HTTP/2 Streams: Is the Future of Websockets Decided?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HTTP2 Explained
HTTP2 Explained Daniel Stenberg Mozilla Corporation [email protected] ABSTRACT credits to everyone who helps out! I hope to make this document A detailed description explaining the background and problems better over time. with current HTTP that has lead to the development of the next This document is available at http://daniel.haxx.se/http2. generation HTTP protocol: HTTP 2. It also describes and elaborates around the new protocol design and functionality, 1.3 License including some implementation specifics and a few words about This document is licensed under the the future. Creative Commons Attribution 4.0 This article is an editorial note submitted to CCR. It has NOT license: been peer reviewed. The author takes full responsibility for this http://creativecommons.org/licenses/by/4.0/ article’s technical content. Comments can be posted through CCR Online. 2. HTTP Today Keywords HTTP 1.1 has turned into a protocol used for virtually everything HTTP 2.0, security, protocol on the Internet. Huge investments have been done on protocols and infrastructure that takes advantage of this. This is taken to the 1. Background extent that it is often easier today to make things run on top of HTTP rather than building something new on its own. This is a document describing http2 from a technical and protocol level. It started out as a presentation I did in Stockholm in April 2014. I've since gotten a lot of questions about the contents of 2.1 HTTP 1.1 is Huge that presentation from people who couldn't attend, so I decided to When HTTP was created and thrown out into the world it was convert it into a full-blown document with all details and proper probably perceived as a rather simple and straight-forward explanations. -
Improving Packet Caching Scalability Through the Concept Of
IMPROVING PACKET CACHING SCALABILITY THROUGH THE CONCEPT OF AN EXPLICIT END OF DATA MARKER A Thesis Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science and Engineering by Xiaolong Li, B.S., M.S. ________________________________ Aaron Striegel, Director Graduate Program in Computer Science and Engineering Notre Dame, Indiana July 2006 c Copyright by Xiaolong Li 2006 All Rights Reserved Improving Packet Caching Scalability Through the Concept of an Explicit End of Data Marker Abstract by Xiaolong Li The web has witnessed an explosion of dynamic content generation to provide web users with an interactive and personalized experience. While traditional web caching techniques work well when redundancy occurs on an object-level basis (page, image, etc.), the use of dynamic content presents unique challenges. Although past work has addressed mechanisms for detecting redundancy despite dynamic content, the scalability of such techniques is limited. In this thesis, an effective and highly scalable approach, Explicit End of Data (EEOD) is presented, which allows the content designer to easily signal bound- aries between cacheable and non-cacheable content. EEOD provides application- to-stack mechanisms to guarantee separation of packets with the end goal of sim- plifying packet-level caching mechanisms. Most importantly, EEOD does not re- quire client-side modifications and can function in a variety of server-side/network deployment modes. Additionally, experimental studies are presented, showing EEOD offers 25% and 30% relative improvements in terms of bandwidth efficiency and retrieval time over current approaches in the literature. -
HTML5 Websocket Protocol and Its Application to Distributed Computing
CRANFIELD UNIVERSITY Gabriel L. Muller HTML5 WebSocket protocol and its application to distributed computing SCHOOL OF ENGINEERING Computational Software Techniques in Engineering MSc arXiv:1409.3367v1 [cs.DC] 11 Sep 2014 Academic Year: 2013 - 2014 Supervisor: Mark Stillwell September 2014 CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING Computational Software Techniques in Engineering MSc Academic Year: 2013 - 2014 Gabriel L. Muller HTML5 WebSocket protocol and its application to distributed computing Supervisor: Mark Stillwell September 2014 This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science © Cranfield University, 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Declaration of Authorship I, Gabriel L. Muller, declare that this thesis titled, HTML5 WebSocket protocol and its application to distributed computing and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. -
Audiocodes Webrtc Solution DATA SHEET
AudioCodes WebRTC Solution DATA SHEET Simplified Web Calling for Contact Centers and Service Providers The AudioCodes WebRTC solution is a quick and straightforward way for contact centers and service providers to supply intuitive and high-quality web calling functionality to their service centers. From implementing a simple click-to-call button on a consumer website or mobile app, right up to a fully featured agent client for voice and video calls, the AudioCodes WebRTC solution provides all the building blocks that you need to get web calling services up and running quickly and easily. Simple and scalable Powerful and robust Easy to install A single WebRTC device, either The WebRTC solution is fully integrated The Client SDK facilitates the quick virtual or hardware-based, in AudioCodes Mediant session border integration of the WebRTC solution seamlessly scalable from just a few controllers and inherits the SBCs’ into client websites or Android and sessions to several thousand strong security, high availability and iOS mobile apps transcoding capabilities Signaling AUDIOCODES Browser / Mobile WebRTC SDK WebRTC user Media Internet AudioCodes SBC Integrated WebRTC Gateway Carrier/Contact Center VoIP Network AudioCodes WebRTC Solution DATA SHEET Specifications WebRTC Gateway About AudioCodes AudioCodes Ltd. (NasdaqGS: AUDC) is a Deployment leading vendor of advanced voice networking VMWare KVM AWS Mediant 9000 Mediant 4000 method and media processing solutions for the digital workplace. With a commitment to the human 3,000 voice deeply embedded in its DNA, AudioCodes 5,000 WebRTC sessions 2,700 3,500 (20,000 on 1,000 enables enterprises and service providers (20K on roadmap) roadmap) to build and operate all-IP voice networks for unified communications, contact centers 3,000 1,050 integrated and hosted business services. -
A Websocket-Based Approach to Transporting Web Application Data
A WebSocket-based Approach to Transporting Web Application Data March 26, 2015 A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Department of Computer Science of the College of Engineering and Applied Science by Ross Andrew Hadden B.S., University of Cincinnati, Cincinnati, Ohio (2014) Thesis Adviser and Committee Chair: Dr. Paul Talaga Committee members: Dr. Fred Annexstein, Professor, and Dr. John Franco, Professor Abstract Most web applications serve dynamic data by either deferring an initial page response until the data has been retrieved, or by returning the initial response immediately and loading additional content through AJAX. We investigate another option, which is to return the initial response immediately and send additional content through a WebSocket connection as the data becomes available. We intend to illustrate the performance of this proposition, as compared to popular conventions of both a server- only and an AJAX approach for achieving the same outcome. This dissertation both explains and demonstrates the implementation of the proposed model, and discusses an analysis of the findings. We use a Node.js web application built with the Cornerstone web framework to serve both the content being tested and the endpoints used for data requests. An analysis of the results shows that in situations when minimal data is retrieved after a timeout, the WebSocket method is marginally faster than the server and AJAX methods, and when retrieving populated files or database records it is marginally slower. The WebSocket method considerably outperforms the AJAX method when making multiple requests in series, and when making requests in parallel the WebSocket and server approaches both outperform AJAX by a tremendous amount. -
The Websockets Package
The websockets Package Bryan W. Lewis [email protected] December 18, 2012 1 Introduction HTML 5 websockets define an efficient socket-like communication protocol for the web. The websockets package is a native websocket implementation for R that supports most of the draft IETF protocols in use today by web browsers. The websockets package is especially well-suited to interaction between R and web scripting languages like Javascript. Multiple simultaneous web- socket server and client connections are supported. The package has few dependencies and is written mostly in R. Packages are available for all major R platforms including GNU/Linux, OS X, and Windows. Websockets are a particularly simple way to expose R to the Web as a service–they let Javascript and other scripts embedded in web pages directly interact with R, bypassing traditional middleware layers like .NET, Java, and web servers normally used for such interaction. In some cases, websockets can be much more efficient than traditional Ajax schemes for interacting with clients over web protocols. Websockets also simplify service scalability in many cases. The websockets package provides three main capabilities: 1. An websocket service. 2. An websocket client. 3. A basic HTTP service. This guide illustrates each capability with simple examples. The websockets Package 2 Running an R websockets server, step by step The websockets package includes a server function that can initiate and respond to websocket and HTTP events over a network connection (websockets are an extension of standard HTTP). All R/Websocket server applications share the following basic recipe: 1. Load the library. 2. Initialize a websocket server with create_server. -
Web-Enabled DDS Version 1.0
Date: July 2016 Web-Enabled DDS Version 1.0 __________________________________________________ OMG Document Number: formal/2016-03-01 Standard document URL: http://www.omg.org/spec/DDS-WEB Machine Consumable File(s): Normative: http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1.xsd http://www.omg.org/spec/DDS-WEB/20150901/webdds_websockets1.xsd http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_types.xsd http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1.wsdl http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_notify.wsdl Non-normative: http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1_example.xml http://www.omg.org/spec/DDS-WEB/20150901/webdds_pim_model_v1.eap _______________________________________________ Copyright © 2013, eProsima Copyright © 2016, Object Management Group, Inc. (OMG) Copyright © 2013, Real-Time Innovations, Inc. (RTI) Copyright © 2013, THALES USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES The material in this document details an Object Management Group specification in accordance with the terms, condi- tions and notices set forth below. This document does not represent a commitment to implement any portion of this speci- fication in any company's products. The information contained in this document is subject to change without notice. LICENSES The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification. -
HTML5 Websockets
HHTTMMLL55 -- WWEEBBSSOOCCKKEETTSS http://www.tutorialspoint.com/html5/html5_websocket.htm Copyright © tutorialspoint.com Web Sockets is a next-generation bidirectional communication technology for web applications which operates over a single socket and is exposed via a JavaScript interface in HTML 5 compliant browsers. Once you get a Web Socket connection with the web server, you can send data from browser to server by calling a send method, and receive data from server to browser by an onmessage event handler. Following is the API which creates a new WebSocket object. var Socket = new WebSocket(url, [protocal] ); Here first argument, url, specifies the URL to which to connect. The second attribute, protocol is optional, and if present, specifies a sub-protocol that the server must support for the connection to be successful. WebSocket Attributes Following are the attribute of WebSocket object. Assuming we created Socket object as mentioned above − Attribute Description Socket.readyState The readonly attribute readyState represents the state of the connection. It can have the following values − A value of 0 indicates that the connection has not yet been established. A value of 1 indicates that the connection is established and communication is possible. A value of 2 indicates that the connection is going through the closing handshake. A value of 3 indicates that the connection has been closed or could not be opened. Socket.bufferedAmount The readonly attribute bufferedAmount represents the number of bytes of UTF-8 text that have been queued using send method. WebSocket Events Following are the events associated with WebSocket object. Assuming we created Socket object as mentioned above − Event Event Handler Description open Socket.onopen This event occurs when socket connection is established. -
HTML5 and Java Technologies
HTML5 and Java Technologies Peter Doschkinow Senior Java Architect The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Agenda . Motivation . HTML5 Overview – Related Java Technologies . Thin Server Architecture . Demo Motivation . Need for clarification Gartner’s 2012 Emerging Technologies Hype Cycle – What is behind the hype . Architectural consequences of new trends . What does the Java platform offer to meet the new challenges . Building of common understanding Web Technology History . 1991 HTML . 1995 JavaScript @ Netscape . 1994 HTML2 . 1996 ECMAScript 1.0, 1.1 . 1996 CSS1 . 1997 ECMAScript 1.2 . 1997 HTML4 . 1998 ECMAScript 1.3 . 1998 CSS2 . 2000 ECMAScript 3 . 2000 XHTML1 . 2010 ECMAScript 5 . 2002 Tableless Web Design . Next: ECMAScript 6 Harmony . 2005 AJAX . 2009 HTML5: as of Dec 2012 W3C CR HTML5 Features W3C / Web Hypertext Application Technology Working Group(WHATWG) . Markup – Semantic markup replacing common usages of generic <span>, <div> . <nav>, <footer>,<audio>, <video>, ... API – Canvas 2D (for immidate mode 2D drawing),Timed media playback – Offline Web Applications, Local Srorage and Filesystem, Web Storage – Geolocation, Web Storage, IndexedDB – File API, Drag-and-Drop, Browser History – ... HTML5 Features Offloaded to other specs, originally part of HTML5 . WebSocket API, Server-Sent Events(SSE), Web Messaging, Web Workers, Web Storage (Web Apps WG ) . -
Towards Web-Based Delta Synchronization for Cloud Storage Services
Towards Web-based Delta Synchronization for Cloud Storage Services He Xiao and Zhenhua Li, Tsinghua University; Ennan Zhai, Yale University; Tianyin Xu, UIUC; Yang Li and Yunhao Liu, Tsinghua University; Quanlu Zhang, Microsoft Research; Yao Liu, SUNY Binghamton https://www.usenix.org/conference/fast18/presentation/xiao This paper is included in the Proceedings of the 16th USENIX Conference on File and Storage Technologies. February 12–15, 2018 • Oakland, CA, USA ISBN 978-1-931971-42-3 Open access to the Proceedings of the 16th USENIX Conference on File and Storage Technologies is sponsored by USENIX. Towards Web-based Delta Synchronization for Cloud Storage Services He Xiao Zhenhua Li ∗ Ennan Zhai Tianyin Xu Tsinghua University Tsinghua University Yale University UIUC Yang Li Yunhao Liu Quanlu Zhang Yao Liu Tsinghua University Tsinghua University Microsoft Research SUNY Binghamton Abstract savings in the presence of users’ file edits [29, 39, 40]. Delta synchronization (sync) is crucial for network-level Unfortunately, today delta sync is only available for efficiency of cloud storage services. Practical delta sync PC clients and mobile apps, but not for the web—the most pervasive and OS-independent access method [37]. techniques are, however, only available for PC clients 0 and mobile apps, but not web browsers—the most per- After a file f is edited into a new version f by users, vasive and OS-independent access method. To under- Dropbox’s PC client will apply delta sync to automati- stand the obstacles of web-based delta sync, we imple- cally upload only the altered bits to the cloud; in contrast, Dropbox’s web interface requires users to manually up- ment a delta sync solution, WebRsync, using state-of- 0 1 the-art web techniques based on rsync, the de facto delta load the entire content of f to the cloud. -
An Evaluation of the Webdav Extensions to the HTTP Protocol
2000:138 MASTER'S THESIS An evaluation of the WebDAV extensions to the HTTP protocol Björn Nilsson Civilingenjörsprogrammet Institutionen för Systemteknik Avdelningen för Datorkommunikation 2000:138 • ISSN: 1402-1617 • ISRN: LTU-EX--00/138--SE An evaluation of the WebDAV extensions to the HTTP protocol Master’s Thesis in Computer Science Björn Nilsson January 2000 An evaluation of the WebDAV extensions to the HTTP protocol Abstract Abstract The HyperText Transfer Protocol (HTTP) is used for the most popular service on the Internet today – World Wide Web. WebDAV is a new extension to the HTTP protocol, which makes it possible to write, edit and share information across intranets and the Internet. In this Master’s Thesis, the WebDAV extensions are examined. A comparison between HTTP with WebDAV and the existing Internet protocols FTP and POP3 is done. Also a behavioral analysis of existing WebDAV applications is made. The conclusions are that HTTP with WebDAV extensions can replace both FTP and POP3. When using HTTP’s pipelining and persistent connections, better performance than with FTP is achieved. It seems like WebDAV can be used as a universal protocol for client-server solutions, gaining the advantages of HTTP such as encryption and caching. An evaluation of the WebDAV extensions to the HTTP protocol Preface Preface This Master’s Thesis has been made as the final part of my Master of Science degree in Computer Science and Engineering at Luleå University of Technology (LTU). The work has been carried out from September 1999 to January 2000 at Telia ProSoft AB in Malmö. I would like to thank my supervisor at Telia ProSoft, Anders Jönsson, for assistance and guidance throughout the work. -
Hypertext Transfer Protocol with Privacy
Hypertext Transfer Protocol With Privacy Anthroposophical Vinnie learn broadcast. Ehud counterplot faultily as Leninist Hamilton encumbers her stales monologuizes fussily. Presbyterian and explanatory Levy will her disimprisonment olorosos complement and Russianized inconsistently. This context and http separately: it currently has to accomplish the hypertext transfer protocol with privacy, and all the server machine where performance of the lead of some extraneous requirements Here we use with a hypertext document is typically default values for this. Http protocol to hide the privacy community of http and requests. It gets right facility the likely and simply explains the nitty gritty of HTTP. How hypertext transfer. Http protocol is hypertext transfer. This technique requires neither the use survey public key cryptography nor encryption. Secure transfer protocols with privacy? It with privacy policy is hypertext. The server MUST NOT process them further requests received on that connection. Clients and privacy or hypertext format of protocols that. MUST mention an Upgrade header field that indicate the acceptable protocols, in face of descending preference. URI and in Host header field. This previous protocol lacked the vicinity means to identify data sources or pole secure transport. Instead of hypertext transfer of a separate protocol? What goods the difference between HTTP request the response? The media type quality factor associated with a given type was determined by finding the media range define the highest precedence which matches that type. Often a transfer. Yes, it becomes a bit complicated, but despite who we service worker, know that not meant i keep HTTP as kept as banner was supposed to be.