Nan U /\Ii Hotiji to a NEWS BULLETI N •V X S» W*A" P U B L I S H E D Q U a R T E R L Y B Y T H E N E W Z E a L a N D a N T a R C T I C S O C I E T Y ( I N C )
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC). -
Fln.Tflrcit.IC
flN.TflRCiT.IC A NEWS BULLETIN published quorterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) &S» Pause in history. New Zealand huskies from Scott Base rest outside Scott's hut at Cape Evans before resuming their journey up the lower slopes of Mt Erebus late in October. With the team is Con Faber, dog handler at Scott Base last winter. Photo by Colin Monteath Vol.9, No.4 wlmnKNew^ December, 1980 PGZMSP&GVEW1 SOUTH GEORGIA ".. SOUTH SANDWICH Is SOUTH ORKNEY Is ' \ *&2H ■ Sanae s a Noydlazarevskaya ussr 6Signy I.uk y\ //oOrcadas arg \ /^{ I Syowa sjapan \ K.E SOUTH AMERICA j/\ ff Borga I oo Molodezhnaya \y A- SOUTH t o N v r \ U S S R S \ SH€TIAN0>>. Wep0HMm,nmM ORONNING MAUD tANO• E N D E R B Y \ ) / ^ \ L A N D T V " \ Druhnayau s s r . ^^General J C * . ^Belgrano " " - »arc ^ > /\\ Mawson \ ANTARCTIC'7 MAC ROBERTSON LAND^ \ *ust \ /PENINSULA'* Sobldl ARG Davis aust ! U S A Amundsen-Scott I QUEEN MARY LAND 4Minry ELLSWORTH USA / ' ft USSR > LANO "'■ / ° V o s t o k u s s R / f t MARIE BYR0X^"Mi $Mf\<\ 1 L A N D / H F ^ r ^ ' WILKES LAND / R O S S | N Z ; s. / SEA I ■ 'VICTORIA .TERRE , LAND \/A0Etlt/> Uningradskaya ,-V' USSR,-' \ -"''BALIENYI$N ANTARCTIC PENINSULA 1 Tenimte Matienro arg 2 Esperarua arg 3 Almirante Brown arg 4 Petrel arg 5 Oectpcion arg 6 yictcomodoro Marambio arc » ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 500 1000 Milts 9 Presidente Frei chile 1000 Kilometres 10 Stonington I. -
Antarctic Treaty Handbook
Annex Proposed Renumbering of Antarctic Protected Areas Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted ‘Taylor Rookery 1 101 1992 Rookery Islands 2 102 1992 Ardery Island and Odbert Island 3 103 1992 Sabrina Island 4 104 Beaufort Island 5 105 Cape Crozier [redesignated as SSSI no.4] - - Cape Hallet 7 106 Dion Islands 8 107 Green Island 9 108 Byers Peninsula [redesignated as SSSI no. 6] - - Cape Shireff [redesignated as SSSI no. 32] - - Fildes Peninsula [redesignated as SSSI no.5] - - Moe Island 13 109 1995 Lynch Island 14 110 Southern Powell Island 15 111 1995 Coppermine Peninsula 16 112 Litchfield Island 17 113 North Coronation Island 18 114 Lagotellerie Island 19 115 New College Valley 20 116 1992 Avian Island (was SSSI no. 30) 21 117 ‘Cryptogram Ridge’ 22 118 Forlidas and Davis Valley Ponds 23 119 Pointe-Geologic Archipelago 24 120 1995 Cape Royds 1 121 Arrival Heights 2 122 Barwick Valley 3 123 Cape Crozier (was SPA no. 6) 4 124 Fildes Peninsula (was SPA no. 12) 5 125 Byers Peninsula (was SPA no. 10) 6 126 Haswell Island 7 127 Western Shore of Admiralty Bay 8 128 Rothera Point 9 129 Caughley Beach 10 116 1995 ‘Tramway Ridge’ 11 130 Canada Glacier 12 131 Potter Peninsula 13 132 Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted Harmony Point 14 133 Cierva Point 15 134 North-east Bailey Peninsula 16 135 Clark Peninsula 17 136 North-west White Island 18 137 Linnaeus Terrace 19 138 Biscoe Point 20 139 Parts of Deception Island 21 140 ‘Yukidori Valley’ 22 141 Svarthmaren 23 142 Summit of Mount Melbourne 24 118 ‘Marine Plain’ 25 143 Chile Bay 26 144 Port Foster 27 145 South Bay 28 146 Ablation Point 29 147 Avian Island [redesignated as SPA no. -
Flnitflrclid
flNiTflRClID A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) A New Zealand geochemist, Dr W. F. Giggenbach, descends into the inner crater of Mt Erebus on December 23 last year in an unsuccessful attempt to take gas samples. Behind him in the lava lake of the volcano where the temperature is 1000deg Celsius. On his rucksack he carries titanium gas sampling rods. Photo by Colin Monteath VOl. 8, NO. 1 1 . Wellington, New Zealand, as a magazine. o6pt61*11061% I 979I ' . SOUTH SANDWICH Is SOUTH GEORGIA f S O U T H O R K N E Y I s x \ *#****t ■ /o Orcadas arg \ - aanae s» Novolazarevskaya ussr XJ FALKLAND Is /*Signyl.uK ,,'\ V\60-W / -'' \ Syowa japan SOUTH AMERICA /'' /^ y Borga 7 s a "Molodezhnaya A SOUTH , .a /WEDDELL T\USSR SHETLAND DRONNING MAUD LAND ENOERBY \] / Halley Bay^ ununn n mMUU / I s 'SEA uk'v? COATS Ld LAND JJ Druzhnaya ^General Belgrano arg ANTARCTIC %V USSR *» -» /\ ^ Mawson MAC ROBERTSON LANO\ '■ aust /PENINSULA,' "*■ (see map below) /Sohral arg _ ■ = Davis aust /_Siple — USA Amundsen-Scott / queen MARY LAND gMirny [ELLSWORTH u s a / ; t h u s s i " LANO K / ° V o s t o k u s s r / k . MARIE BYRD > LAND WILKES LAND Scott kOSS|nzk SEA I ,*$V /VICTORIA TERRE ' •|Py»/ LAND AOEilE ,y Leningradskaya X' USSR,''' \ 1 3 -------"';BALLENYIs ANTARCTIC PENINSULA ^ v . : 1 Teniente Matienzo arg 2 Esperanza arc 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Presidents Frei chile * ? 500 1000 Kilometres 10 Stonington I. -
United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main -
Bulletin Vol. 13 No. 6 June 1994 Voilodvlnv Antarctic Vol
aniamcik Bulletin Vol. 13 No. 6 June 1994 VOIlOdVlNV Antarctic Vol. 13 No. 6 Issue No. 149 June 1994 Contents Polar New Zealand 226 Australia 238 France 240, 263 ANTARCTIC is published Germany 246 United Kingdom 249 quarterly by the New Zealand United States 252 Antarctic Society Inc., 1979 ISSN 0003-5327 Sub Antarctic See France Editor: Robin Ormerod Please address all editorial General inquiries, contributions etc to the: Editor, P.O. Box 2110, Able restored 269 Wellington N.Z. Antarctic Heritage Trusts 268 Telephone: (04) 4791.226 Antarctic Treaty 262 International: + 64 4 + 4791.226 Cape Roberts deferred 229 Fax: (04) 4791.185 Last dogs leave 249 International: + 64 4 + 4791.185 Emperors of Antarctica 264 Lockheed Contract 231 All NZ administrative enquiries Vanda Station 232 should go to the: National Secretary, P O. Box Obituaries 404, Christchurch All overseas administrative Dr Trevor Hatherton 271 enquiries should go to the: Overseas Secretary, P.O. Box Books 2110, Wellington, NZ Mind over Matter 274 Inquiries regarding back issues of Shadows over wasteland 276 Antarctic to P.O. Box 16485, Christchurch Cover: En route to the Emperor pen guin colony at Cape Crozier April 1992. \C) No part of this publication may be produced in any way without the prior permis sion of the publishers. Photo: Max Quinn ANTARCTIC June 1994 Vol.13 No. 6 New Zealand Successful airdrop breaks winter routine for 11 New Zealanders The midwinter airdrop took place in good conditions as scheduled on Tuesday June 21 and Thursday June 23. Each flight was undertaken by a Starlifter, refuelled en route by KC10 Extender, and crewed by up to 28 members from the selected team, some of whom came from 62nd Group McCord Airbase in the US. -
Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity
microorganisms Article Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity Pacifica Sommers 1,*, Dorota L. Porazinska 2 , John L. Darcy 3, Eli M. S. Gendron 2 , Lara Vimercati 1 , Adam J. Solon 1 and Steven K. Schmidt 1 1 Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA; [email protected] (L.V.); [email protected] (A.J.S.); [email protected] (S.K.S.) 2 Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA; dorotalp@ufl.edu (D.L.P.); [email protected] (E.M.S.G.) 3 Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; [email protected] * Correspondence: pacifi[email protected] Received: 15 October 2020; Accepted: 2 November 2020; Published: 7 November 2020 Abstract: The island species–area relationship (ISAR) is a positive association between the number of species and the area of an isolated, island-like habitat. ISARs are ubiquitous across domains of life, yet the processes generating ISARs remain poorly understood, particularly for microbes. Larger and more productive islands are hypothesized to have more species because they support larger populations of each species and thus reduce the probability of stochastic extinctions in small population sizes. Here, we disentangled the effects of “island” size and productivity on the ISAR of Antarctic cryoconite holes. We compared the species richness of bacteria and microbial eukaryotes on two glaciers that differ in their productivity across varying hole sizes. We found that cryoconite holes on the more productive Canada Glacier gained more species with increasing hole area than holes on the less productive Taylor Glacier. -
Volcanic Activity of Mount Erebus, 1981-1982
believe they are related to the depth, energy release, and mech- infrasound signals, the former representing explosions. There anism of various types of eruptions that are transitional be- is a tendency for the epicenter to scatter along an east-west tween the two end members, that is, between less violent gas trend across the summit of Mount Erebus, parallel to the emissions (roar, without explosive onset) and more violent, Erebus-Terra Nova-Terrror volcanic axis. This trend was also sharp explosions (bang, explosive onset). These source charac- observed in the previous season (1980-81) (Takanami et al. teristics are being investigated by the New Zealand and Jap- 1981). The data suggest that the feeder dike or dikes of the anese team members (e.g., Dibble 1981). Mount Erebus lava lake may have an east-west orientation. A positive correlation of signals seen on the figure-eight in- In summary, over the past 2 years we have observed a high duction loop with volcanic explosions has been noted. The level of very-small-magnitude earthquake activity associated origin of these signals could be twofold: (1) eruption of con- with volcanic processes near the summit of Mount Erebus. ducting magma or ionized gas in the Earths static magnetic Swarm-type activity is typical. An unresolved question is field, and (2) expansion of the area enclosed by the wire loop as whether or not the few events occurring on the outer flanks of the summit crater dilates during explosions. We do not know the Erebus volcano are truly tectonic or are icequakes. Fang yet which of these processes is more important. -
A.PMD Cover Photos
Cover Photos Top Photo This photo shows the launching of a tethered, helium-filled balloon attached to an instrument that measures the characteristics of water vapor at different altitudes above the South Pole. By attaching this instrument to a tethered balloon, the instrument can be sent to different altitudes and readily recovered. The building from which the tethered balloon and instrument are being launched in this photo is a temporary facility located adjacent to the Clean Air Sector boundary at the South Pole. The trench in front of this building provides a location for the balloon to be stored between launch periods. (Photo by Jeff Inglis) Bottom Photo This photo shows the launching of a balloon and accompanying ozone sonde from the VXE-6 platform at McMurdo Station. The balloon-borne measurements provide good methods to measure the detailed altitude structure of ozone and Polar Stratospheric Clouds (PSCs) from the ground up to the lower stratosphere, where the bulk of ozone exists and where PSCs form. (Photo by Ginny Figlar) This Science Planning Summary publication was prepared by the Science Support Division of Raytheon Polar Services Company Under contract to the National Science Foundation OPP-0000373 Foreword This United States Antarctic Program (USAP) Science Planning Sum- mary contains a synopsis of the 2000-2001 season (i.e., from mid-August 2000 to mid-August 2001) for the USAP. This publication is a preseason summary (i.e., prior to the 2000-2001 austral-summer season); it contains the current information available as of early September 2000. Some of this information may change throughout the austral summer and winter-over periods as project planning evolves. -
Airborne Laser Swath Mapping of the Summit of Erebus Volcano, Antarctica: Applications to Geological Mapping of a Volcano
Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: Applications to geological mapping of a volcano Bea Csathoa,1, Toni Schenkb, Philip Kylec, Terry Wilsond, William B. Krabille aDepartment of Geology, University at Buffalo, 855 Natural Sciences Complex, Buffalo, NY 14260, USA, [email protected] bDepartment of Civil and Environmental Engineering and Geodetic Science, 2070 Neil Av., The Ohio State University, Columbus, OH 43210, USA, [email protected] cDepartment of Earth & Environmental Science, New Mexico Institute of Mining and Technology, Socorro NM 87801, USA, [email protected] dSchool of Earth Sciences, 125 S. Oval Mall, The Ohio State University, Columbus, OH 43210, USA, [email protected] eCryospheric Sciences Branch NASA/GSFC/Wallops Flight Facility Wallops Island, VA, USA, 23337, USA, [email protected] 1Corresponding author: Department of Geology, University at Buffalo, 855 Natural Sciences Complex, Buffalo, NY 14260-3050, USA E-mail: [email protected] Phone: 716-645-6800 x3921 Fax: 716-645-3999 In Press, Special Issue on Erebus Volcano, Journal of Volcanology and Geothermal Research Keywords: Erebus volcano, lidar, volcanic geomorphology, DEM generation, feature extraction 1 Abstract The lidar observations reported here have provided the first high precision topographic data on the active craters of Erebus volcano, Antarctica. Digital elevation data are invaluable for geomorphic analysis of volcanoes especially when combined with methods to automatically extract landscape features. The data are indispensable for studying eruptive events and volcano-tectonic processes. Airborne laser scanning or lidar is a rapidly emerging technology to map surface topography with high accuracy and detail, comparable to a 1:1 000 scale map.