GSA Bulletin: Tectonic Controls on Facies Transitions in an Oblique

Total Page:16

File Type:pdf, Size:1020Kb

GSA Bulletin: Tectonic Controls on Facies Transitions in an Oblique Tectonic controls on facies transitions in an oblique collision: The western Solomon Sea, Papua New Guinea Joseph Galewsky Earth Science Department and Institute of Tectonics, University of California, Santa Cruz, Eli A. Silver } California 95064 ABSTRACT 1986). The tectonic history of many ancient TECTONIC SETTING mountain belts has been unraveled by careful The western Solomon Sea is the site of a clos- analysis of foreland basin deposits. For example, The modern Bismarck volcanic arc formed ing ocean basin and an incipient arc-continent analysis of the flysch sequences in the Alpine when subduction of the Solomon Sea plate be- collision between the Bismarck arc and the front ranges has provided a wealth of information neath the South Bismarck plate initiated, proba- Australian continental margin in Papua New about the paleogeography and geodynamic his- bly during late Miocene time (Musgrave, 1990). Guinea. Migrated seismic reflection profiles tory of the Alps (Caron et al., 1989). The Bismarck forearc contains the relict Finis- and HAWAII MR1 sidescan sonar data indi- Some observations suggest that foreland terre arc, a PaleogeneÐearliest Neogene volcanic cate that sedimentation within the Solomon basins eventually reach a steady state in which arc that was part of the larger Outer Melanesian Sea basin is controlled by topographic gradi- the accommodation space in the basin remains Arc. The Outer Melanesian Arc was built above ents generated by flexure of the Solomon Sea relatively constant despite continued overthrust- the West Melanesian Trench in response to plate. Turbidites delivered to the basin by the ing of the orogen (Covey, 1986), but the role of Pacific plate subduction beneath the Australian submarine Markham Canyon extend farther inherited basement topography on the strati- plate (Robinson, 1974). Finisterre Arc volcanism eastward down the axis of the deeper New graphic evolution of a foredeep is not well un- ceased in early Miocene time, probably when the Britain Trench (north side of the Solomon Sea) derstood. It is well known that an oblique colli- Ontong Java Plateau collided with the West than they do in the shallower Trobriand sion will generate a time-transgressive facies Melanesian Trench and induced regional plate re- Trough (south side of the Solomon Sea). The progression (e.g., Crook, 1989; Silver et al., organization (Musgrave, 1990). stratigraphic record of the foredeep, in the 1991), but the links between tectonics and facies The continental margin against which the Bis- zone of arc continent collision, is controlled by progression rates are not well known. In order to marck arc is colliding is a mountainous, tectoni- the steep topography of the Australian conti- understand the relationships between tectonic cally active amalgamation of previously accreted nental margin. A long (1.5Ð3 m.y.) period of and depositional processes in collisional oro- terranes (Fig. 1). The tectonic history of eastern deep marine turbidite deposition is followed by gens, we must study modern orogens where the Papua New Guinea since middle Miocene time a short (50Ð100 k.y.) period of shallow-marine tectonic processes are still active. Furthermore, has been dominated by the docking of a large deposition and a long (0.5Ð1 m.y.) period of flu- it is important to study a variety of modern set- composite terrane, the east Papua composite ter- vial deposition. Comparisons between the fore- tings, because each modern case reveals some- rane of Pigram and Davies (1987), with the Aus- deep record of Taiwan and the Papua New thing different about the relationships between tralian craton. Recent shallow seismicity in the Guinea collision indicate that the steep topog- tectonics and depositional processes. The active New Guinea Highlands and the Papuan Penin- raphy of the Australian continental margin ex- collision between the Bismarck Arc and the Aus- sula is evidence for active tectonism in the Papua erts significant control over the evolution of the tralian continental margin in Papua New Guinea New Guinea continental margin (Abers and foredeep, and the Taiwan foredeep is more (Fig. 1) provides an excellent setting to study the Roecker, 1991). Present elevations in the New controlled by the dynamic link between the links between tectonics and depositional Guinea Highlands and Owen Stanley Mountains flexural properties of the lithosphere and the processes in a collisional orogen. Furthermore, are in excess of 4 km. orogenic load. the obliquity of the collision provides an approx- The collision between the Bismarck forearc imate time-space equivalency (Suppe, 1981), and the Australian continental margin is esti- INTRODUCTION allowing us to infer the tectonics and related mated to have initiated about 3.0Ð3.7 Ma in the depositional processes for most of the history of vicinity of Madang (Abbott et al., 1994b). This The evolution of a foreland basin from deep- the collision. In this study, we show how the age is based on dating the sandstone provenance marine deposition into fluvial deposition has flexural deformation of a closing ocean basin shift from continental-orogenic sources to an arc been documented in many ancient mountain controls the stratigraphic evolution of a precolli- volcanic source, interpreted to represent the up- belts. The flysch to molasse transition observed sional turbidite basin. Tectonic and depositional lift of the relict Finisterre arc in response to colli- in the European Alps (Allen et al., 1991) is an ex- processes in the Papua New Guinea collision are sion (Abbott et al., 1994a). The collision has ample of this evolution, and analogous transi- also contrasted with those of the active arc- propagated to the southeast through time, and the tions have been observed in Taiwan (Covey, continent collision in Taiwan to show how geo- modern collision tip is located in the western 1986), the Himalayas, the Appalachians (Graham dynamically similar settings can lead to greatly Solomon Sea (Fig. 1). East of the modern colli- et al., 1975), and the Apennines (Ricci-Lucci, different stratigraphic records. sion tip, the Solomon Sea plate is subducting be- GSA Bulletin; October 1997; v. 109; no. 10; p. 1266Ð1278; 14 figures. 1266 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/109/10/1266/3382522/i0016-7606-109-10-1266.pdf by guest on 01 October 2021 TECTONIC CONTROLS ON FACIES TRANSITIONS Figure 1. Tectonic map of Papua New Guinea. Inset map shows study location. Rectangle shows lo- cations of Figures 2 and 3, A and B. The modern collision tip is at the juncture of the Trobriand Trough and the New Britain Trench. neath the New Britain Trench at about 90 subaerial deposits in the ancient record were de- the assumption of steady-state collision and sim- km/m.y. (Johnson, 1979; Taylor, 1979; Schouten scribed in Crook (1989), Liu and Crook (1991), ple geometry; the wide range of results is proba- and Benes, 1994). Slow convergence (~6 and Silver et al. (1991). The foredeep that has bly due to departures from these assumptions km/m.y.) between the Solomon Sea plate and the formed in response to this collision between the (Liu and Crook, 1991; Silver et al., 1991; Australian continental margin is accommodated Bismarck forearc and the Australian continental Kirchoff-Stein, 1992). Nevertheless, these rates along the Trobriand Trough (Kirchoff-Stein, margin occupies the subaerial Markham Valley provide valuable constraints on the rate of colli- 1992). The modern collision tip is defined to be (Abers and McCaffrey, 1994) and extends off- sion progression and associated progression of the location where the frontal thrust of the shore into the Huon Gulf. collision-related facies (Crook, 1989; Silver et Trobriand Trough enters the New Britain Trench, Central to developing our understanding of al., 1991). Because of the obliquity of the colli- long 148°30′E (Fig. 3B). This intersection marks tectonodepositional processes in the western sion, the temporal evolution of the arc-continent the initial point where the Bismarck forearc over- Solomon Sea is the concept of time-space equiv- collision translates to an equivalent spatial evolu- thrusts the Australian continental slope. The Fin- alency (Suppe, 1981). Suppe (1981) defined this tion; that is, moving about 150 km southeast isterre Ranges (Fig. 1), rising more than 4 km, term to refer to a steady-state collision (Taiwan, in along the modern Bismarck forearc is equivalent have formed as a result of this collision. The Fin- his interpretation) in which the structure observed to moving about 1 m.y. back in time in the evolu- isterre Mountains are producing so much sedi- 90 km spatially along the collision zone is equiv- tion of the collision. ment that the streams issuing from the range have alent to going back in time 1 Ma, where the rate of created large alluvial fans that prograde into the propagation of the collision is 90 km/m.y. The PHYSIOGRAPHY Markham Valley, pushing the Markham River to Papua New Guinea collision is oblique because the far southern part of the valley (Loffler, 1977). the Australian continental margin is oriented The western Solomon Sea (Fig. 2) consists of This progradation has caused the development of northwest-southeast, and the Bismarck arc is ori- a central basin (the Solomon Sea basin) bounded marshlands at the mouths of the major highlands ented approximately east-west. The southeast- on the north by the New Britain Trench and on tributaries, in which much of the sediment load of ward rate of collision propagation was assessed the south by the Trobriand Trough. South of the the highlands rivers is deposited. The Markham by Silver et al. (1991) and Abbott et al. (1994b). Trobriand Trough is the Trobriand platform, a Valley is therefore filled mostly by sediments On the basis of purely kinematic considera- broad shallow shelf that narrows to the north- shed from the rising Finisterre Ranges.
Recommended publications
  • The Plate Tectonics of Cenozoic SE Asia and the Distribution of Land and Sea
    Cenozoic plate tectonics of SE Asia 99 The plate tectonics of Cenozoic SE Asia and the distribution of land and sea Robert Hall SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK Email: robert*hall@gl*rhbnc*ac*uk Key words: SE Asia, SW Pacific, plate tectonics, Cenozoic Abstract Introduction A plate tectonic model for the development of SE Asia and For the geologist, SE Asia is one of the most the SW Pacific during the Cenozoic is based on palaeomag- intriguing areas of the Earth$ The mountains of netic data, spreading histories of marginal basins deduced the Alpine-Himalayan belt turn southwards into from ocean floor magnetic anomalies, and interpretation of geological data from the region There are three important Indochina and terminate in a region of continen- periods in regional development: at about 45 Ma, 25 Ma and tal archipelagos, island arcs and small ocean ba- 5 Ma At these times plate boundaries and motions changed, sins$ To the south, west and east the region is probably as a result of major collision events surrounded by island arcs where lithosphere of In the Eocene the collision of India with Asia caused an the Indian and Pacific oceans is being influx of Gondwana plants and animals into Asia Mountain building resulting from the collision led to major changes in subducted at high rates, accompanied by in- habitats, climate, and drainage systems, and promoted dis- tense seismicity and spectacular volcanic activ- persal from Gondwana via India into SE Asia as well
    [Show full text]
  • Volcano 101102 Aleutian Intra-Oceani
    Index Page numbers in italic, refer to figures and those in bold refer to entries in tables. 34~ volcano 101,102 Manus Basin axial depths 32 Aleutian intra-oceanic subduction system bathymetry 32 characteristics 4 geochemical characteristics 33-34 location 3 geophysical characteristics 32-33 Amami Plateau 165 lava geochemistry 23, 25 Andaman Sea 208 opening rate 32 andesite 61 tectonic setting 30-32, 31 calc-alkalic andesite 61-63, 62 Mariana Trough compared to continental crust 68-69, 68 axial depth profile 36 magma type spatial variations 63, 66 bathymetry 36 magma mixing 63-67 geochemical characteristics 38-39 major and trace element characteristics 65 geophysical characteristics 37-38 Aoga Shima 189,190 lava geochemistry 24, 25 Aoso volcano 223, 226 tectonic setting 34-38, 35 Arafura Shelf 208 model development 39-42, 40 arc accretion in Taiwan and Ireland 83-85 study methods 20-21 arc magmatism, general characteristics 56-57 back-arc spreading 6 geochemical modelling 59 Banda Sea 208 incompatible element chemistry 58-61 Banggai Islands 209 volcano distribution 57-58, 57 Batanta 209 arc-continent collision model 81, 94-95 Bellingshausen Island 286, 287, 287 active continental margins 81-82 geochemical variations and volcano histories arc accretion in Taiwan and Ireland 83-85 294-295 arc crustal composition 82 major and trace element composition 290-292 birth of active continental margins 82-83 new isotope analyses 293 comparison of Mayo-Connemara with Taiwan Benham Plateau 165 collisional orogenies 93 Bird's Head 209 continuous arc
    [Show full text]
  • Post 8Ma Reconstruction of Papua New Guinea and Solomon Islands
    ÔØ ÅÒÙ×Ö ÔØ Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting Robert J. Holm, Gideon Rosenbaum, Simon W. Richards PII: S0012-8252(16)30050-2 DOI: doi: 10.1016/j.earscirev.2016.03.005 Reference: EARTH 2238 To appear in: Earth Science Reviews Received date: 14 October 2015 Revised date: 14 January 2016 Accepted date: 11 March 2016 Please cite this article as: Holm, Robert J., Rosenbaum, Gideon, Richards, Simon W., Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting, Earth Science Reviews (2016), doi: 10.1016/j.earscirev.2016.03.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting Robert J. Holm 1, 2 , Gideon Rosenbaum 3, Simon W. Richards 1, 2 1Department of Earth and Oceans, College of Science, Technology & Engineering, James Cook University, Townsville, Queensland 4811, Australia 2Economic Geology Research Centre (EGRU), College of Science, Technology & Engineering, James Cook University, Townsville, Queensland 4811, Australia 3School of Earth Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia corresponding author: [email protected] ABSTRACT Papua New Guinea and the Solomon Islands are located in a complex tectonic setting between the convergingACCEPTED Ontong Java Plateau MANUSCRIPT on the Pacific plate and the Australian continent.
    [Show full text]
  • Evidence for Active Subduction at the New Guinea Trench P
    GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L13608, doi:10.1029/2004GL020190, 2004 Evidence for active subduction at the New Guinea Trench P. Tregoning Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia A. Gorbatov Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, Yokohama, Japan Received 7 April 2004; revised 2 June 2004; accepted 9 June 2004; published 3 July 2004. [1] Recent seismic tomography imaging shows clear Sea Plate occurs beneath the South Bismarck Plate on the evidence for southwestward subduction along the entire New Britain Trench [Hamilton, 1979]. length of the New Guinea Trench (NGT) in Indonesia and [4] Previous studies have suggested that convergence may Papua New Guinea. Viewed in conjunction with the occur on the NGT [e.g., Hamilton, 1979; Cooper and Taylor, occurrence of large (Mw > 7) thrust earthquakes that are 1987; Puntodewo et al., 1994; Tregoning et al., 2000] along known to have occurred on the trench, this confirms with partitioning of normal convergence and left-lateral slip conclusions of earlier studies that the NGT is an active, in the FTB [e.g., Abers and McCaffrey, 1988; Puntodewo et inter-plate boundary. The 650 km long slab is visible to a al., 1994] (Figure 1). The lowlands of New Guinea south of depth of about 300 km and subducts with a dip angle that the FTB are part of the rigid Australian Plate [Hamilton, varies from 30° at 136°Eto10° at 143°E. The improved 1979; Kreemer et al., 2000]. The North Bismarck Plate lies clarity of the seismic tomography in this region stems to the north of the NGT from 143°E west to the Manus from the use of a more accurate data set of P- and S-wave Trench (140°E) [Johnson and Molnar, 1972; Tregoning, arrival times and hypocentral locations.
    [Show full text]
  • Magmatic Arcs of Papua New Guinea: Insights Into the Late Cenozoic Tectonic Evolution of the Northern Australian Plate Boundary
    ResearchOnline@JCU This file is part of the following reference: Holm, Robert J. (2013) Magmatic arcs of Papua New Guinea: insights into the late Cenozoic tectonic evolution of the northern Australian plate boundary. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/32125/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/32125/ Magmatic arcs of Papua New Guinea: Insights into the Late Cenozoic tectonic evolution of the northern Australian plate boundary Thesis submitted by Robert J. Holm July 2013 For the Degree of Doctor of Philosophy in the School of Earth and Environmental Sciences of James Cook University Statement of Access I, the undersigned author of this thesis, understand that James Cook University will make this thesis available for use within the university library and allow access in other approved libraries after its submission. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assisstance which I have obtained from it. Beyond this, I do not wish to place any restrictions on access to this thesis. Robert J. Holm July 2013 I Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute or tertiary education.
    [Show full text]
  • The Earth's Lithosphere-Documentary
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2.
    [Show full text]
  • Cenozoic Tectonics of SE Asia and Australasia INDONESIAN
    Cenozoic tectonics of SE Asia and Australasia 47 INDONESIAN PETROLEUM ASSOCIATION Proceedings of the Petroleum Systems of SE Asia and Australasia Conference, May 1997 CENOZOIC TECTONICS OF SE ASIA AND AUSTRALASIA Robert Hall SE Asia Research Group, University of London ABSTRACT quency and rapidity of changes in regional tecton- ics. A plate tectonic model for the development of the region of SE Asia and Australasia is presented and INTRODUCTION its implications are summarised. The complexity of the present-day tectonics of the region and the The region of SE Asia and Australasia includes observable rates of plate motions indicate that ma- examples of almost every plate tectonic configura- jor oceans, or multiple small oceans, have closed tion at different stages in the Wilson cycle between during the Cenozoic, and that the configuration of rifting and continental collision. It is the only place the region has changed significantly during this on Earth where we can observe arcs in collision, time. Despite the long-term convergence there has one of the few places where an oceanic spreading been frequent opening of marginal basins, and ex- centre is actively propagating into continental tension related to strike-slip faults resulting from crust, and includes areas with the highest global partitioning of oblique convergence at plate rates of plate convergence and separation. But how boundaries. Present-day plate motions, based for useful is plate tectonics in describing the evolution example on GPS measurements and seismicity, il- of the region? It is good at describing interaction lustrate the complexity of processes but appear to between slowly moving, large plates with rela- have little relevance in understanding the long- tively simple geometries but its application to the term kinematic development of the region.
    [Show full text]
  • The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions Open Access Solid Earth Discuss., 5, 1335–1422, 2013 Open Access www.solid-earth-discuss.net/5/1335/2013/ Solid Earth Solid Earth doi:10.5194/sed-5-1335-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access This discussion paper is/has been under review for the journal SolidThe Earth Cryosphere (SE). Please refer to the correspondingThe Cryosphere final paper in SE if available. Discussions The Cretaceous and Cenozoic tectonic evolution of Southeast Asia S. Zahirovic, M. Seton, and R. D. Müller EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia Received: 2 August 2013 – Accepted: 11 August 2013 – Published: 21 August 2013 Correspondence to: S. Zahirovic ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union.
    [Show full text]
  • The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Solid Earth Discuss., 5, 1335–1422, 2013 Open Access www.solid-earth-discuss.net/5/1335/2013/ Solid Earth Solid Earth SED doi:10.5194/sed-5-1335-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 5, 1335–1422, 2013 Open Access Open Access This discussion paper is/has been under review for the journal Solid Earth (SE). The Cryosphere The Cretaceous and Please refer to the correspondingThe Cryosphere final paper in SE if available. Discussions Cenozoic tectonic evolution of The Cretaceous and Cenozoic tectonic Southeast Asia evolution of Southeast Asia S. Zahirovic et al. S. Zahirovic, M. Seton, and R. D. Müller Title Page EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia Abstract Introduction Received: 2 August 2013 – Accepted: 11 August 2013 – Published: 21 August 2013 Conclusions References Correspondence to: S.
    [Show full text]
  • Mesozoic–Cenozoic Evolution of Australia's New Guinea Margin in A
    Geol. Soc. Australia Spec. Publ. 22, and Geol. Soc. America Spec. Pap. 372 (2003), 265–289 Mesozoic–Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context K. C. HILL1* AND R. HALL2 1 3D-GEO, School of Earth Sciences, University of Melbourne, Vic. 3010, Australia. 2 SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK. The northern Australian margin includes the island of New Guinea, which records a complex struc- tural and tectonic evolution, largely masked by Mio-Pliocene orogenesis and the Pleistocene onset of tectonic collapse. In the Palaeozoic, New Guinea contained the boundary between a Late Palaeozoic active margin in the east and a region of extension associated with Gondwana breakup along the western margin of Australia. In the Permian and Early Triassic, New Guinea was an active margin resulting in widespread Middle Triassic granite intrusions. The Mesozoic saw Triassic and Jurassic rifting followed by Cretaceous passive margin subsidence and renewed rifting in the Late Cretaceous and Paleocene. Since the Eocene, New Guinea tectonics have been driven by rapid northward movement of the Australian Plate and later sinistral oblique convergence with the Pacific Plate, resulting in Mio-Pliocene arc–continent collision. Neogene deformation along the mar- gin, however, has been the result of direct interaction with the Philippine and Caroline Plates. Collision with the Philippine–Caroline Arc commenced in the Late Oligocene and orogenesis con- tinues today. We suggest that the New Guinea Mobile Belt comprises a collision zone between a north-facing Cretaceous indented margin and a south-facing Palaeogene accretionary prism, sub- sequently cut by a Neogene strike-slip fault system with well over 1000 km sinistral displacement that has alternated between extension and compression.
    [Show full text]
  • Tectonic Evolution and Copper-Gold Metallogenesis of the Papua New Guinea and Solomon Islands Region
    Accepted Manuscript Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region Robert J. Holm, Simon Tapster, Hielke A. Jelsma, Gideon Rosenbaum, Darren F. Mark PII: S0169-1368(17)30778-3 DOI: https://doi.org/10.1016/j.oregeorev.2018.11.007 Reference: OREGEO 2734 To appear in: Ore Geology Reviews Received Date: 14 October 2017 Revised Date: 4 November 2018 Accepted Date: 8 November 2018 Please cite this article as: R.J. Holm, S. Tapster, H.A. Jelsma, G. Rosenbaum, D.F. Mark, Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region, Ore Geology Reviews (2018), doi: https://doi.org/10.1016/j.oregeorev.2018.11.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Tectonic evolution and copper-gold metallogenesis of the Papua New 2 Guinea and Solomon Islands region 3 4 Robert J. Holm1,2, Simon Tapster3,4, Hielke A. Jelsma5, Gideon Rosenbaum6, Darren F. 5 Mark7,8 6 7 1Frogtech Geoscience, 2 King Street, Deakin West, ACT 2600, Australia 8 2Economic Geology Research Centre (EGRU), James Cook University, Townsville, 9 Queensland 4811, Australia 10 3NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, 11 UK 12 4Department of Geology, University of Leicester, Leicester LE1 7RH, UK 13 5Anglo American Exploration, P.
    [Show full text]
  • Tsunami Hazards
    ISSN 8755-6839 SCIENCE OF TSUNAMI HAZARDS The International Journal of The Tsunami Society Volume 26 Number 1 Published Electronically 2007 PRELIMINARY ANALYSIS OF THE EARTHQUAKE (MW 8.1) AND TSUNAMI OF APRIL 1, 2007, IN THE SOLOMON ISLANDS, SOUTHWESTERN PACIFIC OCEAN 3 Michael A. Fisher, Eric L. Geist, Ray Sliter, Florence L. Wong, Carol Reiss, and Dennis M. Mann U.S. Geological Survey, Menlo Park, California, USA A SHALLOW WATER MODEL FOR COMPUTING TSUNAMI ALONG THE WEST COAST OF PENINSULAR MALAYSIA AND THAILAND USING BOUNDARY-FITTED CURVILINEAR GRIDS 21 Md. Fazlul Karima, G D Royb, Ahmad Izani M Ismaila, Mohammed Ashaque Meaha a School of Mathematical Sciences, Universiti Sains Malaysia, Malaysia b Department of Mathematics, Shahjalal University of Science & Technology, Sylhet, Bangladesh REFRACTION OF TSUNAMI WAVES OF 26 DECEMBER 2004, ALONG SOUTHWEST COAST OF INDIA 42 ∗ K.K.Varma and A. Sakkeer Hussain Dept. of Fishery Hydrography, College of Fisheries Panangad, Kochi, India . THE All-SOURCE GREEN’S FUNCTION AND ITS APPLICATION TO TSUNAMI PROBLEMS 59 Zhigang Xu Canadian Hydrographic Service, Maurice Lamontagne Institute, Fisheries and Oceans, Canada. copyright © 2007 THE TSUNAMI SOCIETY P. O. Box 2117 Ewa Beach, HI 96706-0117, USA WWW.TSUNAMISOCIETY.ORG OBJECTIVE: The Tsunami Society publishes this journal to increase and disseminate knowledge about tsunamis and their hazards. DISCLAIMER: Although these articles have been technically reviewed by peers, The Tsunami Society is not responsible for the veracity of any statement, opinion or consequences. EDITORIAL STAFF Dr. George Pararas-Carayannis, Editor P.O. Box 8523, Honolulu, Hawaii 96830-8523, USA EDITORIAL BOARD Dr. Charles MADER, Mader Consulting Co., Colorado, New Mexico, Hawaii, USA Dr.
    [Show full text]