Alien Marine Macrophytes in Transitional Water Systems: New Entries and Reappearances in a Mediterranean Coastal Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Successions of Phytobenthos Species in a Mediterranean Transitional Water System: the Importance of Long Term Observations
A peer-reviewed open-access journal Nature ConservationSuccessions 34: 217–246 of phytobenthos (2019) species in a Mediterranean transitional water system... 217 doi: 10.3897/natureconservation.34.30055 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations Antonella Petrocelli1, Ester Cecere1, Fernando Rubino1 1 Water Research Institute (IRSA) – CNR, via Roma 3, 74123 Taranto, Italy Corresponding author: Antonella Petrocelli ([email protected]) Academic editor: A. Lugliè | Received 25 September 2018 | Accepted 28 February 2019 | Published 3 May 2019 http://zoobank.org/5D4206FB-8C06-49C8-9549-F08497EAA296 Citation: Petrocelli A, Cecere E, Rubino F (2019) Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations. In: Mazzocchi MG, Capotondi L, Freppaz M, Lugliè A, Campanaro A (Eds) Italian Long-Term Ecological Research for understanding ecosystem diversity and functioning. Case studies from aquatic, terrestrial and transitional domains. Nature Conservation 34: 217–246. https://doi.org/10.3897/ natureconservation.34.30055 Abstract The availability of quantitative long term datasets on the phytobenthic assemblages of the Mar Piccolo of Taranto (southern Italy, Mediterranean Sea), a lagoon like semi-enclosed coastal basin included in the Italian LTER network, enabled careful analysis of changes occurring in the structure of the community over about thirty years. The total number of taxa differed over the years. Thirteen non-indigenous species in total were found, their number varied over the years, reaching its highest value in 2017. The dominant taxa differed over the years. -
BROWN ALGAE [147 Species] (
CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck -
Genetic Diversity and Distribution of Edible Scytosiphonacean Algae from Ulleungdo Island, Korea
Research Article Algae 2019, 34(3): 229-236 https://doi.org/10.4490/algae.2019.34.7.8 Open Access Genetic diversity and distribution of edible scytosiphonacean algae from Ulleungdo Island, Korea Ju Il Lee1, Hyeong Seok Jang2, Ga Youn Cho3, Sung Jin Yoon4 and Sung Min Boo1,5,* 1Institute of Environment and Biology, Chungnam National University, Daejeon 34134, Korea 2National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea 3National Institute of Biological Resources, Incheon 22869, Korea 4Ulleungdo-Dokdo Ocean Science Station, Korean Institute of Ocean Science and Technology, Busan 49111, Korea 5Department of Biology, Chungnam National University, Daejeon 34134, Korea Despite the abundance of seaweeds from Ulleungdo Island, genetic diversity and distribution of edible brown al- gae from the island remain unstudied. We analyzed mitochondrial cox3 sequences from 86 specimens collected in the island and from the nearby Korean Peninsula. Our cox3 phylogeny for the first time confirmed the occurrence of fives species from Ulleungdo Island; Petalonia binghamiae, P. fascia, Planosiphon zosterifolius, and two cryptic species previ- ously identified as Scytosiphon lomentaria. P. binghamiae was relatively homogeneous with three haplotypes. P. fascia comprised four haplotypes, which were grouped into two genetic lineages. S. lomentaria was heterogeneous with nine haplotypes and was divided into two cryptic species; one species clustered with taxa from cold waters while the other clustered with taxa from temperate and cold waters. Low genetic diversity in P. binghamiae while high genetic diversity in S. lomentaria from Ulleungdo Island are comparable to patterns observed from other species from the Korean pen- insula. Ulleungdo Island, although small in size, is an ideal field laboratory to investigate genetic diversity and distribu- tions of economic marine algae. -
Mapping Invasive Macroalgae in the Western Iberian Peninsula: a Methodological Guide
Mapping Invasive Macroalgae in the Western Iberian Peninsula: A Methodological Guide Authors: Andreu Blanco, Marco F. L. Lemos, Leonel Pereira, Rui Gaspar, Teresa Mouga, João M. Neto, Jesús S. Troncoso and Celia Olabarria 1 2 Amalia | Algae-to-MArket Lab IdeAs 3 Mapping Invasive Macroalgae in the Western Iberian Peninsula Andreu Blanco, Marco F. L. Lemos, Leonel Pereira, Rui Gaspar, Teresa Mouga, João M. Neto, Jesús S. Troncoso and Celia Olabarria AMALIA - Algae-to-MArket Lab IdeAs (EASME BLUE LABS PROJECT) 4 Amalia | Algae-to-MArket Lab IdeAs 5 Mapping Invasive Macroalgae in the Western Iberian Peninsula: A Methodological AMALIA - Algae-to-MArket Lab IdeAs Guide (EASME BLUE LABS PROJECT) Authors: Disclaimer: The authors are responsible for the contents of this guide Andreu Blanco, Marco F. L. Lemos, University of Vigo, Campus do Mar. Leonel Pereira, Rui Gaspar, Teresa Mouga, Campus Universitario, s/n João M. Neto, Jesús S. Troncoso 36310 (Spain) and Celia Olabarria Instituto Politécnico de Leiria – IPLeiria Rua General Norton de Matos 2411-901 (Portugal) Universidade de Coimbra Rua Larga 3004-504 (Portugal) Financial Support European Union (EASME/EMFF/2016/1.2.1.4/016) Design and layout Linckia Integria S.L. 6 Amalia | Algae-to-MArket Lab IdeAs 7 Contents 01. Preface ................................................................................p. 10 04. Sampling methodology ....................................................p. 40 04.01. Sampling plan and permission ...........................p. 42 02. Macroalgae .........................................................................p. 12 04.02. Type and size of sampling units ..........................p. 42 02.01. Native, non-indigenous and invasive seaweed ...p. 16 04.03. Location and number of sampling units ............p. 43 02.02. Impacts ...................................................................p. 19 04.04. -
Seaweeds of California Green Algae
PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean. -
Sauv.) (Phaeophyta, Scytosiphonales
The occurrence of Colpomenia peregrina (Sauv.) Hamel in the Mediterranean (Phaeophyta, Scytosiphonales) H. Blackler Gatty Marine Laboratory, St. Andrews, Scotland Until the beginning of this century Colpomenia sinuosa (Mert.) Roth was the only of the known in it first found in 1806 species genus European waters; was by Mertens off Cadiz. Mertens made drawings ofit and sent them with his specimens to Roth who described it as Ulva sinuosa and published the description of this alga and Mertens’ his Catalecta vol. that drawings in Botanica III in year. At the beginning of this century a Colpomenia caused considerable damage to the Plants of attached themselves the oyster industry in France. Colpomenia to oysters in and the oyster beds at Vannes other places on the west coast of France. When the Colpo- of menia bladders became old they were filled with a mixture air and water and caused the be the surface of the and float and be lost. This oysters to buoyed up to water away Colpomenia spread to the Channel coast of Brittany and Normandy and across to the Scilly Isles and along the south coast of England and became well established there early in the century. Sauvageau (1927) observed that the Colpomenia responsible for the extensive damage to the oyster beds differed from C. sinuosa by being thinner, forming smooth bladders and the of the and the not thrown into folds or wrinkled, in origin hairs position of the relation the hairs. the hairs sori in to In C. sinuosa are epidermal in origin, though and the later appearing more deepseated due to invagination sori are punctate situated round the hair and covered with cuticle which is the crypts a or pellicle ruptured as plurilocular sporangia develop. -
Marine Non-Native Invasive Species in Northern Ireland
Marine non-native invasive species in Northern Ireland Julia Nunn & Dan Minchin Invasive Species Forum Belfast May 2013 Rapid assessment of marinas for invasive alien species (IAS) in Northern Ireland 1. Develop a target list of species (identifying sector related species) through a desktop literature search. 2. Undertake a rapid assessment of target species using a recognised methodology for selected marina sites around the coast of Northern Ireland. 3. Undertake an examination of the nearby shoreline, near high risk marinas, for invasive species. 4. Where necessary collect voucher specimens of taxa for the NMNI ensuring confirmation of ID is acquired from acknowledged taxonomic experts. 5. Gauge the current level of knowledge of IAS with marina managers. 6. Promote the Invasive Species Ireland Codes of Practice for marina managers and recreational water users to marina staff whilst undertaking fieldwork. Invasive Species Forum Belfast May 2013 Previous studies • 2006 survey – 20 target species • species found: Amphibalanus improvisus, Austrominius modestus, Corella eumyota and Sargassum muticum Target species: 57 Test fieldwork : Carlingford Marina Northern Ireland: 29th Aug- 8th Sept 2012 • 11 marinas (Abundance & Distribution Range (ADR)) • 9 pontoons • 6 shores Parameters: wind; weather; surface water temperature; salinity; cloud coverage; precipitation; tidal conditions; visibility Decontamination procedures Invasive Species Forum Belfast May 2013 Invasive Species Forum Belfast May 2013 Strangford Lough: 17th September – 19th October -
New England Marine Invader ID Cards
New England Marine Invader ID Card Marine Algae (Seaweeds) Tom Ermak Paul Fenton Adrienne Pappal Codium fragile subsp. fragile Colpomenia peregrina Grateloupia turuturu Green Fleece, Dead Man’s Fingers Sea Potato Red Algae • Bright green (bleached white when dead) • Yellowish brown • Pink to deep red or reddish brown • Can grow up to 3 feet tall • Up to 4 inches wide • Size and shape can vary from smaller, • Very distinct, spongy, rounded branches • Cushion- or bubble- kidney-shaped leaves (less than 1 foot) to • Attaches to hard surfaces in tide pools shaped, hollow longer, kelp-like blades (up to 3 feet) and shallow coastal waters • Thin skinned and papery, • Slippery texture, difficult to hold • Commonly found washed up on beaches tears easily • Can grow singly or in clumps, blades have • Found along entire coastline of the • Attaches to rocks, shellfish, Lindsay Green- smooth or “frilly” edges Gavrielidis eastern United States and other seaweeds • Grows on hard surfaces in shallow, • Can invade native kelp and eelgrass beds, • Collapses when taken out of water protected waters leading to ecosystem changes • First recorded in Canada in the 1960s, has • Found from Rhode Island to mid-coast spread south to Rhode Island Maine, spreading north Marine algae, unlike vascular plants, lack features like seeds and flowers. Red and green algae (Rhodophyta and Chlorophyta) are in the plant kingdom, while brown algae (Phaeophyceae) are in the Chromista kingdom. The invasive seaweeds on this card are native to the Northwest Pacific, attach to a variety of surfaces, and can outcompete native species. Marine Invader Monitoring and MASSACHUSETTS OFFICE OF Information Collaborative (MIMIC) Established Invaders COASTAL ZONE MANAGEMENT Similar Species Similar Red Algae • Several red algae species may be mistaken for G. -
The Genus Colpomenia in the Gulf of California
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NUMBER 35 The Genus Colpomenia Derbes et Solier (Phaeophyta) in the Gulf of California Michael 3. Wynne and James N. Norris SMITHSONIAN INSTlTUTION PRESS City of Washington 1976 ABSTRACT Wynne, Michael J., and James N. Norris. The Genus Colpomenia Derbks et Solier (Phaeophyta) in the Gulf of California. Smithsonian Contributions to Botany, number 35, 18 pages, 11 figures, 1976.-Four species of the brown algal genus Colpomenza Derbes et Solier (Scytosiphonales) are recognized as occurring within the Gulf of California: C. sinuosa (Roth) Derbes et Solier, C. tziberculata Saunders, C. ramosa Taylor, and C. phaeodartyla, new species. Some of the specimens interpreted by Dawson (1944) as Rosenvingea intricata are now re- ferred to C. ramosa Taylor. Although recorded from the Pacific coast of Baja California, C. ramosa has not yet been reported within the Gulf. Interrelation- ships of the species complex of Colpomenia with related genera such as Iyen- garia Boergesen, Rosenvingea Boergesen, and Scytosiphon C. Agardh are dis- cussed. OFFICIALPUBLICATION DATE is handstam ed in a limited number of initial copies and is recorded in the Institution’s annual report, Srnitisonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidphyllum japonicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Wynne, Michael James. The genus Colpomenia Derbes et Solier (Phaeophyta) in the Gulf of California. (Smithsonian contributions to botany ; no. 35) Bibliography: p. 1. Colpomenia. 2. Marine algae-California, Gulf of. I. Norris, James N., joint author. 11. Title, 111. Series: Smithsonian Institution. Smithsonian contributions to botany ; no. 35. QKl.Sz747 no. -
Non-Native Seaweed in Massachusetts Guidance from the Massachusetts Office of Coastal Zone Management, May 2013
Non-Native Seaweed in Massachusetts Guidance from the Massachusetts Office of Coastal Zone Management, May 2013 Massachusetts is home to a diverse and widespread Potential Impacts of Non-Native Species group of seaweeds, comprised of marine plants and To date at least 17 species of non-native marine plant-like species, including algae. Algae differ from algae have been documented in Massachusetts vascular plants such as eelgrass; they are more (Table 1), although this number does not include primitive and lack specialized features such as the many species whose origins and taxonomy seeds and flowers. While some groups, like the red are not resolved (CZM 2013a, Green et al. 2012, and the green algae (Rhodophyta and Chlorophyta), Low et al. 2011, Mathieson et al. 2008a,b,c,d, Nettleton 2008, Pappal 2010). Ecological are currently considered to be in the plant kingdom, impacts of non-native seaweeds generally include others, like the brown algae (Phaeophyceae), are competition for resources, shading, and classified separately due to the types of pigments displacement of native seaweeds (Scaffelke they contain and how they collect and store energy. and Hewitt 2007, Williams and Smith 2007). Seaweed plays an important role in the ecosystem, Aesthetic and recreational impacts can occur providing food and habitat for a wide variety of when non-native seaweeds wash ashore on marine organisms. While the majority of seaweed beaches and form large, unsightly clumps, species found in Massachusetts are native, some which may result in noxious odors (Pederson have been introduced to the area by human means, et al. 2005). See Managing Seaweed Accumulations such as shipping and aquaculture. -
Working Group on Introductions and Transfers of Marine Organisms (WGITMO)
ICES WGITMO Report 2006 ICES Advisory Committee on the Marine Environment ICES CM 2006/ACME:05 Working Group on Introductions and Transfers of Marine Organisms (WGITMO) 16–17 March 2006 Oostende, Belgium International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2006. Working Group on Introductions and Transfers of Marine Organisms (WGITMO), 16–17 March 2006, Oostende, Belgium. ICES CM 2006/ACME:05. 334 pp. For permission to reproduce material from this publication, please apply to the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2006 International Council for the Exploration of the Sea. ICES WGITMO Report 2006 | i Contents 1 Summary ........................................................................................................................................ 1 2 Opening of the meeting and introduction.................................................................................... 5 3 Terms of reference, adoption of agenda, selection of rapporteur.............................................. 5 3.1 Terms of Reference ............................................................................................................... 5 3.2 Adoption -
Invasive Species in Ireland
INVASIVE SPECIES IN IRELAND Prepared for Environment & Heritage Service and National Parks & Wildlife Service by Kate Stokes, Kate O’Neill & Robbie McDonald Quercus project QU03-01 Quercus is a partnership between Environment & Heritage Service, Northern Ireland and Queen's University, Belfast www.quercus.ac.uk Invasive species in Ireland Quercus This report is made jointly to the Environment & Heritage Service of the Department of Environment (Northern Ireland) and the National Parks and Wildlife Service of the Department of Environment, Heritage and Local Government (Republic of Ireland) in fulfilment of a contract to Quercus (Northern Ireland's Research Centre for Biodiversity and Conservation Biology). Prior to formal publication, the report should be cited as follows: Stokes, K., O'Neill, K. & McDonald, R.A. (2004) Invasive species in Ireland. Unpublished report to Environment & Heritage Service and National Parks & Wildlife Service. Quercus, Queens University Belfast, Belfast. Please note Stokes and O'Neill are joint primary authors of this report. For all queries contact [email protected] or consult www.quercus.ac.uk. 1 Invasive species in Ireland Quercus Executive summary 1. Invasions by non-native species are a major threat to global biodiversity. Terrestrial and aquatic habitats can be negatively affected, resulting in grave damage to conservation and economic interests, such as agriculture, forestry and civil infrastructure. In some cases public, animal and plant health may also be threatened. 2. Northern Ireland and the Republic