 Maar Eganu 30e 03'S 116° 02' E 0.9 2.2 Pinjarrega 30°03'S 116°02'E 6.5 1.3

Eliza (Bayly 1970). Eyre (Dulhunty 1977; * lowest point in basin). Robe (Bayly & Williams 1966); Folly. Tunbridge 2a (Buckney & Tyler 1976); Bullenmerri, Gnotuk (Timms 1976); Corangamite (Williams 1981b); Pink, Red Rock (Hammer 1981); Werowrap (Walker 1973); Eganu. Pinjarrega (Halse 1981). Latitude and longitude estimated by Hammer.

Europe Spain

Gallocanta 40°50' N 02=11'W 1000 19 2.5 - - Tectonic depression U.S.SR. Elton 49=09'N 46°38'E -14.7 152 1.0 0.7 106.6 Fault

Gallocanta (Comin et cd. 1983). Elton (Greer 1977).

North America Canada Bames 52°01'N • 122° 27' W 945 0.17 4.5 2.0 0.348 Glacial Boitano 51=57'N 122°10'W 975 0.81 4.5 2.7 2.19 Glacial Goodenough 51°17'N 121°38'W 1095 0.15 1.5 0.8 0.127 Glacial Flceinghorse 52° 19' N 110° ll'W 652 2.64 1.2 Glacial Big Ouill 51°55'N 104=22'W 519 307 2.6 1.5 449 Glacial Goose 53=37' N 102'30'W 265 12.67 0.8 0.7 0.089 Glacial Humboldt 52°09'N 105=06'W 552 17.2 S.O 4.8 «1.9 Glacial river Little Manitou 51=48'N 105=30'W 495 13.3 5.2 3.6 48.1 Glacial river Manito 52=43' N 1Ü9943' W 601 21.5 21.5 7.9 627 Glacial, deflation Patience 52°07'N 106=20'W 515 5.63 1.6 1.0* 5.63 Glacial Redberry 52=43' N 107°09'W 515 54.4 18 9.3 506 Glacial Wakaw 52° 40' N 105°35'W 10.4 14 4.7 48.7 Glacial river 721 50»49'N 100=25'W* 550* 0.065 3.0 1.6 0.104 Glacial United States Borax 38=59'N 122°40'W 406 0.4 1.45 Lava dam Mono 38=00'N 119=15'W 1979 199.5 51.5 19 3790 Tectonic , volcanic

Owens 36=20'N 118=00' W 271.8 - 7.3 1984.4 Deflation Salton 33°20'N 115=50'W -71.6 880 12.5 7.9 6933.5 Tectonic S. Panamin 36=05' N 117°14'W 315 50.84 >1 Deflation Pyramid 40^00'N 119°35'W 1157 446.4 103 59 26400 Graben Walker 38=43'N 118=43'W 1210 150 33 20 3000* Fault block Zuni Salt 34=49'N 111=56'W 1938 0.604 1.0 0.7 0.422 Maar Devils 48°00'N 98=59'W 433 130 5 3 390 Riverine Stump 47=52' N 98=22' W 423 13.6 20 Riverine Abert 42=40'N 120°15'W 1299 165 5.2 3.7 611.8 Fault Summer 42=50' N 120°45'W 1265 77.6 1.5 0.91 70.6 Tectonic Lenore 47=29'N 119=30'W 5.56 11.0 6.5 36 Riverine - 199 -

Appendix B (Continued).

Lake Lat Long ASL S zm z V Origin (m) (km-') (m) (m) (x 10" m')

Centrai America Dominica Enriquillo 18°28' N 71°35'W -48 221 30 6 1330 Dominica-Haiti Saumätre 18° 34' N 72"27'W 14 70.8 26 13.7 969

South America Argentina Pozuelos 22°20'S 66°00'W 3500 90 >1 Bolivia Colorada 21e 10'S 67e 47' W 4278 30 <1 0.2 6 de Pas Pastos Grandes

21°38' S 67*48'W 4430 125 - 0.2 25 e Kalina 22°32'S 67 11'W 4530 16 - 0.2 3.2 Chile Je Agua Calientes III

25°00'S 68°38'W 3670 14 - 0.2 2.8 de Pujsa 23° 12'S 67=34'W 4525 15 - 0.1 1.5 Peru Parinacochas 15=17'S 73e 42'W 3272 67 >1 Poopo 18°30'S 67°30'W 3694 2530 5 0.69 1742 Tectonic, volcanic Salinas 14°59'S 70°07'W 3fH0 9.7 <1 - Volcanic

Barnes. Boitano. Goodenough (Topping & Scudder 1977): Fleeinghorse (Daborn 1975): Big Quill, Humboldt, Little Manitou. Manito. Redberry. Wakaw. (Hammer & Havnes 1978). Goose (Rover 1966), Patience (Hammer & Parker 1984); 721 (Sunde & Barica 1975): Bor;« (Wetzel 1965). Mono (Mason 1967). Owens (Greer 1977). Salton (Amal 1961. Carpelan 1958), South Panamint ( Kubly 1982): Pyramid (Galat et al. 1981 ). Walker ( Koch et al. 1977): Zuni Salt Lake (Bradbury 1971); Abert, Hamey, Summer ( Phillips & van Denburgh 1971. Langbein 1%1 ): Devils ( Young 1924, Anderson 1966), Stump (Swenson & Colby 1955); Lenore (Anderson 1958b): Enriquillo. Saumätre (Bond 1935); Pozuelos (Hurlbert 1978); Laguna Colorada. Salar de Pas Pastos Grandes. Laguna Kalina. Salar de Agu;is Calientes III (Hurlbert & Chang 1983): Salar de Pujsa (Hurlbert & Chang 1984); Parinacochas. Salinas (Hurlbtrt el al. MS): Pcxipo (Löffler 1961c, Serruya & Pollinger 1983). Latitudes and longitudes and elevations if not given by original authors have been estimated. * estimate. # Data for most meromictic saline lakes is given in Table 4.2. - 200 -

Appendix C Water chemistry of representative saline lakes. Ions are given in mgH (upper line) and in percent equivalence of sums of cations or anions (lower line). Conductivity (mScm1)- Salinity (S) (g H). Bracketed numbers represent sum of two ions. Some authors' results were recalculated. + average values.

Location pH Cond. Na K Mg Ca Cl SO. HCO> CO, S Lake*

Africa Algeria Merdjadja 8.3 8630 816 1940 1520 16930 11620 184 0 41.65 (Beadle 1943a) 59.4 3.3 25.3 12.0 66.1 33.5 0.4 0 Ouargla 8.5 19180 980 1940 1080 34600 10040 268 0 68.09 77.8 2.3 14.9 5.0 82.1 17.6 0.4 0 Chad Bodou - 40.5 13340 2502 22 12 2334 1441 8174 14160 42.0 (litis 1971) 89.7 9.9 0.3 0.1 9.0 4.3 19.1 67.5 Rombou 10.2 20.0 5198 2170 1.2 10 957 1018 3965 4680 20.4 80.1 19.7 <.0 0.2 10.0 7.9 24.1 57.9

Yoan 24656 - - - 9645 15129 (484 meq 1" ') 100 25.2 29.1 44.8 Egypt

Natron 1368 - 160 157 1145 - (1450) 4.28

(Grabau 1920) 73.9 - 16.4 9.8 40.1 - 59.9

Zugm 11.0 142000 2270 - - 154560 22570 (67210) 393.9

(Im. 1979) 99.1 0.9 - - 61.7 6.6 31.7 Ethiopia Shala 29.5 6250 252 <7.5 <3 3300 650 (200meq \~ ') (T. & T. 1965) 97.7 2.3 0.2 0.0 30.4 4.4 65.4 Aranguadi 10.3 1541 317 7 13 780 14 3135 5.81 (P. 1968) 87.7 10.6 <0.8 0.9 29.7 0.9 69.4 Kilotes 9.6 1622 176 7 14 482 19 3867 6.49 92.4 5.9 <0.7 0.9 17.6 0.5 81.9 Kenya Bogoria >10.5 35.7 14360 304 tr 26 3450 204 (17650) 35.99 (Beaale 1932) 98.6 1.2 0 0.2 14.1 0.6 85.3 Elmenteita 10.9 43.75 9450 381 <30 <10 5200 2300 (289 meq 1 ') (T. & T. 1965) 97.0 2.3 0.6 0.1 30.5 9.5 60.0 Magadi 10.4 75000 1390 - - 49400 1240 7650 54300 140.1

(J. 1977) 98.9 1.1 - - 41.5 7.7 3.7 54.0 Malawi Chilwa 8-11 12.0 2690 38 4 10 1920 65 (61.6 meq 1 ') (M. & M. 1969) South Africa Blaauwater 1 8.9 (1350) 9 29 1100 100 1031 11.4 3.63 (H. 1932) 96.4? 1.1 2.3 61.5 4.1 33.5 0.8 Banagher 3 9.1 (7784) 6 15 8236 200 4866 2.3 21.11 99.6? 0.1 0.2 74.4 1.3 25.6 0.2 24.69 Ronde 6.9-7.8 (4800) 3000 - 14184 2360 141 0 45.9 54.1 87.8 11.7 0.5 0 Rocher 7.6-9.0 19 3775 58 402 230 6375 1362 (90) 12.29 (Coetzer 1981) 78.1 0.7 15.7 5.4 85.6 13.5 0.8 - 201 -

Appendix C (Continued).

Location pH Cond. Na K Mg Ca Cl so4 HCO, CO, S Lake*

Tanzania Big Momela 10.4 15 4807 704 5 4 496 768 (168 meq 1* ') (M. & K. 1974) 91.8 7.9 0.2 0.1 7.0 8.1 84.9 Manyara 54 21500 94 <30 <10 8670 2280 (806 meq 1'')

(T. & T. 1965) 99.8 0.3 - - 22.3 4.3 73.5 Uganda Katwe 180500 38200 - - 147000 22500 (2123) 452.4

(Groves 1931) 88.9 11.1 - - 61.6 7.0 31.5 Mahiga 84000 16400 120 - 72300 71000 3100 8900 255.8

(A. & M. 1969) 89.5 10.3 0.2 - 52.9 38.1 1.3 7.7 Antarctica Don Juan 5.4 790 11500 160 1200 114000 212000 11 49 0 338.9 (M. 1962) 7.9 0.7 1.6 90.4 100 0 0 0 Asia China Koko Nor (Qinghai) 3397 120 322 196 4446 1980 (616) 11.08 (Clarke 1924a) 79.0 1.7 14.2 5.2 67.0 22.0 11.0 ;Afghanistan Maimana 123920 tr. 3500 420 188300 18600 120 - 334.9 (L. 1963) 83.0 0 13.8 3.2 93.2 6.8 0.0 - India Kar 8.9 16346 5478 2716 406 11662 35075 (2141) 73.82 (H. 1937a) 64.9 12.8 20.4 1.9 30.1 66.7 3.2 - Khyagar 9.5 1093 724 134 24 251 2069 1701 54 6.05 60.7 23.7 14.1 1.5 8.9 54.0 34.9 2.3 Panggong 9.35 3527 186 232 303 3587 2750 2067 1050 13.7 79.7 2.5 9.9 7.9 44.5 25.2 8.4 15.4 Iran Maharlu 109400 951 4383 580 180200 8320 (114) 304.95 (Löfner 1956) 92.0 0.5 7.0 0.6 96.7 8.3 0.1 Miriz 9.65 18.3 4777 63 380 178 7550 772 27 13.747 (Schamsahad) 83.0 0.6 12.5 3.6 92.6 7.0 0.4 (Löffler 1959) Ni riz 7.7 105.9 35280 522 3150 1360 61000 6160 (134) 101.61 lOualeh Kirmiz) 81.9 0.7 13.8 3.6 92.9 6.9 0 2 Urmia 7.5 563.7 103620 2603 8175 609 180500 15070 (210) 310.79 (Löffler 1956) 85.4 1.3 12.7 0.6 93.3 5.8 0.1 U.S.S.R. Balkhash (694) 164 25 574 893 493 0 2.84 (L. 1963) 67.2 30.0 2.8 37.7 43.4 18.9 0 Issyk-Kul (1475) 294 114 1585 2115 240 0 5.82 68.2 25.7 6.1 48.0 47.9 4.2 0 Biljo 2889 46 79 4 1265 4412 (99) 8.79 (Clarke 1924a) 94.1 0.9 4.9 0.1 27.3 70.2 2.5 Altai 36642 571 100 57 15618 54492 24 898 108.4 (Ludwig 1903) 98.4 0.9 0.5 0.2 21.8 76.1 0.0 2.0 - 202 -

Appendix C (Continued).

Location pH Cond. Na K Mg Ca Cl so4 HCO, CO, s Lake*

Tagar 5947 212 870 56 6181 7324 199 238 21.03 76.4 1.6 21.1 0.8 52.8 46.2 1.0 2.4 Schunett 24486 501 17727 668 59074 48897 (471) 151.8 (Grabau 1920) 41.4 0.5 56.8 1.3 61.8 37.7 0.6 Turkey Burdur 9.1 4720 '42 710 11 3430 6940 839 320 17.01 (Irion 1973) 77.4 0.4 22.0 0.2 36.4 54.4 5.2 4.0 Krater Aci 7.6 21270 400 2330 155 34630 6940 854 0 66.6 81.5 0.9 16.9 0.7 86.0 12.7 1.2 0 Tuz 7.9 117000 900 2t.40 413 185000 6120 122 0 312.2 95.1 0.4 4.0 0.4 S<7.6 2.4 0.0 (1 Van 9.31 22.9 8100 400 107 9 59(H) 2447 2428 3492 23.1 (Gessner 1957) 94.8 2.8 2.4 0.1 44.6 13.6 10.7 31.1 Australasia Australia. V. S.IV'. Kudgee Bore 6.(1 15910 - 1830 830 245(H) 9320 _ - 52.39 (E. 1966) 78.3 17.0 4.7 78.1 21.9 Jillamatong 9.6 7600 336 14 68 9803 2554 (865) 21.24 (W. 1970) 96.2 2.5 0.3 1.0 80.5 15.5 4.1 Nichebulka 4370 29 486 325 8226 500 30 - 13.97 (Johnson 1980) 76.9 0.3 16.2 6.6 95.7 4.3 0.2 - Utah 759(H) 242 S633 4248 147159 2304 103 - 238.6 78.0 0.1 16.8 5.0 98.8 1.1 0.0 _ Australia, Qld. Old Buchanan 8.6 31000 820 630 1400 536(H) 0 (75) 86.79 (B. & W. 1970) 90 1 4 5 101 0 0.1 Australia. S./4. Eyre North (21.V.51) 43780 10 300 910 67960 2940 (40) 115.9 (Bonvthon 1955) 96.4 0.0 1.3 2.3 95.9 4.1 0.0 Eyre South (March 1978) 10810 4 33 296 16311 806 30 0 28.29 (Johnson 1980) 96.4 0.0 0.6 3.0 96.4 3.5 0.1 0 Kingston - 11700 400 900 100 19800 700 700 0 33.80 (W. & B. 1976) 84.3 1.9 12.6 1.2 96.6 2.7 0.6 0 Robe 7.4 33400 1470 5240 880 64700 6200 630 0 112.5 (B. & W. 1966) 73.9 1.6 18.2 3.7 87.1 12.3 0.6 0 Sunday 7.0 62100 2600 21000 2(H) 185000 20500 300 0 291.7 59.6 1.5 38.7 0.2 92.3 7.6 0.1 0 Bumbunga 85100 600 500 12100 172500 7600 200 0 278.6 77.9 0.3 0.5 21.3 96.8 3.1 0.1 0 Gillies 3.0 275.4 64100 720 6140 1240 117500 2660 0 0 216.3 (W. 1984) 82.7 0.5 14.9 1.8 98.2 1.6 0 0 Round 8.2 6.867 1275 32 184 226 2410 398 370 0 8.23 67.1 1.0 18.5 13.7 82.1 10.0 7.3 0 Australia. Tasmania Brent's 9.61 20.8 3657 4 1033 270 8154 1008 (120) 13.24 (B. & T. 1972) 61.7 <0.0 33.0 5.2 90.9 8.3 0.8 - 203 -

Appendix C (Continued).

Location pH Cond. Na K Mg Ca Cl so4 HCO, CO, S Lake*

Forest 9.0 7.38 1387 18 247 56 1021 749 (527) 4.005 71.9 0.6 24.2 3.3 54.3 29.4 16.3 Mona Vale 8.22 165 96025 997 4070 1278 150663 8256 253 0 261.5 90.8 0.6 7.3 1.4 97.0 3.9 0.1 Township 8.84 63.0 13984 .170 1813 317 32127 528 (536) 49.48 78.2 0.6 19.2 2.0 97.8 1.2 1.0 Australia, Victoria Bullenmerri 2976 102 87 22 4352 0 (1190) 8.73 (Hussainv 1969) 92.4 1.9 5.2 0.8 86.3 0 13.7 Gnotuk 8.1-8.8 17400 610 2230 111 33100 60 (440) 53.95 (Maddocks 1967) 77.6 2.0 19.4 1.0 98.9 <0.0 1.1 Modewarre 8.7 1100 12 151 38 1940 33 (258) 3.53 76.6 0.5 19.9 3.0 85.4 1.1 13,4

Werowrap 9.8 13076 6868 81 4 13864 - 8385 2142 38.42

(Walker 1973) 95.2 3.7 1.1 0.0 65.2 - 22.9 11.9 Australia. W..4. Coolungup 8.6 2710 111 528 11 5680 456 736 80 10.31 (VV. & B. 1976) 71.3 1.7 26.6 0.3 87.5 5.2 6.6 0.7 Stubbs S.7 66470 507 3280 1150 117900 2314 (105) 191.7 (W. B. 1976) S9.4 0.4 8.4 1.8 98:5 1.4 0.1 Eganu 16500 300 1700 13(H) 28263 6899 112 54.69 (Halse I9SI) 77.1 0.8 15.0 7.0 84.7 15.1 0.2 Vf h Zealand

Sutton 7.7 5300 230 160 40 8980 - 430 0 15.14 -> (Bayly 1967) 91 5 1 100 - 3 0 Europe Austria Birnbaumlucke 7.95 2592 9 10.5 tr. 500 1210 (77.4 mva|) (Löfflcr 1959b) 99.0 0.2 0.8 0 12.1 21.6 66.3 Herrensee 6.90 1458 31 320 20 513 2840 (17.8 mval) 69.3 0.9 28.8 1.1 19.5 64.7 (15.8) Hungary

Kiskunhalasi 1802 - 87 14 358 172 2007 595 4.563

(Megyeri 1959) 90.2 - 8.3 0.8 11.7 4.2 61.2 23.0

Oszeszékilo 2139 - 30 5 732 14 3856 347 7.124 97.2 - 2.5 0.3 21.6 0.3 66.1 12.1 Nagyszéktó 10.5 (1553) 157 15 342 103 2357 921 5.484 (D. & P. 1957) 78. 2? 15.9 0.9 12.0 2.7 47.6 38.1

III yes (Medve) 91208 - 70 584 140669 1028 (93) 233.7

(Grabau 192(1) 99.1 - 0.1 0.7 99.4 0.5 0.1 Szelider S. 96 (1157) 75 22 911 269 1205 145 3.783 (Donâszy 1959) 86.3 10.4 3.2 46.0 10.0 35.4 8.6 Rumania

Sarat 18427 - 1254 226 16396 21544 (157). 58.00

(Clarke 1924a) 87.5 - 11.3 1.2 50.6 49.1 0.3 - 20U -

Appendix C (Continued). O Location PH Cond. Na K Mg Ca Cl so4 HCO, n S Lake*

Spain Gallocanta 7924 244 3411 342 18109 9730 41 65 39.87 (Comin. pers. comm.) 53.1 1.0 43.3 2.6 71.3 28.3 0.0 0.3 U.S.S.R.

Elton 29866 - 46508 265 170183 18073 (106) 265.0

(Clarke 1924a) 25.3 - 74.5 0.3 92.7 7.3 0.0 Marfovka 20670 550 3880 720 29200 21130 180 - 76.43

71.7 1.1 25.5 2.9 65.0 34.7 0.2 -

Iletsk 60322 tr. 124 512 93542 21130 - - 155.2

(Grabau 1920) 98.7 0 0.4 1.0 99.4 0.6 - - United Kingdom Watch Lane 6.83 1541 16 37 107 2447 256 159 0 4.563 (Savage 1971) 88.4 0.5 4.0 7.0 89.7 6.9 3.4 0 North America Canada, Alberta Fleeinghorse 9.1 6.5 1228 24 46 49 360 1800 976 420 4.90 (Hammer unpubl.) 88.6 1.0 6.3 4.0 15.9 57.7 24.6 2.2 Gooseberry 9.2 30.0 11040 310 168 44 550 15900 2440 1600 37.0 95.2 1.6 2.7 0.4 3.5 75.2 9.1 12.1 Handhills 9.6 11.5 3588 121 42 35 320 3750 3782 1200 15.72 94.9 1.9 2.1 1.0 4.8 41.3 32.8 21.2 Leane 9.5 7.5 1800 89 69 12 450 1250 2204 896 6.77 90.2 2.6 6.6 0.7 12.1 24.8 34.5 28.6 Miquelon 9.5 8.4 2178 159 233 128 446 4200 1480 336 9.16 73.1 3.2 14.8 9.0 9.3 64.5 17.9 8.3 Canada, B.C. Barnes 9.4 11.5 2760 500 31 15 1291 968 3330 768 9.664 (T. & S. 1977) 88.2 9.4 1.9 0.6 26.6 14.7 39.9 18.7 Boitano 9.0 3.85 782 116 135 15 145 1401 1061 153 3.808 69.7 6.1 22.7 1.6 7.3 52.3 31.2 9.1 Clinton 8.1 55.93 7533 735 19821 23 1108 98125 3215 0 130.6 16.6 1.0 82.4 0.1 1.5 96.1 2.5 0 Goodenough 10.2 40.5 16675 538 47 3 5850 0 4148 17208 44.5 97.6 1.9 0.5 0.0 20.4 0.0 8.4 71.1 Wallender 4991 199 2225 246 560 18972 207 240 27.64 (Blinn 1971) 52.0 1.2 43.9 2.9 3.7 93.6 0.8 1.9 Canada. Manitoba *721 8.69 3.44 228 60 475 101 34 2079 491 48 3.52 (Barica 1975) 17.8 2.8 70.2 9.1 1.8 86.4 14.9 3.0 Canada, Sask. Big Quill 2537 163 1169 502 1937 8368 (236) 14.68 (Huntsman 1922) 46.8 1.8 40.8 10.6 23.1 73.6 3.3 Big Quill 8.7 37.5 8050 575 4482 382 3510 30200 793 133 48.13 (Hammer 1978b) 46.5 2.0 49.0 2.5 13.3 84.4 1.7 0.6 - 205 -

Appendix C (Continued).

Location pH Na K Mg Ca Cl so4 HCO, O O S Lake*

Humboldt 8.7 3.9 250 94 517 145 88 2620 268 31 4.01 17.3 3.8 67.5 11.4 4.0 87.3 7.1 1.6 Little Manitou 8.8 72.5 12300 890 9518 497 18000 39600 776 209 81.79 39.2 1.7 57.3 1.8 37.5 61.0 0.9 0.5 Manito 9.3 25.0 8025 248 400 42 1825 12400 2220 1176 26.34 89.5 1.6 8.4 0.5 13.4 67.1 9.5 10.2 Redberry 9.2 15.6 1860 178 2271 99 220 12500 551 125 17.80 29.2 1.7 67.4 1.8 2.2 93.1 3.2 1.5 Wakaw 8.3 3.5 313 32 350 228 154 2310 142 17 3.55 24.9 1.5 52.7 20.9 7.8 87.0 1.5 1.1 Goose 8.6 40.0 9500 165 438 662 16500 385 106 13 27.77 (Rover 1966) 84.9 0.9 7.4 6.8 97.8 1.7 0.4 0.1 Little Ouill 1802 120 826 181 1198 5676 (219) 10.02 (Huntsman 1922) 49.5 2.0 42.9 5.7 21.2 74.2 4.6 Patience 7.2 280.0 103000 48100 4120 740 252500 35000 210 0 443.7 (H. & P. 1984) 73.6 20.2 5.6 0.6 90.7 9.3 0.0 0 Mexico Coahuila Grande 350 20 225 624 291 2700 121 4.33 (M. & C. 1968) 23.3 7.7 28.3 47.6 12.0 82.2 5.8 Salada 6000 1250 14414 1232 10200 66500 252 99.8 16.9 2.1 77.0 4.0 13.3 86.4 0.3

Chichen-Kanab 533 19 325 600 362 2607 - - 4.45

(Clarke 1924a) 28.8 0.6 33.3 37.3 15.8 84.2 - - U.S.A.. California Borax 9.61 47.2 16319 1140 218 24 16071 31 2543 7892 44.24 (Wetzel 1964) 93.6 3.8 2.4 0.2 59.8 0.1 5.5 34.7 Mono 19685 961 55 20 12104 6672 3172 10518 53.24 (Chatard 1890) 96.7 2.8 0.5 0.1 38.7 15.7 5.9 39.7 Mono 295(H) 1500 33 4 17600 10300 11200 18900 89.04 (Winkler 1977) 96.9 2.9 0.2 0.0 32.6 14.1 12.0 41.3 Owens 81398 3462 21 43 53040 21220 (52463) 213.7 (Clarke 1924a) 97.5 2.4 0.0 0.1 40.6 12.0 47.4 Salton 8.3-8.8 9939 224 951 764 14422 6806 159 21 33.29 (Carpelan 1958) 78.0 1.0 14.1 6.9 73.7 25.7 0.5 0.1 South Panamint 8.2 7.975 1072 81 18 248 1720 600 73 0 3.81 (Kubly 1982) 74.5 3.3 2.4 19.8 78.0 20.1 1.9 0 South Panamint 8.3 >100 63394 4311 1426 4233 112971 3535 442 0 190.31 (Kubly 1982) 86.3 3.5 3.7 6.6 97.5 2.3 0.2 0 i . S..4 .. Sehraska Jesse 9312 10506 tr. 0 1665 6663 4800 11907 44.85 (Clarke 1924a) 65.5 34.5 0 0 7.1 21.0 11.9 60.0

Richardson 10.6 31.82 (7500) - - 1550 1300 15215 23358 48.92 (McCarraher 1970) 4.0 2.5 22.7 70.9

Toms 9.9 5.13 (1800) - - 5 55 4292 1675 7.83 (McCarraher 1970) 0.1 0.9 55.2 43.8 - 206 -

Appendix C (Continued).

Location pH Cond. Na K Mg Ca Cl S04 HCO, CO, S Lake*

U.S.A., Nevada Big Soda 45840 2520 270 - 45690 12960 10919 10194 129.4 (Chatard 1890) 95.8 3.1 1.1 - 62.5 13.0 8.6 16.4 (498) Pyramid 1174 74 79 9 1431 183 3.45 (Clarke 1924a) 85.3 3.2 10.9 0.7 66.8 6.3 26.9 Pyramid 9.2 8.42 1720 118 114 9.3 2080 280 860 300 5.48 (G. 1981) 85.3 3.4 10.7 0.5 66.2 6.6 15.9 11.3 (2908) Walker 9.3 3200 170 130 10 2300 2200 10.92 Koch et al. 1977) 85.4 6.6 5.0 3.0 31.7- 22.4 45.9 U.S.A.. Sew Mexico 14650 235 46 206.4 Zuni 75000 498 2550 345 113100 (Bradbury 1971) 93.2 0.4 6.0 0.5 91.1 8.7 0.1 0.0 U.S.A., North Dakota 345 169 12.68 Devils 2548 204 844 70 1310 7187 (Young 1924) 58.6 2.8 36.7 1.8 18.7 75.6 2.9 2.7 130 45.51 East Stump 8.4 70.6 31570 1144 3685 328 2350 6989 340 2.0 (Blinn 1972) 81.1 1.7 17.9 1.0 29.9 65.6 2.5 U.S.A.. Oregon 3230 21.89 Abert 9.8 30.5 8370 295 1.5 1.0 7440 397i 2160 r (W. & F. 1961) 97.9 2.1 - - 58.1 9.8 29.8 (5916) 16.48 Summer 6567 264 tr. tr. 3039 695 66.3 (Clarke 1924a) 97.7 2.3 0 0 28.8 4.9 U.S.A.. Texas 256 - 22.79 La Sal Vie ja 8250 72 308 13090 995 (Deevey 1957) 94.6 1.5 3.9 93.8 5.3 1.1 230 - 177.45 La Sal del Rev 68670 128 932 107000 1100 98. 2 0.3 1.5 99.1 0.8 0.1 U.S.A.. Utah 454 270 332.2 Great Salt (N) 7.7 105386 6690 11124 312 181000 27000 0.2 (Post 1975) 80.6 3.0 16.0 0.3 89.8 9.9 0.2 493 0 127.9 Great Suit (S) 8.15 113 44000 4

Appendix C (Continued).

Location PH Cond. Na K Mg Ca Cl so4 HCOj CO, s Lake*

Haiti Bois Neuf 8.1 8349 80 589 416 4582 14580 98 40 28.76 83.6 0.5 11.2 4.8 29.6 69.6 0.4 0.5 Saumâtre 8.5 (2159) 279 94 3660 711 161 46 7.11 77.67 19.0 3.5 89.0 8.3 1.5 1.3 South America Argentina Aquada de Azaguate (10782e) 680 880 11878 10995 287 0 35.50 (Olivier 1953a) 82.4 9.8 7.7 58.9 40.3 0.8 0

De la Isla 10.5 - - - 0 2692 2190 (2220) TDS 14.69 48.1 28.9 23.0

El Salado 8.0 - - - 112 1061 930 400.0 TS 3.78 53.6 34.7 11.7 0

La Salada 8.1 - - 5220 3820 40 0 TDS 19.9 64.7 35.0 0.3 0

Salada Granda 8.7 - - - - 2960 325 (319.7) TDS 7.37 90.3 5.5 4.2

Epecuen 107502 - - - 122436 48992 (6071) 285.0 (Grabau 1920) 75.5 22.3 2.2 Bolivia Piistos Grandes 7.14 77280 8915 3478 2668 156733 1864 608 0 252.7 (R. & E. 1979) 82.4 5.6 7.0 3.5 98.7 0.9 0.2 0 Brazil Lagoa Escondida 1660 193 6 14 1242 46 2004 0 5.165 (L. 1963) 92.2 6.3 0.7 0.9 50.8 1.5 47.8 0 Chile

Tamentica 100924 6538 1713 29 144006 26180 6110 - 285.5

(Clarke 1924a) 93.4 3.6 3.0 0.0 86.3 11.6 2.1 - Verde 7.5 24000 1800 1600 5400 52000 2500 530 0 87.83 (H. 1976) 70.0 3.1 8.8 18.1 98.2 3.5 1.8 0 Pent Parinacochas 3936 462 99 142 5652 1277 (260) 11.83 (Clarke 1924a) 86.3 6.0 4.1 3.6 81.9 13.7 4.5 Poopo 7470 301 94 634 10190 3788 7 22.5+ 1 Löffler 1961c) 87.3 2.1 2.1 8.5 78.4 21.6 Salinas 8.2 59.2 14300 4100 1150 1036 20800 16300 11.56 mval 57.76 71.2 12.0 10.8 5.9 62.5 36.4 3.9

Key to sources: A. & M. 1969. Arad & Morton 1969: B. & T. 1972. Buckney & Tyler 1972; B. & W. 1966, Bayly & Williams 1966: B. & W. 1970. Bayly & Williams 1970; D. & P. 1957, Dvihally & Ponyi 1957; E. 1966, Ettershank el al. I%6;G. 1981. Galat et al. 1981: H. 1932. Hutchinson er al. 1932: H. 1937a, Hutchinson 1937a; H. 1976, Hurlbert et al. 1976; H. & P. 1984. Hammer & Parker 1984: Im. 1978, Imhoff et al. 1978; J. 1977, Jones et al. 1977; L. 1963, Livingstone 1963; M. i%2. Meyer et al. 1962: M. & C. 1968, Minckley & Cole 1968; M. & K. 1974, Melack & Kilham 1974; M. & M. 1969, Moss & Moss 1969; P. 1968. Prosser efu/. 1968: R. & E. 1979. Risacher& Eugster 1979; S. &G. 1973, Stephens & Gillespie 1973; T. & T. 1965. Talling & Talling 1965; T. & S. 1977. Topping & Scudder 1977; W. 1970, Williams et al. 1970; W. 1984, Williams 1984. pers. comm.: W. & B. 1976. Williams & Buckney 1976; W. & F. 1961. Whitehead & Feth 1961. - 208 -

Appendix D Water chemistry of saline meromictic lakes. Shallow depths represent mixolimnia and deeper depths monimolimnia. Upper line is ions in mgl~' while lower line is per cent equivalent of cation or anion sums. Cond (conductivity in mScm-'). S (salinity in gl"1)- Bracketed values represent total alkalinity.

Location Lake* Depth PH Cond. Na K Mg Ca Cl so4 HCOj co3 S

Antarctica Bonney (9m) 6.7 11.63 1670 112 383 166 3760 6246 155 0 6.25 63.2 2.5 27.4 7.0 44.4 54.7 1.1 0 (A. 1964) (30 m) 7.3 213 41300 2730 25900 1540 140000 2850 153 0 214.5 44.1 1.7 52.3 1.9 98.5 1.5 0.1 0 Fryxell (6 m) 7.2 4.854 1350 108 129 77 1640 144 1332 0 4.780 77.3 3.6 14.0 5.1 65.1 4.2 30.7 0 (A. 1962) (12m) 7.0 22.73 2050 187 229 33 2740 460 2136 0 7.835 78.0 4.2 16.4 1.4 63.4 7.9 28.7 0 Vanda (48 m) 7.2 5.265 228 53 173 614 1910 80 84 0 3.142 17.7 2.4 25.3 54.6 94.6 2.9 2.4 0 (A. 1965) (66m) 6.1 6761 766 7684 24254 75870 770 126 0 116.2 13.6 0.9 29.3 56.1 99.2 0.7 0.1 0 Australia

West Basin (2m) 8.4 29992 1001 1665 66 48240 - 1360 - 82.32

88.7 1.7 9.3 0.2 98.4 - 1.6 - (T. 1972.

T. & B. 1973) (12m) 7.0 39498 1584 2292 34 65824 - 5289 - 114.5

88.2 2.1 9.7 0.1 95.5 - 4.5 - Canada Lyons (4.5 m) 1336 305 1509 2932 111 8738 320 5.5 17.96 17.3 2.3 35.9 43.5 1.6 95.5 2.8 0.1 (N. & H. 1969) (7.0m) 6165 410 2978 14879 419 18265 2415 0 49.22 24.7 1.0 5.7 68.6 2.7 88.1 9.2 0 Mahoncy (5.0m) 3949 650 1234 2226 800 11034 1285 225 21.40 42.8 4.1 25.3 27.7 8.0 81.8 7.5 2.7 (9.0m) 6369 1180 3374 7190 709 20643 5181 0 44.65 29.4 3.2 29.4 38.0 3.7 80.4 15.9 0 White (3.0 m) 1211 287 209 221 121 393 3300 770 6.51 69.9 9.7 5.8 14.6 3.7 9.0 59.2 28.1 (12.0m) 1416 310 264 145 159 834 4225 875 8.23 62.5 8.1 22.1 7.3 3.7 14.4 57.6 24.3 Deadmoose (0m) 8.9 28.7 5980 280 1660 18 5760 10800 743 135 25.35 64.2 1.8 33.9 0.2 40.2 55.7 3.0 1.1 (H. unpubl.) (Km) 8.1 46.8 11000 520 2880 23 10400 22000 1017 0 47.84 65.6 1.8 32.5 0.2 38.2 59.6 2.2 0 Waldsca (0m) 8.1 16.3 2400 160 1650 280 2700 8250 279 0 15.71 40.4 1.6 52.6 5.4 30.1 68.0 1.8 0 (6.9m) 7.2 44.0 8(XX) 560 6000 104 8500 30400 850 0 54.41 40.4 1.7 57.3 0.6 23.7 62.5 13.8 0 Israel-Jordan Dead 6.1-6.7 38510 6500 36150 16380 196940 580 230 0 295.3 (N. & E. 1967) ((W0m) 29.7 2.9 52.8 14.5 98.7 0.2 0.1 0 (Br 1%; - 209 -

Appendix D (Continued).

Location/Lake* Depth pH Cond. Na K Mg Ca Cl so4 HCO_, CO, S

39700 7590 424J0 17180 219250 420 220 0 326.8 (10ft- 400 m) 27.5 3.1 55.7 13.7 99.8 0.1 0.1 0 Kenya Sonachi 9.8 2567 345 3 3 304 51 2819 1717 7.809 (M. 1982) (0.05 m) 98.0 1.9 0.0 0.0 7.6 1.0 40.8 50.6 9.65 3725 452 2 3 351 58 4129 1899 10.62 (5 m) 93.3 6.7 0.0 0.0 7.0 0.8 47.6 44.5 South Africa Pretoria Salt 10.4 58.2 29000 130 <1 <1 30000 240 (400meql) 60.54

(0m) 98.7 0.3 - - 67.6 0.4 32.0 (A. & S. 1983) (2.5 m) 9.2 208.5 103000 500 <1 <1 85000 0.8 (2120 meql) 252 99.7 0.3 0 0 53.1 <0.1 46.9 Tanzania Gidamuniud (0 m) 9.0 10.8 2806 189 108 14 2872 663 (42.8 meql) 89.4 3.5 6.5 0.5 58.9 10.0 31.1 (K.) (bottom) 9.5 53.6 18400 641 38 41 17304 1220 (323 meql) 97.4 2.0 0.4 0.2 58.3 3.0 38.6 U.S.A. Big Soda (mixo) 9.7 80(H) 310 145 5 6500 5600 (4000) 24.55 94.5 2.1 3.2 0.05 50.2 31.9 17.9 (C. 1983) (monimo) 9.7 28000 IHK) 6 0.8 27000 6700 (24000) 86.81 97.7 2.3 0.0 0.0 58.8 10.8 30.4 Hot (Dm) 8.2 57.9 7337 891 22838 640 1668 103680 3148 0 140.2 14.2 1.0 83.4 1.4 2.1 95.6 2.3 0 (A. 1958b) (3m) 7.8 60.4 16790 1564 53619 720 1882 243552 3062 0 321.2 14.0 0.8 84.5 0.7 1.0 98.0 1.0 0

' Key m sources: A. 1958b. Anderson 1958b: A. 1962. Angino etal. 1962: A. 1964. Angino etal. 1964; A. 1965, Angino et ul. 1965: A. & S. 19X3. Ashton & Sehoemann 1983: C. 1983. Cloern etal. 1983; H. unpubl., Hammer unpublished; K. pers. comm.. Kilham pers. comm. : M. & VI. 1982. Maclntyre & Melack 1982; N. & E. 1967, Neev & Emery 1967; N. & H. 1969. Northcote & Halsey 1969: T. 1972. Timms 1972: T. & B. 1973. Timms & Brand 1973. -210-

APPENDIXVII I

Glossary -211-

GLOSSARY

Includedi nthi sglossar yar eword swhic har eno tinclude di nth e WMO/Unescoglossar yo fhydrolog y (reporto fth efift hsessio no fth e jointWMO/Unesc opane lo nterminology ,Geneva ,17-2 1Novembe r 1986). aestivate passth esumme ri na restin gtyp e bathymétriema p mapo fa waterbod yindicatin gdepth s biocenosis,bio - thetota lo flivin gorganism sa ta certai nplac ei n community moreo rles sintens erelationshi p toeac hothe r canopy foliageo fshrub san dtree s collector animali nstream stha tcollect ssmal lorgani c particles consumer animal (asoppose dt oproducer so rreducers ) decomposer organismtha treduce sdea dorgani cmateria lt o (finally)mineral s ecology scienceo fth emutua lrelationship sbetwee norganism s andth erelationship sbetwee norganism san dthei r environment ecosystem thetota lo fabioti can dbioti ccomponent si n relationshipt oeac hothe ra ta certai nplace ,viz .a waterbody epiphyton microscopic smallorganism sadherin gt o(water)plant s filterfeede r animaltha tfilter ssmal lorgani cparticle sfro mth e water grazer animaltha teat sfre efloatin go rattache dalga e habitat placewher ea certai nspecie slive s heleoplankton planktono fshallo wwater s helophyte emergentaquati cplants ,suc ha sreed s hydraulicstres s forceso frunnin gwate ro nbenthi canimal s invertebrate animalwithou tbackbon e (insect,worm ,snai letc. ) lentic belongingt ostagnan twate r lotie belongingt orunnin gwate r nymphaeid plantwit hfloatin gleave so fmor eo rles scircula r form oviposition layingo fegg s pentade periodo ffiv eday s plankton (microscopic)smal lplant san danimals ,fre efloatin g inth ewate r •212- predator animaltha tprey so nothe ranimal s pristine notinfluence db yma n (viz.primar yforest ) producer,primar y greenplan t (ormicro-organism ) " secondary animaleatin gplant s production augmentationo fbiomas s (livingmaterial )pe runi to f time productivity theproces so fproductio n (generallywithi na shor t period) respiration theus eo foxyge nb yplant san danimal s shredder animaltha tfragment slarg eorgani cparticle s sucha s leaves terrestrialization thenatura lproces so fconvertin g swampint olan d tychoplankton planktono fshallo wwater s zonation divisiono frunnin gwater sint ozones ,characterize d byabioti can dbioti cfeature s zonobiome areaso fth eworl dcharacterize db yclimatologica lan d vegetationalcriteri a zonoecotone areaso ftransitio nfro mon ezonobiom et oanothe r