Teaching Abstraction to Novices: Pattern-Based and ADT-Based Problem-Solving Processes

Total Page:16

File Type:pdf, Size:1020Kb

Teaching Abstraction to Novices: Pattern-Based and ADT-Based Problem-Solving Processes Session F1C Teaching Abstraction to Novices: Pattern-Based and ADT-Based Problem-Solving Processes Bruria Haberman and Orna Muller [email protected], [email protected] Abstract - Abstraction is taught to computer-science and, furthermore, in identifying which tasks should be students as part of a comprehensive curriculum. The performed when dealing with different abstraction layers students encounter the concept of abstraction in various during various stages of solving a problem. Adequate contexts while learning the different modules, each of learning of abstraction by novices may enhance their which emphasizes some specific aspects of the concept. In problem-solving abilities. For example, reflection on the this paper we present two instructional approaches, both process, estimation of the product's quality, and reusability related to utilizing abstraction in problem-solving in future tasks, need to be part of the routine of learning, processes: (1) pattern-oriented instruction (POI), and (2) when utilizing abstraction tools [9]. abstract data type (ADT)-oriented instruction. We In this paper we present and compare two instructional present these methods with respect to their employment approaches, both related to utilizing abstraction in problem- in teaching problem solving to novices, and elaborate on solving processes: (1) pattern-oriented instruction (POI), and abstraction processes. (2) abstract data type (ADT)-oriented instruction. POI is a pedagogical approach by which patterns are Index Terms – Abstraction, algorithmic patterns, abstract incorporated in a CS1 course in order to support the learning data types, problem solving. of algorithmic problem solving. This approach highlights distinct, though interrelated, facets of abstraction processes INTRODUCTION in the course of algorithmic problem solving: Pattern Abstraction is a major recurring concept in computer science Recognition, Black-Boxing, and Structure Identification, all and is considered an important tool in software development. of which play important roles in analyzing and solving It is the process of generalizing by reducing the information algorithmic problems when using algorithmic patterns [14]. content of a concept, typically in order to retain only Abstract data types (ADTs) are considered as useful tools information that is relevant for a particular purpose for CS problem solving and knowledge representation [5]. Abstraction is associated with the following features: (a) The ADT-oriented instructional approach is based on generalization of specific examples; (b) identification, gradually introducing ADTs as flexible problem-solving extraction, and isolation of essential components, and (c) tools using evolving programming boxes [8]. This approach ignoring or holding back irrelevant details. In the context of illuminates three distinct, though interrelated, phases of the problem solving, we refer to different abstraction levels that ADT concept: Specification, Implementation, and Usage. It are associated with various stages of problem-solving is employed to teach problem-solving strategies and processes. Gaining expertise in problem solving means knowledge representation methods utilizing an abstraction- being able to identify which abstraction level is suitable for a based problem-solving conceptual model that entails particular stage, with regard to problem analysis, solution transitions between abstraction levels. design, and implementation. Studies show that experts and Section 2 presents each approach with respect to its novices differ in their abstracting, and generalizing abilities instructional goals, learning contexts, and its associated [7,11,15]. Educators recommend introducing the concept of conceptual problem-solving model. Section 3 presents, at a abstraction to CS students, starting in the early stages of glance, empirical findings of each approach in teaching their studies [1,4,5]. Actually, students encounter the problem-solving to novices, specifically relating to concept of abstraction in various contexts while learning abstraction processes. In section 4 some pedagogical different study modules and related problem-solving considerations are raised concerning the implication of techniques. Nevertheless, novices experience difficulties in teaching the same students according to both approaches in a utilizing abstraction processes and tools. Hence, it is way that will benefit enhancing students' problem-solving important that instructional design be oriented towards abilities. constructing an integrative, coherent perception of TEACHING ABSTRACTION - TWO APPROACHES abstraction. Students need to develop proficiency in choosing the In this section we present two approaches for teaching most suitable abstraction tool for solving a given problem abstraction to novices. Each approach is presented with 978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY 38th ASEE/IEEE Frontiers in Education Conference F1C-7 Session F1C respect to its goals, instructional model, learning contexts, Black boxes may be unfolded when composing a final and the associated conceptual problem-solving model. detailed solution to a given problem. Problems are usually constructed of more than one sub- I. Pattern Oriented Instruction problem, each of which is a problem in itself that includes a Pattern oriented instruction (POI) is a pedagogical approach task/goal and data. Structure identification is the process of that incorporates patterns in an introductory CS course. Its decomposing a problem into sub-tasks and identifying the main goal is to develop algorithmic problem solving skills. relations between them. It requires an abstractive view of a Algorithmic patterns refer to classification of recurring problem as a system composed of several interrelated algorithmic problems according to their goals (i.e., "Extreme components. It requires identifying the main task(s) and Value Computation", "Checking the existence of an item building a hierarchy between the various tasks; the hierarchy that satisfies a condition"). Patterns are examples of "expert establishes a timeline of a solution plan, and the flow of data solutions", and they serve as building blocks for developing between the sub-tasks. algorithms to solve new problems. According to the POI The guidelines for utilizing the POI approach stress approach, in teaching students how to program, the abstraction processes, and not merely "abstraction products" algorithmic problems introduced are organized around (i.e., following recipes for solutions): the search for patterns patterns and do not relate only to programming features (as develops pattern recognition skills; analyzing the way frequently occurs in an introductory course). subtasks are related in a solution develops the ability to Guidelines for incorporating a POI approach are as abstract and visualize the structure of a problem as a whole follows: A pattern is abstracted from analogous examples, and facilitates a proper representation of it; acquiring a and defining a pattern is a way of stating explicitly their repertoire of problem prototypes triggers an idea for a common features. The pattern's components and the solution. An inclusive purpose of learning according to the underlying ideas that are captured in a pattern are discussed. POI approach is to develop abstraction skills and the ability Links are drawn between different aspects of a pattern and to perform abstraction processes as a mental habit. its use since one needs to know when and how to use a II. ADT-Oriented Instruction pattern correctly. Typical applications, special cases of a pattern in different contexts, as well as its common misuses Use of abstract data types (ADTs) in problem-solving and are introduced. Problems are carefully sequenced so that knowledge representation is a dominant component of a CS their level of complexity will be gradually increased, in curriculum. An instructional approach to gradually introduce order to enhance assimilation and formation of cognitive ADTs as flexible problem-solving tools was developed [6,8]. schemas [12]. Compound problems are analyzed with The approach was employed to teach problem-solving respect to different ways several patterns may be combined strategies and knowledge representation methods in the in a solution. Students exercise the adjustment of patterns declarative logic programming paradigm (LP); however, it according to various constraints, and the evaluation of can be easily adapted to other programming paradigms. The different solutions to a problem with regard to efficiency and approach is based on the following conceptual model: elegancy considerations. The ADT-based problem-solving conceptual model: The POI approach attempts to encourage the use of abstraction during instruction and learning. We refer to three Our conceptual model of utilizing ADTs in problem-solving main processes: Pattern Recognition, Black-Boxing, and processes is compatible with the formal definition of the Structure Identification. The term Pattern (schema) ADT concept and includes the following stages [6,8]: Recognition applies to the process of revealing the essence • Conceptualization: Comprehending a given problem; of a problem while ignoring the specific context from which identifying the main ideas, concepts, entities, and the it emerges. Pattern recognition relates to the realization of relations among them; defining the main goals to be similarities between analogical problems. In the course
Recommended publications
  • Abstraction and the Origin of General Ideas with Broadly Nominalistic Scruples, While Others (E
    Philosophers’ volume 12, no. 19 1. Introduction 1 Imprint december 2012 Given their opposition to innate ideas, philosophers in the empiricist tradition have sought to explain how the rich and multifarious representational capacities that human beings possess derive from experience. A key explanatory strategy in this tradition, tracing back at least as far as John Locke’s An Essay Concerning Human Understanding, is to maintain that the acquisition of many of these Abstraction and the capacities can be accounted for by a process of abstraction. In fact, Locke himself claims in the Essay that abstraction is the source of all general ideas (1690/1975, II, xii, §1). Although Berkeley and Hume were highly critical of Locke, abstraction as a source of generality has Origin of General Ideas been a lasting theme in empiricist thought. Nearly a century after the publication of Locke’s Essay, for example, Thomas Reid, in his Essays on the Intellectual Powers of Man, claims that “we cannot generalize without some degree of abstraction…” (Reid 1785/2002, p. 365). And more than a century later, Bertrand Russell remarks in The Problems of Philosophy: “When we see a white patch, we are acquainted, in the first instance, with the particular patch; but by seeing many white patches, we easily learn to abstract the whiteness which they all have in common, and in learning to do this we are learning to be acquainted with whiteness” (Russell 1912, p. 101). Stephen Laurence Despite the importance of abstraction as a central empiricist University of Sheffield strategy for explaining the origin of general ideas, it has never been clear exactly how the process of abstraction is supposed to work.
    [Show full text]
  • Georgia O'keeffe Museum
    COLLABORATIVE ABSTRACTION Grades: K-12 SUMMARY: Georgia O’Keeffe is known for her abstract flowers, landscapes, architecture and the sky. She would find the most interesting lines and colors in the world around her and simplify nature down to a series of organic shapes and forms. In this fun and fast-paced lesson, students will consider the concept and process of abstraction, collaboratively creating a line drawing that will become an abstract painting. This lesson is meant to be flexible. Please adapt for the level of your students and your individual curriculum. GUIDING QUESTIONS: Pelvis Series, Red with Yellow, 1945 What is abstraction? Georgia O’Keeffe Oil on canvas MATERIALS: 36 1/8 x 48 1/8 (91.8 x 122.2) Extended loan, private collection (1997.03.04L) Watercolor paper © Georgia O’Keeffe Museum Watercolor paints Paint brushes Cups of water LEARNING OBJECTIVES: Students will… Closely observe, analyze and interpret one of Georgia O’Keeffe’s abstract paintings Define the word abstraction and how it relates to visual art Work together to make collaborative abstract line drawings Individually interpret their collaborative line drawings and create a successful final composition Present their final compositions to the class Accept peer feedback INSTRUCTION: Engage: (5 min) Ask students to sketch the shapes they see in Pelvis Series, Red and Yellow by Georgia O’Keeffe (attached or found at https://www.okeeffemuseum.org/education/teacher-resources/) and write a short paragraph on what they see in the painting and what they think might be happening in the painting. Compare notes as a class and share the title of the painting.
    [Show full text]
  • Choose the Appropriate Level of Abstraction
    SAGE Flex for Public Speaking Choose the Appropriate Level of Abstraction Brief: Using abstract words can make a concept easier to communicate, but it breaks the connection to the specific meaning that we want to convey. Learning Objective: Understand how to choose the appropriate level of abstraction. Key Terms: • Abstraction: The process of perceiving similarities from our direct, specific observations of things around us, organizing the similarities, and then assigning a word label for the more general concept. • Abstraction Ladder: A concept developed by communication theorist S.I. Hayakawa, who compared levels of abstraction to a ladder, with the most specific concept at the bottom rung and the most abstract concept at the top rung. What is Abstraction? One of the ways we can attempt to make difficult information easier to understand is to simplify our word choices. To make our words more general, we use a higher level of abstraction. Abstraction is the process of perceiving similarities from our direct, specific observations of things around us, organizing the similarities, and then assigning a word label for the more general concept. From Granny Smiths to Produce Apples, oranges, bananas, pears…. Imagine how time consuming and confusing it would be to name each of these ingredients every time you talked about a fruit salad. Thankfully, you can use the general term fruit when you describe this dish. Now, imagine you’re trying to direct someone where to find fruit in a supermarket. Instead of using the name for each individual fruit or the general category of fruit, you’ll probably suggest they look in the produce department.
    [Show full text]
  • Collective Intelligence of Human Conversational Text K
    ISSN 2394-3777 (Print) ISSN 2394-3785 (Online) Available online at www.ijartet.com International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. 3, Special Issue 20, April 2016 COLLECTIVE INTELLIGENCE OF HUMAN CONVERSATIONAL TEXT K. Bhuvaneswari Dr. K. Saravanan Research Scholar Research Advisor Department of Computer Science Dean, Academic Affairs PRIST University Department of Computer Science Thanjavur PRIST University, Thanjavur Abstract: Collective intelligence refers to the order to reveal themes relevant to collective intelligence. intelligence that emerges from local interactions Three levels of abstraction were identified in discussion among individual people. In the last few decades, web about the phenomenon: the micro-level, the macro-level 2.0 technologies have enabled new forms of collective and the level of emergence. Recurring themes in the intelligence that allow massive numbers of loosely literature were categorized under the abovementioned organized individuals to interact and create high framework and directions for future research were quality intellectual artefacts.Our analysis reveals a set identified. of research gaps in this area including the lack of focus on task oriented environments, the lack of sophisticated The selection of literature for this review methods to analyse the impact of group interaction follows the approach of Zott et al. (2011). A keyword process on each other, as well as the lack of focus on search was conducted on the Web of Knowledge on 7 the study of the impact of group interaction processes July 2011 using the keywords, collective intelligence and on participants over time. swarm intelligence. The searches produced 405 and 646 results, respectively.
    [Show full text]
  • The Politics of Abstraction: Race, Gender, and Slavery in the Poetry of William Blake
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2006 The Politics of Abstraction: Race, Gender, and Slavery in the Poetry of William Blake Edgar Cuthbert Gentle University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the English Language and Literature Commons Recommended Citation Gentle, Edgar Cuthbert, "The Politics of Abstraction: Race, Gender, and Slavery in the Poetry of William Blake. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/4508 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Edgar Cuthbert Gentle entitled "The Politics of Abstraction: Race, Gender, and Slavery in the Poetry of William Blake." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Arts, with a major in English. Nancy Goslee, Major Professor We have read this thesis and recommend its acceptance: ARRAY(0x7f6ff8e21fa0) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I amsubmitting herewith a thesis written by EdgarCuthbert Gentle entitled"The Politics of Abstraction: Race,Gender, and Slavery in the Poetryof WilliamBlake." I have examinedthe finalpaper copy of this thesis forform and content and recommend that it be acceptedin partialfulfillm ent of the requirements for the degree of Master of Arts, with a major in English.
    [Show full text]
  • The Value of Abstraction
    The Value of Abstraction Mark K. Ho David Abel Princeton University Brown University Thomas L. Griffiths Michael L. Littman Princeton University Brown University Agents that can make better use of computation, experience, time, and memory can solve a greater range of problems more effectively. A crucial ingredient for managing such finite resources is intelligently chosen abstract representations. But, how do abstractions facilitate problem solving under limited resources? What makes an abstraction useful? To answer such questions, we review several trends in recent reinforcement-learning research that provide in- sight into how abstractions interact with learning and decision making. During learning, ab- straction can guide exploration and generalization as well as facilitate efficient tradeoffs—e.g., time spent learning versus the quality of a solution. During computation, good abstractions provide simplified models for computation while also preserving relevant information about decision-theoretic quantities. These features of abstraction are not only key for scaling up artificial problem solving, but can also shed light on what pressures shape the use of abstract representations in humans and other organisms. Keywords: abstraction, reinforcement learning, bounded rationality, planning, problem solving, rational analysis Highlights Introduction • Agents with finite space, time, and data can benefit In spite of bounds on space, time, and data, people are from abstract representations. able to make good decisions in complex scenarios. What en- ables us to do so? And what might equip artificial systems to • Both humans and artificial agents rely on abstractions do the same? One essential ingredient for making complex to solve complex problems. problem solving tractable is a capacity for exploiting abstract representation.
    [Show full text]
  • Abstraction Functions
    Understanding an ADT implementation: Abstraction functions CSE 331 University of Washington Michael Ernst Review: Connecting specifications and implementations Representation invariant : Object → boolean Indicates whether a data structure is well-formed Only well-formed representations are meaningful Defines the set of valid values of the data structure Abstraction function : Object → abstract value What the data structure means (as an abstract value) How the data structure is to be interpreted How do you compute the inverse, abstract value → Object ? Abstraction function: rep → abstract value The abstraction function maps the concrete representation to the abstract value it represents AF: Object → abstract value AF(CharSet this) = { c | c is contained in this.elts } “set of Characters contained in this.elts” Typically not executable The abstraction function lets us reason about behavior from the client perspective Abstraction function and insert impl. Our real goal is to satisfy the specification of insert : // modifies: this // effects: this post = this pre U {c} public void insert (Character c); The AF tells us what the rep means (and lets us place the blame) AF(CharSet this) = { c | c is contained in this.elts } Consider a call to insert: On entry , the meaning is AF(this pre ) ≈ elts pre On exit , the meaning is AF(this post ) = AF(this pre ) U {encrypt('a')} What if we used this abstraction function? AF(this) = { c | encrypt(c) is contained in this.elts } = { decrypt(c) | c is contained in this.elts } Stack rep: int[] elements ;
    [Show full text]
  • Increasing Creativity in Design by Functional Abstraction
    Increasing creativity in design by functional abstraction Manavbir Sahani Honors Thesis Human-Computer Interaction David Kirsh Scott Klemmer Steven Dow Michael Allen (Primary Advisor) (Graduate Advisor) ABSTRACT Opinion is divided, and conflicting literature is found on With advancements in big data, designers now have access to whether and under what conditions do examples fixate or in- design tools and ideation platforms that make it easy for them spire. There are studies that show that there is a design fixation to review hundreds of examples of related designs. But how effect by viewing examples [2]. And there is literature that can designers best use these examples to come up with creative argues that showing examples leads to more creative designs and innovative solutions to design and engineering problems? [3]. The existence of both positive and negative effects make it Building off creative cognition literature, we present an ap- harder to judge if and how the exposure to examples increase proach to increase creativity in design by making people think productivity for designers [4]. This inconclusiveness and di- more abstractly about the functions of the product in their vide in opinion exists in architecture too. In some architectural design problem through morphological concept generation. schools, the review of previous designs, especially excellent We tested this mechanism with an experiment in which the ones, is thought to inhibit imagination, squelching creativity. treatment and control condition had the same design task with Viewing previous work primes the mind to duplicate the past, the same examples for the same amount of time. The results making it harder to think freshly, appropriating the problem supported our claim and showed that the treatment condition completely.
    [Show full text]
  • On the Necessity of Abstraction
    Available online at www.sciencedirect.com ScienceDirect On the necessity of abstraction George Konidaris A generally intelligent agent faces a dilemma: it requires a as if it is a natural part of the environment. That is complex sensorimotor space to be capable of solving a wide perfectly appropriate for a chess-playing agent, but it range of problems, but many tasks are only feasible given the finesses a problem that must be solved by a general- right problem-specific formulation. I argue that a necessary purpose AI. but understudied requirement for general intelligence is the ability to form task-specific abstract representations. I show Consider one particular general-purpose agent that that the reinforcement learning paradigm structures this reasonably approximates a human—a robot with a question into how to learn action abstractions and how to native sensorimotor space consisting of video input learn state abstractions, and discuss the field’s progress on and motor control output—and the chessboards shown these topics. in Figure 1. Those chessboards are actually perceived by the robot as high-resolution color images, and the Address only actions it can choose to execute are to actuate the Computer Science Department, Brown University, 115 Waterman Street, motors attached to its joints. A general-purpose robot Providence, RI 02906, United States cannot expect to be given an abstract representation suitable for playing chess, just as it cannot expect to be Corresponding author: Konidaris, George ([email protected]) given one that is appropriate for scheduling a flight, playing Go, juggling, driving cross-country, or compos- Current Opinion in Behavioral Sciences 2019, 29:xx-yy ing a sonnet.
    [Show full text]
  • Concrete and Specific Language
    CONCRETE AND SPECIFIC LANGUAGE Effective writers use and mix language at all levels of abstraction, so we must learn to use language on all levels. But first, it's important to understand what is meant by abstract and concrete language and also by general and specific language. In brief, we conceive the abstract though our mental processes and perceive the concrete through our senses. ■Abstract vs. Concrete Language Abstract words refer to intangible qualities, ideas, and concepts. These words indicate things we know only through our intellect, like "truth," "honor," "kindness," and "grace." Concrete words refer to tangible, qualities or characteristics, things we know through our senses. Words and phrases like "102 degrees," "obese Siamese cat," and "deep spruce green" are concrete. ABSTRACT: To excel in college, you’ll have to work hard. CONCRETE: To excel in college, you’ll need to do go to every class; do all your reading before you go; write several drafts of each paper; and review your notes for each class weekly. ■General vs. Specific Language General words refer to large classes and broad areas. "Sports teams," "jobs," and "video games" are general terms. Specific words designate particular items or individual cases, so "ISU Bengals," chemistry tutor," and "Halo" are specific terms. GENERAL: The student enjoyed the class. SPECIFIC: Kelly enjoyed Professor Sprout's 8:00 a.m. Herbology class. ■The Ladder of Abstraction Most words do not fall nicely into categories; they’re not always either abstract or concrete, general or specific. Moreover, the abstract and general often overlap, as do the concrete and specific.
    [Show full text]
  • 1990-Learning Abstraction Hierarchies for Problem Solving
    From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. Learning Abstraction Hierarchies for Problem Solving Craig A. Knoblock* School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 [email protected] Abstract consists of a set of operators with preconditions and ef- fects, and a problem to be solved, ALPINE reformulates The use of abstraction in problem solving is an this space into successively more abstract ones. Each effective approach to reducing search, but finding abstraction space is an approximation of the original good abstractions is a difficult problem, even for problem space (base space), formed by dropping lit- people. This paper identifies a criterion for se- erals in the domain. The system determines what to lecting useful abstractions, describes a tractable abstract based on the ordered monotonicity property. algorithm for generating them, and empirically This property separates out those features of the prob- demonstrates that the abstractions reduce search. lem that can be solved and then held invariant while The abstraction learner, called ALPINE, is inte- the remaining parts of the problem are solved. Since grated with the PRODIGY problem solver [Minton this property depends on the problem to be solved, et ab., 1989b, Carbonell et al., 19901 and has been ALPINE produces abstraction hierarchies that are tai- tested on large problem sets in multiple domains. lored to the individual problems. The paper is organized as follows. The next sec- Introduction tion defines the ordered monotonicity property. The third section describes the algorithm for generating ab- Hierarchical problem solving uses abstraction to re- straction hierarchies in ALPINE.
    [Show full text]
  • Conjoining Gestalt Rules for Abstraction of Architectural Drawings
    Conjoining Gestalt Rules for Abstraction of Architectural Drawings Liangliang Nan 1 Andrei Sharf Ke Xie1 Tien-Tsin Wong3 Oliver Deus sen" Daniel Cohen-Or5 Baoquan Chen1 1 SlAT 2 Ben Gurion Univ. 3 CUHK 4 Konstanz Univ. 5 Tel Aviv Univ. Figure 1: Simplification a/a cOlllplex cityscape line-drawing obtained [(sing o/./ /" Gestalt-based abstraction. Abstract those of architectural models. Our approach to abstracting shape directly aims to clarify shape and preserve meaningful structures We present a method for structural summari zation and abstraction using Gestalt principles. of complex spatial arrangements found in architectural draw in gs. Thc wdl-knllwn Gcstalt principles hy Wcrthciml:r rI 92:1 ], rdkct The method is based on the well -known Gestalt rules, which sum­ strategies of the human vi sual system to group objects into forms mari ze how form s, pattern s, and semantics are perceived by humans and create internal representations for them. Wheneve r groups of I"rOI11 hits and pi ccl:s 0 1" gl:o l11 l: tri c inl"ormati on. Although defining visual element have one or several characteristics in common, they a computational model for each rul e alone has been extensively s­ get grouped and form a new larger vi sual object - a gestalt. Psychol­ tudied, modeling a conjoint of Gestalt rules remains a challenge. ogists have tried to simulate and model these principles, by find in g In thi s work, we develop a computational framework which mod­ computational means to predict wh at human perceive as gestalts in els Gestalt rules and more importantly, their complex interaction­ images.
    [Show full text]