Verdu Layout

Total Page:16

File Type:pdf, Size:1020Kb

Verdu Layout ENERGY-AWARE AD HOC WIRELESS NETWORKS RECENT RESULTS ON THE CAPACITY OF WIDEBAND CHANNELS IN THE LOW-POWER REGIME SERGIO VERDU, PRINCETON UNIVERSITY β ABSTRACT three primary performance parameters, band- 6 width, power, and data rate (bits per second), This article gives a brief overview of recent must respect the fundamental information theo- 5 results on the limits of reliable communication in retic limit characterized by the region of achiev- the low-power wideband regime from the stand- able spectral efficiency (data rate divided by 4 point of information theory. Results on channel bandwidth) and energy per bit (power divided by (b/s/Hz) capacity and optimum signaling are reviewed for data rate). In information theory, the “wide- 3 both point-to-point channels and multiuser chan- band” communication regime refers to the Spectral efficiency 2 nels. region in the maximal spectral efficiency vs. energy per bit curve where the spectral efficiency 1 INTRODUCTION is low. Consequently, highly spectrally efficient broadband channels with high signal-to-noise The technology of wideband communication is ratio (SNR) lie outside the scope of our review. –2.5 0 2.5 gaining ground in applications such as wireless The main driving forces behind the interest in personal communications, satellite, and sensor wideband communications are: The tradeoff of networks. • Ability to transmit at an energy per informa- The interest in wideband channels was tion bit close to the minimum spectral efficiency vs. spurred mid-20th century by the antijamming • Diversity against frequency-selective fading capabilities of spread spectrum gained at the • Ease of multiplexing/multiaccess energy-per expense of spectral inefficiency. Ever since the • Ability to coexist with other systems using the 1960s, power-limited deep space communication same band information bit is the has emerged as one of the main beneficiaries of Technological advances in very large scale advances in binary error correcting coding tech- integration (VLSI), error control coding, signal key measure of the nology, as exemplified most notably by convolu- processing, and synchronization make informa- tional, turbo, and low-density parity check codes. tion-theoretic fundamental limits on channel capacity of channels The success of direct-sequence spread-spectrum capacity increasingly relevant to communications code-division multiple access (CDMA)-based engineering. The low spectral efficiency typical of in the power-limited second-generation wireless telephony, developed wideband systems does not imply that the com- in the late 1980s, led a decade later to the adop- munication is wasteful of channel resources or regime. Many tion of CDMA (in a wider-band format) for that the system operates far from channel capaci- third-generation wireless personal communica- ty. It all depends on how far from the fundamen- important communi- tions [1, 2]. Recently, two major high-speed tal trade-off of spectral efficiency vs. energy per wireless systems based on orthogonal multiplex- bit the system operates. Furthermore, in multius- cation channels ing coupled with spread-spectrum countermea- er channels, the spectral efficiency achieved by sures against out-of-cell interference have been any one user may be small but the sum of the operate in the region developed: time-division multiple access data rates may actually be near capacity. (TDMA)/direct sequence [3] and orthogonal fre- Although the capacity of wideband channels of low spectral quency-division multiple access (OFDMA)/fre- has been studied since the inception of informa- quency hopping [4]. The increasingly popular tion theory, the last few years have seen a flurry efficiency in which is unlicensed industrial, scientific, and medical of activity in the field leading to a body of results bands are devoted to low-power spread-spec- with interesting practical implications. The pur- close to its minimum trum systems. Other examples of wideband chan- pose of this article is to give a brief overview of nels receiving increasing attention are low-power those recent information theoretic results on the value for reliable low-data-rate sensor networks envisioned for capacity of wideband channels.1 Major issues of future civilian and military applications, and interest in this context are communication in the transmission. communication based on ultra-wideband pulses low-power regime (i.e., near minimum energy (spanning from DC to gigahertz). per bit), spread-spectrum multi-access, the effect For reliable communication, the choice of the of fading, optimum signaling, and power control. 40 1070-9916/02/$17.00 © 2002 IEEE IEEE Wireless Communications • August 2002 THE LOW POWER REGIME 0.2 From Shannon’s 1948 formula for the capacity of AWGN the ideal bandlimited additive white noise chan- 0.18 nel, it follows that the received energy per bit 0.16 (ratio of power to data rate) divided by the one- sided noise spectral level N0 required to achieve 0.14 spectral efficiency equal to C b/s/Hz is given by 0.12 Rayleigh Rayleigh known channel unknown channel ErC21− b ()C = . (1) 0.1 N0 C 0.08 As the bandwidth grows and the spectral effi- ciency vanishes, C→ 0, it can be seen from Eq. 1 0.06 that the minimum received energy necessary to Spectral efficiency (b/s/Hz) transmit 1 bit of information reliably (by means of 0.04 channel codes with growing blocklength) satisfies 0.02 Er b ==−ln2159 .dB . 0 (2) –2 1.59–1 0 1 2 3 4 N0 min Eb/N0 (dB) Operation at very small SNR per degree of I freedom allows maintaining Eb/N0 close to its Figure 1. Spectral efficiency of the AWGN channel and the Rayleigh flat fad- minimum value at the expense of low (but nonze- ing channel with and without receiver knowledge of fading coefficients. ro) spectral efficiency (bits per second per hertz). Subsequent work in the 1960s showed that Eq. 2 is not only a feature of the ideal band-limited If the receiver knows the fading coefficients additive white noise channel, but also holds when and coherent communication is feasible, quadra- the channel is subject to frequency-flat fading, ture phase shift keying (QPSK) has been shown even if the fading coefficients are unknown at the [6] to attain optimal spectral efficiency in the receiver [5]. It has been shown recently [6] that wideband regime, whereas in those conditions on- Eq. 2 is actually a feature of any fading channel off signaling is distinctly suboptimal, requiring as long as the background noise is Gaussian. It is more than six times the minimum bandwidth. The indeed possible to obtain a lower value of minimum bandwidth turns out to be proportional 2 r to the kurtosis of the fading amplitude distribu- Eb tion [6]. Thus, Rayleigh fading requires twice the N0 min bandwidth required in the absence of fading, and the bandwidth required with log-normal fading if the additive noise is non-Gaussian [6, 7]. grows exponentially with the dB variance. Up until recently, the only information-theo- In the noncoherent regime where the channel retic guidance on the capabilities of wideband is not fully known at the receiver, attaining chan- communication was offered by the infinite band- nel capacity at low power requires flash signal- width capacity (or equivalently, minimum energy ing, an asymptotic form of on-off signaling where per bit) results (e.g., [5–8]). In particular, [7] the on level has unbounded energy and the duty gives a formula computable even in cases where cycle is vanishingly small [6]. Furthermore, the the Shannon capacity is unknown. It is natural to lack of precise knowledge of channel coefficients extrapolate information-theoretic results makes operation near obtained for the infinite bandwidth (zero spec- r tral efficiency) regime to the wideband regime. Eb This leads to conclusions such as: N0 min • Wideband capacity is not affected by fading. • Receiver knowledge of fading coefficients can- prohibitively expensive in terms of bandwidth not increase capacity, and consequently there is and complexity. no capacity loss due to noncoherent reception. Figure 1 compares the spectral efficiency of • On-off signaling such as pulse position modu- the unfaded (additive white Gaussian noise) lation is near optimal. channel with the spectral efficiency of the However, it has been shown recently [6] that Rayleigh channel in the wideband regime. If the these conclusions are unwarranted. The crucial channel coefficients are known at the receiver, it point is that operation in the regime of low spec- can be seen that the slope of the spectral effi- tral efficiency does not imply disregard for the ciency curve is half of that in the unfaded case. bandwidth required by the system. On the con- If the channel coefficients are unknown at the trary, with the possible exception of ultra wide- receiver [9], despite what may appear from Fig. band pulse communication, given a certain 1, Eq. 2 still holds. However, the slope is equal 1 Seventy percent of the power and data rate, it is of interest to minimize to zero, and nonnegligible spectral efficiency references in this article the required bandwidth (to the extent allowed by requires much higher levels of energy per bit. have appeared within the the given complexity constraints). Even if we One of the conclusions drawn from the results last three years. operate at an energy per bit close to Eq. 2, the of [6] is that the traditional paradigm of the voice- bandwidth required to achieve a given data rate band telephone channel that maximizes data rate 2 Fourth moment divided turns out to be very sensitive to receiver side for given power and bandwidth may be an invita- by second moment information and to the nature of the fading. tion to inefficient design in the wideband regime. squared. IEEE Wireless Communications • August 2002 41 From the standpoint A more sensible approach is to minimize band- Since the pioneering information-theoretic width for a given rate and power.
Recommended publications
  • 1St IEEE 5G World Forum
    1st IEEE 5G World Forum Roadmap Applications & Services Workgroup: 5G is Power Starved Brian Zahnstecher, Principal, IEEE Senior Member Chair, SF Bay IEEE Power Electronics Society (PELS) Power Content Owner, IEEE 5G Initiative Roadmap, Application Services Workgroup Co-chair, IEEE 5G Initiative Webinar Chair, IEEE 5G Energy Efficiency Tutorial [email protected] +1 (508) 847-5747 PowerRox™ www.powerrox.com Twitter: @PowerRoxLLC LinkedIn: www.linkedin.com/in/zahnstecher Monday, July 9, 2018 DISCLAIMER There is neither any sponsored promotion nor bias toward any of the products/organizations mentioned in this tutorial. Any vendor-specific content is provided for example purposes only. 2 ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT. OVERVIEW • Marketing Projections Vs. Reality • What is the power gap? • Power Sources Vs. Loads • Making the Projections a Reality • Summary / Conclusions 3 ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT. Market Projections Vs. Reality • Network Usage Projections . How do these translate to load projections? . Which components ARE Moore’s Law Like? o Which are NOT? 54% YoY growth!!! IMAGES CREDIT: "Ericsson Mobility Report 2018," Ericsson, June 2018. 4 ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT. Market Projections Vs. Reality • Network Usage Projections . How will shifts in global usage markets impact the availability of power? . Is WW power projected to grow on the same trajectory? IMAGES CREDIT: "Estimated U.S. Energy Net Generation 1950-2018," US EIA, July 2018. IMAGES CREDIT: "Ericsson Mobility Report 2018," Ericsson, June 2018. 5 ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.
    [Show full text]
  • International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-5, January 2020
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-5, January 2020 5G Massive Multiple Input and Multiple Output System with Maximum Spectral Performance N C A Boovarahan, K. Umapathy channel fading function isn't always clearly exploited. Abstract: Massive MIMO is the presently maximum compelling Various subcarrier [15-18]choice techniques are sub-6 GHz physical-layer era for destiny wireless access. Excellent mentioned by manner of dividing the spectrum allocation spectral overall performance finished through manner of spatial techniques in broad classes i.e. Single channel allocation and multiplexing of many terminals inside the equal time-frequency resource. The 5G structures are characterized through excessive group of channel allocation. The SCS-MC-CDMA device transmission records prices, 1Gbps and above, so large bandwidth allocates to every person and selected a wide form of transmission is expected. The most vital objectives within the 5G sub-vendors [16]. wireless systems design is to deal with the excessive inter photograph interference (ISI) as a consequence of the high II. SUB CHANNEL SELECTION ALGORITHM & statistics fees, and using the accessible spectral bandwidth in MAXIMUM THROUGHPUT resourceful way.MC-CDMA is categorized in to two methods that is ODFM and CDMA. Efficient useful resource allocation is the The main end result of our paper shows that the Eigen principle trouble within the development of fourth generation values of the correlation matrix of the effective channel can be cellular communication systems. For utilizing the internet and properly approximated via sampling values of the multimedia a maximum data fee is preferred, so in this paper the general performance of MC-CDMA systems the usage of Sylow autocorrelation of the time-varying transfer function.
    [Show full text]
  • First Year First Semester
    First year First Semester. ET/Hum/T/A/111 HUMANITIES-A 4 Pds/Wk Credit 4 English - 2 Pds/week - 50 Marks Sociology - 2 Pds/week - 50 Marks HUMANITIES 1. Basic writing skills 2. Report, Covering Letter & Curriculum-Vitae writing 3. Reading and Comprehension 4. Selected Short Stories Text Book: ENGLISH FOR ALL SOCIOLOGY 1. Sociology: nature and scope of sociology - sociology and other social sciences - sociological perspectives and explanation of social issues 2. Society and technology: impact of technology on the society - a case study 3. Social stratification: systems of social stratification - determinants of social stratification - functionalist, conflict and elitist perspectives on social stratification 4. Work: meaning and experience of work: postindustrial society- post-fordism and the flexible firm 5. Development - conceptions of and approaches to development - the roles of state and the market in the development 6. Globalization: the concept of globalization - globalization and the nation state - development and globalization in post colonial times. 7. Industrial policy and technological change in india - the nature and role of the state in India 8. Technology transfer: the concept and types of technology transfer-dynamics of technology transfer 9. Technology assessment: the concept - steps involved in technology assessment 10. Environment: sociological perspectives on environment - environmental tradition and values in ancient india 11. The development of management: scientific management - organic organization - net work organization - post modern organization - debureaucratization - transformation of management 12. Technological problems and the modern society: selected case studies – electric power crisis, industrial and/or environmental disaster, or nuclear accident ET/T/112 PHYSICAL ELECTRONICS 3 Pds/Wk Credit 3 Crystal structure: periodic arrays of atoms, fundamental type of lattices, crystal direction & planes.
    [Show full text]
  • Mc/Ds-Cdma Versus Sc/Ds-Cdma in Mobile Radio: Spectral Efficiency Approach
    WSEAS TRANSACTIONS on COMMUNICATIONS P. Varzakas MC/DS-CDMA VERSUS SC/DS-CDMA IN MOBILE RADIO: SPECTRAL EFFICIENCY APPROACH P.Varzakas Department of Electronics Technological Educational Institute of Lamia 3o Km Old Road Lamia-Athens, GR 35100, Lamia e-mail: [email protected] Abstract—The spectral efficiency of a multicarrier direct-sequence code-division multiple-access (MC/DS-CDMA) cellular system operating in a mobile radio environment with Rayleigh fading, is investigated. In this work, spectral efficiency is evaluated in terms of channel capacity (in the Shannon sense) per user, estimated in an average sense. It is analytically shown that, under normalized condi- tions and assuming a static model of operation, MC/DS-CDMA spectral efficiency, on downlink, is higher than that of single-carrier direct-sequence code-division multiple-access (SC/DS-CDMA). This result is justified by the combination of path-diversity reception, achieved by a conventional coherent maximal-ratio combining (MRC) RAKE receiver, and physical frequency diversity potential provided, in a fading environment, by frequency-division multiplexing on a set of orthogonal carriers. It is shown that the increase of the carrier frequencies, in the MC/DS-CDMA cellular system, leads to a respective improvement of the spectral efficiency achieved. Key-Words:-Spectral efficiency, multicarrier modulation, code-division multiple access, cellular sys- tems. 1 Introduction can also be estimated in an average sense while its degradation is anticipated to a certain degree by uti- In the literature, there has been a growing inter- lizing some kind of diversity reception technique, est in broadband transmission over time-variant [3, 4].
    [Show full text]
  • School of Engineering & Technology B. Tech Electronics And
    DG 1/2 New Town, Kolkata – 700156 www.snuniv.ac.in School of Engineering & Technology B. Tech Electronics and Communication Engineering Credit Definition Duration Type (in Hour) Credit Lecture (L) 1 1 Tutorial (T) 1 1 Practical (P) 2 1 Total Credit Year Semester hrs./Week Credit 1st 31 25 1st 2nd 31 25 3rd 27 23 2nd 4th 28 23 5th 25 21 3rd 6th 24 21 7th 21 17 4th 8th 19 17 Total 172 Category Codification with Credit Break up Definition of Category Code No Credit Basic Science BS 1 21 Engineering Science ES 2 32 Professional Core PC 3 48 Professional Elective (Discipline Specific) PE 4 21 Open Elective (General Elective) OE 5 12 Humanities & Social Science including Management HSM 6 7 Project Work / Seminar / Internship / Entrepreneurship PSE 7 19 Mandatory / University Specified (Environmental Sc. / Induction Training MUS 8 / Indian Constitution / Foreign language) 12 Total 172 Page 1 of 66 DG 1/2 New Town, Kolkata – 700156 www.snuniv.ac.in School of Engineering & Technology B. Tech Electronics and Communication Engineering Category wise Credit Distribution Subject Codification 1 X X X X X X 11 If “Type” = 3, then 1 – Seminar, 2 Course No – project, 3 – Internship/Entrepreneurship, 4 - Type Department Semester (1..8) Viva Code 1 – L/L+T, 2 – L+P, 3 – Sessional, 4 – P/Workshop Category Degree 1 – BS, 2 – ES, 3 – PC, 4 – PE, 5 – OE, 6 – HSM, 7 – PSE, 8 – MUS 1 – B.Tech 2 – M.Tech 3 – PhD Page 2 of 66 DG 1/2 New Town, Kolkata – 700156 www.snuniv.ac.in School of Engineering & Technology B.
    [Show full text]
  • Dongning Guo Curriculum Vitae
    Dongning Guo Curriculum Vitae Contact Department of Electrical & Computer Engineering Northwestern University 2145 Sheridan Rd., Evanston, IL 60208 Tel: +1-847-491-3056 Fax: +1-847-491-4455 Email: [email protected] http://users.ece.northwestern.edu/∼dguo Research Interests Blockchain technologies, wireless communications, information theory, com- munication networks, and machine learning. Employment 9/2020–present Professor (by courtesy) Department of Computer Science Northwestern University, Evanston, IL, USA. 9/2015–present Professor Department of Electrical & Computer Engineering Northwestern University, Evanston, IL, USA. 9/2010–8/2015 Associate Professor Department of Electrical Engineering & Computer Science Northwestern University, Evanston, IL, USA. 9/2004–8/2010 Assistant Professor Department of Electrical Engineering & Computer Science Northwestern University, Evanston, IL, USA. 7/2014–6/2015 Visiting Scientist (courtesy appointment) Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA, USA. 3/2011–8/2011 Consultant New Jersey Research & Development Center, Qualcomm Inc., Bridgewater, NJ, USA. 10/2010–2/2011 Visiting Professor Institute of Network Coding Chinese University of Hong Kong, China. 8/2006–9/2006 Visiting Professor 1 Department of Electronics & Telecommunications Norwegian University of Science & Technology, Trondheim, Norway. 2/1998–8/1999 Research & Development Engineer Centre for Wireless Communications (now the Institute for Infocomm Re- search), Singapore. Education Ph.D., Electrical Engineering, 2004 Princeton University, Princeton, NJ. Thesis: Gaussian Channels: Information, Estimation and Multiuser Detection Adviser: Sergio Verdu´ Committee: Sergio Verdu,´ Shlomo Shamai, H. Vincent Poor, Robert Calder- bank, Mung Chiang. M.A., Electrical Engineering, 2001 Princeton University, Princeton, NJ. M.Eng., Electrical Engineering, 1999 National University of Singapore, Singapore. Thesis: Linear Parallel Interference Cancellation in CDMA Adviser: Lars K.
    [Show full text]
  • The Pennsylvania State University the Graduate School
    The Pennsylvania State University The Graduate School OUTAGE PROBABILITY AND TRANSMITTER POWER ALLOCATION FOR NC-BASED COOPERATIVE NETWORKS OVER NAKAGAMI-M FADING CHANNEL A Thesis in Electrical Engineering by Yi-Lin Sung c 2014 Yi-Lin Sung Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 The thesis of Yi-Lin Sung was reviewed and approved∗ by the following: Sedig S. Agili Associate Professor, Department Head of Electrical Engineering Program Coordinator, Master of Science in Electrical Engineering Thesis Co-Advisor Aldo W. Morales Professor of Electrical Engineering Thesis Co-Advisor Robert Gray Associate Professor of Electrical Engineering ∗Signatures are on file in the Graduate School. Abstract In previous work, we proposed a modified network coding (NC) cooperation system based on complementary code (CC)-code division multiple access (CDMA) tech- nique. This technique not only consumes fewer time slots in either synchronous or asynchronous transmission but also alleviates multi-path interference. In that system, a multiplier is used at the base station where the received signal is mul- tiplied with redundant signals coming from the relays, rather than performing a binary sum operation in the media access control (MAC) layer, which is normally used in traditional network coding. In this thesis, a further investigation is car- ried out in the proposed system in terms of outage probability and transmitter power allocation. Outage probability was obtained by setting some conditions on a modified mutual information equation. In addition, using the max-min opti- mization method, the optimal power allocation was obtained. Simulation results show that the proposed NC-based cooperative system reduces the overall system outage probability and provides a better transmitter power allocation as compared to the traditional cooperative communication system.
    [Show full text]
  • PG-Curriculum (Structure and Course Contents) Electronics Engineering with Effect from July 2018
    PG-Curriculum (Structure and Course Contents) Electronics Engineering With effect from July 2018 Electronics and Communication Engineering Punjab Engineering College (Deemed to be University) Chandigarh PG Curriculum Structure Segment {Fractal system Sr. (each section of 0.5 Course Stream Course Name Credits No. Credits and 7 contact hours)} 1 2 3 4 5 6 Semester I Internet of Things 1.5 1. Soft Computing Machine Learning 1.5 Design of experiments and Design of experiments and research 2. 3 research methodology methodology 3. Program Core-I Advanced Communication Systems 3 4. Program Core-II Telecommunication Systems 3 Advanced Digital Signal Processing Program Microwave Integrated Circuit 1.5 Elective-I: E1 RF and Microwave MEMS-I FPGA and ASIC 5. Semiconductor Microwave Devices Program Digital Image Processing 1.5 Elective-II: E2 RF and Microwave MEMS-II FPGA Based System Design Engineering EM1: Fourier Transforms 1 6. Mathematics EM2: Numerical Methods 1 (EM) EM3: Optimization Techniques-II 1 Total Credits 18 1 Segment {Fractal system Sr. (each section of 0.5 Course Stream Course Name Credits No. Credits and 7 contact hours)} 1 2 3 4 5 6 Semester II Communication Skills (CS) 1.5 Soft Skills and 1. Management and Entrepreneurship(M)/IPR 1 Management Professional Ethics (PE) 0.5 Program Core 2. Optoelectronics 3 III Program Core- 3. Wireless Sensors Networks 3 IV Microcontroller Based Systems Semiconductor Device Modelling Program Thin Film Deposition and Device 1.5 Elective-III: E3 Fabrication-I Analog VLSI Circuit Design Coding Theory and Application 4. Digital VLSI Circuit Design Nano Electronic Devices Program Thin Film Deposition and Device 1.5 Elective-IV: E4 Fabrication-II Embedded Systems Open Elective 1 1.5 Neural Networks 5.
    [Show full text]
  • Spectral Efficiency Comparison of Ofdm and Mc-Cdma with Carrier Frequency Offset
    RADIOENGINEERING, VOL. 26, NO. 1, APRIL 2017 221 Spectral Efficiency Comparison of OFDM and MC-CDMA with Carrier Frequency Offset Junaid AHMED Dept. of Electrical Engineering, COMSATS Institute of Information Technology, Tarlai Kalan, 45550 Islamabad, Pakistan [email protected] Submitted March 4, 2016 / Accepted December 15, 2016 Abstract. Inter-carrier interference and multiple access ficiency degradation of MC-CDMA, in the presence of CFO, interference due to carrier frequency offset (CFO) are two over a frequency selective Rayleigh fading environment is major factors that deteriorate the performance of orthogonal studied in [10], [11]; a lower bound of spectral efficiency in frequency division multiple access (OFDMA) and multicar- the presence of asynchronous interferers is derived. Previous rier code division multiple access (MC-CDMA) in wireless research work on the performance of OFDMA in the presence communication. This paper presents a new mathematical of CFO has mostly focused on symbol/bit error rate [12–16]. analysis for spectral efficiency of OFDMA communication The analyses mostly use Gaussian or improved Gaussian ap- systems over a frequency selective Rayleigh fading environ- proximation, which are not accurate due to correlation in ment in the presence of multiple users. It also compares the frequency response of the adjacent subchannels, especially spectral efficiency performance of OFDMA and MC-CDMA at low bit error rates [17]. In [18–20], average capacity/ spec- at different load, signal-to-noise ratio, CFO and delay spread tral efficiency of OFDM with CFO in Rician and Rayleigh conditions. MC-CDMA is found to be more resilient to CFO fading environment is analyzed respectively.
    [Show full text]
  • Optimizing Spectral Efficiency in Multiwavelength Optical CDMA System Tung-Wah Frederick Chang, Student Member, IEEE, and Edward H
    1442 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 9, SEPTEMBER 2003 Optimizing Spectral Efficiency in Multiwavelength Optical CDMA System Tung-Wah Frederick Chang, Student Member, IEEE, and Edward H. Sargent, Member, IEEE Abstract—Prime codes are excellent candidates for use in multiwavelength optical code-division multiple-access (O-CDMA) systems. We show that in an O-CDMA system using two-dimen- sional single-pulse-per-row codes, a single choice of the number of wavelength channels can accommodate different numbers of users with maximal spectral efficiency. The optimum single-user-detec- tion spectral efficiency of the system can be reached using AND detection. A fixed-hardware network can readily be adapted in response to changes in the number of users and traffic load. Index Terms—Adaptive networks, optical code-division multiple access (O-CDMA), spectral efficiency, two-dimensional (2-D) codes. Fig. 1. An example of SPR prime code from [9]. In this case, x a S, v a S, and aPS. is a time duration of a chip. I. INTRODUCTION PTICAL code-division multiple access (O-CDMA) has In this letter, we explore the effect of distribution of band- attracted attention for over a decade [1]–[3]. While the O width between the temporal and wavelength/spatial domains on vast bandwidth of the optical fiber medium provides high-speed the spectral efficiency of the system. Next, we investigate the point-to-point data transmission, the CDMA scheme facilitates effect of detection method on the achieved spectral efficiency random access to the channel in a bursty traffic environment. of the system.
    [Show full text]
  • Télécom Paris (ENST) Institut Eurécom THESE Souad Guemghar
    T´el´ecom Paris (ENST) Institut Eur´ecom THESE Pr´esent´ee pour Obtenir le Grade de Docteur de l'Ecole Nationale Sup´erieure des T´el´ecommunications Sp´ecialit´e: Communication et Electronique Souad Guemghar Techniques de Codage Avanc´ees et Applications au CDMA Pr´esident P. Sol´e, I3S (Sophia Antipolis, France) Rapporteurs E. Biglieri, Politecnico de Torino (Turin, Italie) J. Boutros, ENST (Paris, France) Examinateurs A. Glavieux, ENST Bretagne (Brest, France) A. Roumy, IRISA (Rennes, France) Directeur de th`ese G. Caire, Institut Eur´ecom (Sophia Antipolis, France) 29 Janvier 2004 T´el´ecom Paris (ENST) Institut Eur´ecom THESIS In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy from Ecole Nationale Sup´erieure des T´el´ecommunications Specializing: Communication and Electronics Souad Guemghar Advanced Coding Techniques and Applications to CDMA President P. Sol´e, I3S (Sophia Antipolis, France) Readers E. Biglieri, Politecnico de Torino (Torino, Italy) J. Boutros, ENST (Paris, France) Examiners A. Glavieux, ENST Bretagne (Brest, France) A. Roumy, IRISA (Rennes, France) Thesis supervisor G. Caire, Institut Eur´ecom (Sophia Antipolis, France) January 29th 2004 A mes parents, ma soeur et mon mari Remerciements Mon travail de th`ese est maintenant presque arriv´e a` sa fin et c'est le moment d'exprimer ma gratitude et mes remerciements envers certaines personnes. Tout d'abord, je remercie mon directeur de th`ese Giuseppe Caire de m'avoir donn´e l'occasion de faire cette th`ese qui constitue une exp´erience extr^emement enrichissante sur plusieurs plans. Il a souvent eu de brillantes id´ees de recherche, ce qui m'a fait explorer plusieurs domaines diff´erents.
    [Show full text]
  • Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)
    Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) Course Contents (Syllabus) for Third Year B. Tech. (Electronics Engineering) Sem – V to VI AY 2020-21 Professional Core (Theory) Title of the Course: 4EN 301 Digital Signal Processing L T P Cr 3 0 0 3 Pre-Requisite Courses: Signals and Systems Textbooks: 1. “Digital Signal Processing: A Computer Based Approach”, Sanjit K. Mitra, 4th Edition, Tata McGraw-Hill Publication. 2. “Discrete Time Signal Processing”, Oppenheim & Schafer,2nd Edition, Pearson education. References: 1. “Digital Signal Processing”, J. G. Proakis, Prentice Hall India Course Objectives : 1. To illustrate the fundamental concepts of Signal Processing. 2. To explain the different techniques for design of filters and multirate systems. 3. To enable the students for the design and development of DSP systems. Course Learning Outcomes: CO After the completion of the course the student should be able Bloom’s Cognitive to level Descriptor CO1 Solve Discrete Fourier Transform in efficient manner III Apply CO2 Analyze the structures for Discrete Time systems IV Classify CO3 Design the FIR, IIR Digital Filters for given specifications. VI Create CO4 Describe the fundamentals of Multirate DSP and Wavelet II Explain Transform CO-PO Mapping : 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 3 2 CO2 3 2 CO3 2 2 CO4 2 2 Assessments : Teacher Assessment: Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.
    [Show full text]