1 The Chemical Aspects of Raman Spectroscopy: Statistical Structure-Spectrum

2 Relationship in The Analyses of Bioflavonoids 3 Chih-Hsien Wanga, Chia-Chi Huang*a, Wenlung Chen*a, and Yen-Shi Laib 4 aDepartment of Applied Chemistry, National Chiayi University, 300 University Road, Chiayi 60083, 5 Taiwan 6 bColossus BioPharma Consultants Company, Ltd., NO 15, LN 98, Jhengde Road, Kaohsiung 80449, 7 Taiwan 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26 *Corresponding authors: 27 E-mail address: [email protected] (C.-C. H.); [email protected] (WL. C.) 28

1

1 1. Materials 2 Flavonol, Flavone, Apigenin, Genistein, (+)-Catechin hydrate, (−)-Gallocatechin, (−)-Gallocatechin 3 gallate, (-)-Epicatechin, and (-)-Epigallocatechin were purchased from SIGMA; Kaempferol, Myricetin, 4 Luteolin, Daidzein, (−)-Catechin hydrate, and gallic acid from Fluka; and Quercetin and Flavanone from 5 Aldrich. (-)-Epicatechin 3-gallate and (-)-Epigallocatechin 3-gallate were obtained from Sigma- 6 Aldrich. , Dephinidin, , , , Petuidin, , , 7 , and were purchased from Extrasynthese (Genay Cedex, France). Acetonitrile and 8 Trifluoroacetic acid (HPLC grade) were obtained from Merck. All these chemicals were used as 9 received. Fresh yam tuber of Dioscorea alata L., D. alata L. var. purpurea was purchased from a local 10 agricultural cultivation station (Ming-Chien, Taiwan). 11 2. Purifications of by High Performance Liquid Chromatography (HPLC) 12 Extraction of anthocyanins was reported earlier [1]. The HPLC (HITACHI, Ltd, Tokyo, Japan) system 13 included pressurizing pump (Model L-7100), UV-Vis detector (Model L-7420), injector (Rheodyne 14 Model 7725) and analysis software (D-7000 HSM). The operation conditions were: C18 column 15 (Thermo Hypersil-keystone BDS HYPERSIL C18, 250 mm × 10 mm i.d. with a particle size of 5 μm);

-1 16 flow rate, 1 mL min ; Solvent A: 0.5% acetic acid in H2O; Solvent B: 0.2% acetic acid in methanol; 17 Mobile phase gradient: Solvent B: 0% at 0 min, 100% at 20 min,100% at 25 min; Injection volume: 18 100 μL; Detection wavelength: 530 nm. 19 Ten fractions of were collected and evaporated to remove volatile solvents under 20 reduced pressure. Powder samples were obtained by subsequent lyophilizing cycles. 21

2

1 Figure and Table Legends 2 3 Fig. S1 HPLC chromatogram of the principal anthocyanins fraction of Dioscorea purpurea. 4 Fig. S2 FT-Raman spectrum of peak No. 5 from Fig. S1. 5 Table S1 Mass spectrometry and database-predicted molecular ion structures of the HPLC fractions 6 of Dioscorea purpurea. 7 Table S2 Recoded scale values for the structure indices by SPSS. 8 9 Supplemental file: FT-Raman spectra and structures of 28 standards. 10

3

Fig. S1

Intensity

Retention Time/min

4

Fig. S2

5

Table S1

Peak Rt Molecular MS/MS (m/z) compound (min) ion [M+] (m/z) 1 2 3 4 5 710 692, 656 732 673 979 817, 449, 287 cyanidin + 3 glucose + sinapic acid vitisin B-pyranopeonidin + 3 glucose + sinapic acid 1017 855, 487, 325 or 5-methylpyranocyanidin + 3 glucose + sinapic acid 1155, 979, 949, 817, 655, 625, cyanidin + 4 glucose + ferulic acid + sinapic 1317 287 acid 1199, 933, 831, 669, 625, 463, 1361 peonidin + 4 glucose + 2 sinapic acid 301 1347 1185, 979, 817, 655, 449, 287 cyanidin + 4 glucose + 2 sinapic acid 1347, 1141, 979, 817, 655, 1509 cyanidin + 5 glucose + 2 sinapic acid 449, 287 6 vitisin B-pyranopeonidin + 2 glucose 649 487, 325 or 5-methylpyranocyanidin + 2 glucose 787 625, 449, 287 cyanidin + 2 glucose + ferlic acid 817 655, 449, 287 cyanidin + 2 glucose + sinapic acid vitisin B-pyranopeonidin + 2 glucose + H2O 873 711, 549, 531, 325 or 5-methylpyranocyanidin + 2 glucose + H2O 993 831, 463, 301 peonidin + 3 glucose + sinapic acid 993, 817, 787, 655, 625, 449, cyanidin + 3 glucose + ferulic acid + sinapic 1155 287 acid 1185 817, 655, 287 cyanidin + 3 glucose + 2 sinapic acid 1199 831, 669, 301 peonidin + 3 glucose + 2 sinapic acid 1347 1185, 979, 817, 655, 449, 287 cyanidin + 4 glucose + 2 sinapic acid 1347, 1141, 979, 817, 449, 1509 cyanidin + 5 glucose + 2 sinapic acid 287 7 451 433, 395 Vitisin A-pyranopelargonidin + 2 glucose 663 339 or 5-mehtylpyranopeonidin + 2 glucose peonidin + 2 glucose + sinapic acid 801 301, 271 and pelargonidin + 2 glucose + sinapic acid 831 625, 463, 301 peonidin + 2 glucose + sinapic acid vitisin B-type pyranopeonidin + 2 glucose + sinapic acid 853? 855 325 or 5-methylpyranocyanidin + 2 glucose + sinapic acid 817 449, 287 cyanidin + 2 glucose + sinapic acid

6

vitisin B-type pyranopeonidin + 3 glucose + sinapic acid 1017 855, 487, 325 or 5-methylpyranocyanidin + 3 glucose + sinapic acid cyanidin + 3 glucose + sinapic acid + ferulic 1155 817, 787, 655, 625, 449, 287 acid 1185 817, 655, 449, 287 cyanidin + 3 glucose + 2 sinapic acid 1347 1185, 979, 817, 655, 449, 287 cyanidin + 4 glucose + 2 sinapic acid vitisin B-type pyranopeonidin + 5 glucose + 2 sinapic acid 1547 1179, 855, 487, 325 or 5-methylpyranocyanidin + 5 glucose + 2 sinapic acid 1553, 1347, 1185, 1023, 817, 1715 cyanidin + 5 glucose + 3 sinapic acid 449, 287 8 451 433, 395, 377, 331 malvidin + ? 466 448, 309 5-methylpyranopelargonidin + ??? 637 581, 525 652 523, 505, 487 801 463, 301 peonidin + 2 glucose + ferulic acid 831 669, 463, 301 peonidin + 2 glucose + sinapic acid vitisin B-type pyranopeonidin + 3 glucose + sinapic acid 1017 487, 325 or 5-methylpyranocyanidin + 3 glucose + sinapic acid Vitisin A-pyranopelargonidin + 3 glucose + sinapic acid 1031 869, 339 5-methylpyranopeonidin + 3 glucose + sinapic acid 1347 1185, 979, 817, 655, 449, 287 cyanidin + 4 glucose + 2 sinapic acid 1347, 1141, 817, 611, 449, 1509 cyanidin + 5 glucose + 2 sinapic acid 287 1523, 1317, 993, 817, 655, cyanidin + 5 glucose + 2 sinapic acid + 1685 449, 287 ferulic acid 9 Vitisin A-pyranopeonidin+ ?? 483 386, 369 5-methylpyranomalvidin 511 414, 397 595 466, 448, 309 5-methylpyranopelargonidin 679 vitisin B-type pyranopeonidin + 2 glucose + sinapic acid 855 487, 325 or 5-methylpyranocyanidin + 2 glucose + sinapic acid vitisin B-type pyranopeonidin + 3 glucose + sinapic acid 1017 855, 487, 325 or 5-methylpyranocyanidin + 3 glucose + sinapic acid caftaric acid- + ? 1039 925, 715, 627 or fertaric acid- + ?

7

Vitisin A-pyranopelargonidin + 4 glucose + 2 sinapic acid 1399 1031, 707, 339 5-methylpyranopeonidin + 4 glucose + 2 sinapic acid 10 5-methylpyranomalvidin 483 386, 369, 330 or Vitisin A-type pyranopeonidin 511 397, 358, 340 ?? 637 581, 525 ?? 680 423, 233 vitisin B-type pyranopeonidin + 2 glucose + ferulic acid 825 663, 487, 325 or 5-methylpyranocyanidin + 2 glucose + ferulic acid vitisin B-type pyranopeonidin + 2 glucose + sinapic acid 855 693, 487, 325 or 5-methylpyranocyanidin + 2 glucose + sinapic acid Vitisin A-pyranopelargonidin + 2 glucose + sinapic acid 869 339 5-mehtylpyranopeonidin + 2 glucose + sinapic acid Vitisin A-pyranopelargonidin + 2 glucose + ferulic acid 841 339 5-mehtylpyranopeonidin + 2 glucose + ferulic acid 1185 817, 655, 449, 287 cyanidin + 3 glucose + 2 sinapic acid

8

Table S2

Structure indices Assigned values αH 1 αOGal,βH 2 αOH,βH 3 βH 4 βOGal,αH 5 βOH,αH 6 H 7 H,H 8 null 9 OGlu 10 OH 11 OMe 12 OO 13

9

Supplemental file – FT-Raman spectra of 28 bioflavonoid standards.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37