Optimization of Ammonia-Peroxide Water Mixture (APM) for High Volume Manufacturing Through Surface Chemical Investigations

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of Ammonia-Peroxide Water Mixture (APM) for High Volume Manufacturing Through Surface Chemical Investigations Optimization of Ammonia-Peroxide Water Mixture (APM) for High Volume Manufacturing through Surface Chemical Investigations Item Type text; Electronic Dissertation Authors Siddiqui, Shariq Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 08:52:30 Link to Item http://hdl.handle.net/10150/201511 OPTIMIZATION OF AMMONIA-PEROXIDE WATER MIXTURE (APM) FOR HIGH VOLUME MANUFACTURING THROUGH SURFACE CHEMICAL INVESTIGATIONS Shariq Siddiqui ___________________________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 11 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of Dissertation Committee, we certify that we have read the dissertation prepared by Shariq Siddiqui entitled Optimization of Ammonia- Peroxide Water Mixture (APM) for High Volume Manufacturing through Surface Chemical Investigations and recommend that it be accepted as fulfilling the dissertation requirement for the degree of Doctor of Philosophy. _____________________________________________________ Date: 5/13/11 Srini Raghavan _____________________________________________________Date: 5/13/11 Supapan Seraphin _____________________________________________________Date: 5/13/11 Jinhong Zhang _____________________________________________________Date: 5/13/11 Manish Keswani Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. _____________________________________________________ Date: 5/13/11 Dissertation Director: Srini Raghavan 3 STATEMENT BY AUTHOR The dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Shariq Siddiqui 4 TABLE OF CONTENTS LIST OF FIGURES………………………………………..……………………………7 LIST OF TABLES………………………………………..………………………........10 ABSTRACT……………………………………………………………………...……..14 CHAPTER 1: INTRODUCTION………………………………………………………16 CHAPTER 2: LITERATURE REVIEW AND BACKGROUND…..........................24 2.1. Overview of Semiconductor Wafer Cleaning………………………………….24 2.2. Silicon Surface Wettability……………………………………………………….31 2.3 Particle-Wafer Interactions in Wet Cleaning Systems………………………...37 2.3.1 Van der Waals Forces………………………………………………….38 2.3.2. Electrical Double-Layer Interaction Forces………………………….47 2.4 Measurement of Interaction Forces……………………………………………. 53 2.5. Overview of Atomic Force Microscope (AFM)………………………..……….54 2.5.1 Principle of Force Measurements in Atomic Force Microscope…………............................................................................................56 2.6. Literature Review for Interaction Force Measurements using AFM………...58 2.7. Literature Review for the Stability of Ammonia-Peroxide Mixture (APM)…..64 CHAPTER 3: EXPERIMENTAL PROCEDURE AND METHODS………………..70 3.1. Materials …………………………………………………………………………..70 3.2. Silicon Surface and Tip Preparation……………………………………………70 3.3 Contact Angle Measurements.…………………………………………………..71 5 TABLE OF CONTENTS-CONTINUED 3.4. Surface Force Measurements……………..……………………………………72 3.5. Measurements of NH 4OH and H 2O2 concentrations using the Horiba SC-1 Composition Monitor………………………….……………………………………….75 3.5.1. Monitor Specification…….. …………………………………………...76 3.5.2. Data Acquisition………………………………………………………...77 3.5.3. Experimental Procedure for NH 4OH and H 2O2 Concentration Measurements.………………………………………...................................79 CHAPTER 4: RESULTS AND DISCUSSION………………………………….…...80 4.1. Interaction Force Measurements between Hydrophobic Si Surface and Si Tip using Atomic Force Microscopy……………………………………………………..80 4.1.1. Interaction Force Measurements between Si Surface and Si Tip in DI-water………………………………………………………………………...82 4.1.2. Interaction Force Measurements between Si Surfaces in NH 4OH:H 2O (1:100) Solution ….………………………………………….....84 4.1.3. Interaction Force Measurements between Si Surfaces in H 2O2:H 2O (1:100) Solution……………………………………………………………......86 4.1.3. Interaction Force Measurements between Si Surfaces in NH4OH:H 2O2:H 2O Solutions……………………………………………….....88 4.2. Analysis of Measured Adhesion Forces between Si Surfaces………………90 4.3. Comparison of Measured Repulsive Forces to Calculated Forces using Electrostatic Double Layer Theory…………………………………........................97 4.4. Comparison of Measured Adhesion Forces to Calculated Forces using JKR Adhesion Force Model……………………………………………………………….99 4.5. Brief Summary of Interaction Force Measurements………………..............104 6 TABLE OF CONTENTS-CONTINUED 4.6. Characterization of the Stability of APM Solutions using the Optical Concentration Monitor……………………………………………………………….105 4.6.1 Effect of Temperature on the Stability of APM Solution………......105 4.6.2. Effect of Dilution on the Stability of APM Solution………………...106 4.6.3. Effect of pH on the hydrogen peroxide decomposition…………...107 2+ 4.6.4. Effect of Iron (Fe ) Ions on H 2O2 Decomposition…………….......110 4.7. Kinetic Analysis of H2O2 Decomposition in APM Solutions …………..........111 4.8. Brief Summary of Stability of APM Solutions ….…………………………....119 CHAPTER 5: CONCLUSIONS AND FUTURE WORK ….………………………120 5.1. Interaction Force Measurements using Atomic Force Microscope………..120 5.2. Characterization of the Stability of APM Solutions using the Optical Concentration Monitor …………………………………..……………………….….121 5.3. Suggestions for Future Work..………………………..……………………….122 REFERENCES……………………………………………………………………….123 7 LIST OF FIGURES Figure 1.1: CMOS transistor pitch scaling trend vs. dates of introduction ……...17 Figure 2.1: Contaminated silicon wafer with different types of impurities………26 Figure 2.2: A schematic of typical wafer cleaning process in the front-end-of-line cleaning…………………………………………………………………………………27 Figure 2.3: A schematic of surface forces acting on three phase contact line of a liquid on the wafer surface……………………………………………………………31 Figure 2.4: Representation of water drop on (a) hydrophilic and (b) hydrophobic surfaces.………………………………………………………………………………..32 Figure 2.5: The interaction energy between two surfaces as a function of separation distance………………………………………………………………….. .37 Figure 2.6: Illustration of (a) same materials interacting in a liquid media and (b) two different materials interacting in a liquid media………………………………..41 Figure 2.7: A schematic representation of different potentials associated with a particle in aqueous solutions…………………………………………………………47 Figure 2.8: Zeta potential of particle contaminants as a function of pH…………51 Figure 2.9: Comparison of zeta potential of silicon dioxide (SiO 2) surfaces prepared using different treatment methods as a function of pH…………………52 Figure 2.10: (a) A schematic representation of interaction forces between the surface and the tip using AFM (b) An SEM image of a silicon tip………………..54 Figure 2.11: A schematic of AFM controller feedback loop to maintain constant deflection between the tip and the surface………………………………………….54 Figure 2.12: A schematic representation of different stages of force-distance curves…………………………………………………………………………………...57 Figure 2.13: (a) Normalized approach and (b) retract force curves between a silicon nitride tip and a silicon surface as a function of separation distance in DIW and HF solutions……………………………………………………………………….61 Figure 2.14: A schematic representation of iron-catalyzed decomposition of hydrogen peroxide in APM solutions………………………………………………...68 8 LIST OF FIGURES-CONTINUED Figure 3.1 : AFM image of silicon surface (2 x 2 µm) after etching in dilute HF solution...………………………………………………………………………………..71 Figure 3.2: Measured interaction forces between silica particle and silicon dioxide surface as a function of separation distance in 5 x 10 -4 NaOH solution…………74 Figure 3.3: A schematic representation of Horiba CS-100C monitor coupled with a solution bath interfaced with resistively heated jacked and temperature controller……………………………………..…………………………………………75 Figure 3.4: Measured and calculated (a) H 2O2 (b) NH 4OH concentrations in 1:1:5 APM solutions at different temperatures…………………………………………….77 Figure 3.5: A graphical representation of ammonium hydroxide, hydrogen peroxide, and water concentrations measured using the Horiba CS-100C concentration monitor…………………………………………………………………78 Figure 4.1: Water contact angle values for silicon surfaces treated with different solutions as a function of time………………………………………........................82
Recommended publications
  • Introduction to the Preparation and Properties of Hydiogen Peroxide
    CHAPTER 1 Introduction to the Preparation and Properties of Hydiogen Peroxide 1 Introduction The following chapter will discuss the preparation of hydrogen peroxide, historically, the present day and future vistas for its in situ preparation. A brief introduction to the physical properties of hydrogen peroxide will also be made for the sake of completeness. Finally, the chapter will conclude with a practical approach to the safe handling of peroxygen species, destruction of residual peroxygens, and the toxicological and occupational health considerations required when handling hydrogen peroxide. 2 Industrial Manufacture of Hydrogen Peroxide The industrial manufacture of hydrogen peroxide can be traced back to its isolation in 18 18 by L. J. Thenard. Thenard reacted barium peroxide with nitric acid to produce a low concentration of aqueous hydrogen peroxide; the process can, however, be significantly improved by the use of hydrochloric acid. The hydrogen peroxide is formed in conjunction with barium chloride, both of which are soluble in water. The barium chloride is subsequently removed by precipitation with sulfuric acid (Figure 1.1). Hence, Thenard gave birth to the first commercial manufacture of aqueous hydrogen peroxide, although it took over sixty years before Thenard’s wet chemical process was employed in a commercial capacity.2 The industrial production of hydrogen peroxide using the above route was still operating until the middle of the 20th century. At the turn of the 19th century, approximately 10000 metric tonnes per annurn of barium peroxide were converted to about 2000 metric tonnes of hydrogen peroxide. Thenard’s process has, however, some major drawbacks which quenched the expectant explosion of its use in an aqueous form.
    [Show full text]
  • Preparing to Manufacture Hydrogen Peroxide
    PREPARING TO MANUFACTURE HYDROGEN PEROXIDE Part of the Hydrogen Peroxide Propulsion Guide The early laboratory preparation of hydrogen peroxide was based on the technique that Thenard used during the initial preparation of hydrogen peroxide. In this technique, barium nitrate, purified by recrystallization, was decomposed by heating in air in a porcelain retort. The resulting oxide was further oxidized by heating in a stream of oxygen to a dull red heat. The barium peroxide which formed was then dampened, ground, and dissolved in hydrochloric acid (nitric acid was used in Thenard’s initial experiments). A slight excess of sulfuric acid was then added to precipitate barium sulfate and regenerate hydrochloric acid. The procedure of barium peroxide solution and sulfate precipitation was repeated several times in the same solution to increase the peroxide concentration (concentrations of up to 33 percent by weight hydrogen peroxide could be achieved in this manner). The concentrated solution containing water, hydrogen peroxide, and hydrochloric acid, along with accumulated impurities, was cooled with ice and saturated with barium peroxide; iron and manganese impurities in the solution were then precipitated out as phosphates. The hydrochloric acid was removed by the addition of silver sulfate and the sulfate ion was removed by the subsequent addition of barium oxide. Further concentration was accomplished by vacuum distillation until “no further density increase occurs.” Thenard reported that 100 w/o hydrogen peroxide (on the basis of density data and the measurement of the volume of oxygen released) could be obtained by this technique. The first record of commercial production of hydrogen peroxide appeared in the 1865 to 1875 period.
    [Show full text]
  • Sulfur Dioxide in Workplace Atmospheres (Bubbler)
    Withdrawn Provided For Historical Reference Only SULFUR DIOXIDE IN WORKPLACE ATMOSPHERES (BUBBLER) ♦ Method Number: ID-104 Matrix: Air OSHA PEL Sulfur Dioxide (Final Rule Limit): 2 ppm (Time Weighted Limit) 5 ppm (Short-Term Exposure Limit) Sulfur Dioxide (Transitional Limit): 5 ppm (Time Weighted Limit) Collection Device: A calibrated personal sampling pump is used to draw a known volume of air through a midget-fritted glass bubbler containing 10 to 15 mL of 0.3 N hydrogen peroxide. Recommended Air Volume: 15 to 60 L Recommended Sampling Rate: 1 L/min Analytical Procedure: Samples are directly analyzed with no sample preparation by ion chromatography as total sulfate. Detection Limit Qualitative: 0.0041 ppm (60-L air volume) Quantitative: 0.010 ppm (60-L air volume) Precision and Accuracy Validation Level: 2.5 to 10.0 ppm (60-L air volume) CVT 0.012 Bias -0.046 Overall Error ±7% Method Classification: Validated Method Chemist: Ted Wilczek, Edward Zimowski Date (Date Revised): 1981 (December, 1989) Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. Branch of Inorganic Methods Development OSHA Technical Center Salt Lake City, Utah 1 of 9 Note: OSHA no longer uses or supports this method (November 2019). Withdrawn Provided For Historical Reference Only 1. Introduction This method describes the collection and analysis of airborne sulfur dioxide (SO2) using midget-fritted glass bubblers (MFGBs) in the workplace. It is applicable for both short-term (STEL) and time weighted average (TWA) exposure evaluations.
    [Show full text]
  • Guidelines for the Preservation of Raw Milk by Use of the Lactoperoxidase System
    GUIDELINES FOR THE PRESERVATION OF RAW MILK BY USE OF THE LACTOPEROXIDASE SYSTEM CAC/GL 13-1991 INTRODUCTION Milk is an easily perishable raw material. Contaminating bacteria may multiply rapidly and render it unsuitable for processing and/or unfit for human consumption. Bacterial growth can be retarded by refrigeration, thereby slowing down the rate of deterioration. Under certain conditions refrigeration may not be feasible due to economical and/ or technical reasons. Difficulties in applying refrigeration are specially a problem for certain areas in countries setting up or expanding their milk production. In these situations, it would be beneficial to have access to a method, other than refrigeration, for retarding bacterial growth in raw milk during collection and transportation to the dairy processing plant. In 1967 the FAO/WHO Expert Panel on Milk Quality concluded that the use of hydrogen peroxide might be an acceptable alternative in the early stages of development of an organized dairy industry, provided that certain conditions were complied with. However, this method has not achieved any general acceptance as it has several drawbacks, most important of which is the difficulty of controlling its use: it may be misused to disguise milk of basic hygienic quality produced under poor hygienic conditions. The toxicological aspects of the use of relatively high concentrations of hydrogen peroxide in milk have also been questioned. A chemical method for preserving milk would still be of great advantage in certain situations. The search for such a method has therefore continued. Interest has recently been focused on the indigenous antibacterial systems in milk to determine if these could be applied practically to preserve raw milk.
    [Show full text]
  • Preparation of Pyridine N-Oxide Derivatives in Microreactor 2014 58 2 195
    PP Periodica Polytechnica Preparation of Pyridine N-oxide Chemical Engineering Derivatives in Microreactor 58(2), pp. 195-205, 2014 DOI:10.3311/PPch.7451 Creative Commons Attribution b Attila Vörös 1, 2 * / Géza Timári 1 / Zoltán Baán 1 / Péter Mizsey 2 / Zoltán Finta 1 RESEARCH ARTICLE RECEIVED 1 APRIL 2014; ACCEPTED AFTER REVISION 12 JUNE 2014 Abstract Introduction N-oxidations of different nitrogen-containing heterocyclic Microflow technology molecules are often applied for synthetic transformations in In the recent years the importance of microreactors are con- chemistry. The industrial implementation of classical batch tinuously growing in R&D and industrial applications as well. oxidation processes are limited due to safety concerns derived This popularity originates from the unique properties of this from metal ion catalyzed decompositions. These restrictions and technology such as: very precise temperature control, outstand- other safety concern issues can be minimized or even avoided ing mixing and heat exchange due to the high surface to volume by applying glass made microreactor setups for this transfor- ratio. With an extremely low active reactor volume, ‘safety mation. The N-oxidation of different pyridine derivative, qui- concern’ chemicals and chemical processes can be handled in noline and isoquinoline is studied using two popular oxidizing safe manner under inert conditions. Based on evidence gained reagents. The further transformation of pyridine derivatives is from several examples, the scale-up of microreactors is also studied through the Polonovski rearrangement in microreactor. expected to be less problematic compared to batch processes, due to the reduced amount of critical scale-up parameters. [1] Keywords In this paper, we describe our recent results on the N-oxida- microreactor technology · N-oxide · oxidation · Polonovski tion of different pyridine derivatives, quinoline and isoquino- rearrangement · safety concern reaction line with m-CPBA in DCM or aqueous H2O2 in acetic acid using microreactor technology.
    [Show full text]
  • Origins of Rotational Barriers in Hydrogen Peroxide and Hydrazine
    394 J. Chem. Theory Comput. 2005, 1, 394-402 Origins of Rotational Barriers in Hydrogen Peroxide and Hydrazine Lingchun Song,† Minghong Liu,‡ Wei Wu,† Qianer Zhang,† and Yirong Mo*,†,‡ Department of Chemistry, State Key Laboratory for Physical Chemistry of Solid Surfaces, Center for Theoretical Chemistry, Xiamen UniVersity, Xiamen, Fujian 361005, P. R. China, and Department of Chemistry, Western Michigan UniVersity, Kalamazoo, Michigan 49008 Received December 21, 2004 Abstract: Compared with their isoelectronic system ethane, both hydrogen peroxide and hydrazine exhibit a double well torsional energy curve where skew conformers are favored over trans conformers and cis conformers are energy-maximum states. Clearly, the involvement of the lone oxygen and nitrogen pairs, or more specifically, the enhanced stabilizing nfσ* negative hyperconjugation effect and destabilizing repulsion among lone pairs, complicates the confor- mational analysis. In this work, the modern ab initio valence bond (VB) method is employed to quantitatively investigate the torsional energy curves of hydrogen peroxide and hydrazine in terms of hyperconjugative stabilization, steric repulsion, and structural and electronic relaxations. It is found that if the hyperconjugation effect is completely quenched, the trans conformers will be favored, while the cis conformers are the only transition state pertaining to the torsional motion in the potential energy surfaces of H2O2 and N2H4. Although usually the steric effect includes the contributions from the electronic and geometric changes, our energy decomposition analysis shows that even the steric effect favors the skew conformers, while the electronic and geometric changes stabilize the trans conformers. Thus, we conclude that both the hypercon- jugative and steric interactions lower the energy of skew conformers and eventually form low barriers from skew to trans conformers and high barriers from skew to cis conformers in both H2O2 and N2H4.
    [Show full text]
  • Dicumyl Peroxide
    Draft Screening Assessment Organic Peroxides Group Chemical Abstracts Service Registry Numbers 80-15-9 80-43-3 Environment and Climate Change Canada Health Canada May 2018 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of two of six substances referred to collectively under the Chemicals Management Plan as the Organic Peroxides Group. These two substances were identified as priorities for assessment as they met categorization criteria under subsection 73(1) of CEPA. Four of the six substances were subsequently determined to be of low concern through other approaches, and decisions for these substances are provided in a separate report.1 Accordingly, this screening assessment addresses the two substances listed in the table below, which will hereinafter be referred to as the Organic Peroxides Group. Table 1: Substances in the Organic Peroxides Group CAS RNa Domestic Substances List name Common name Cumene hydroperoxide 80-15-9 Hydroperoxide, 1-methyl-1-phenylethyl (CHP) 80-43-3 Peroxide, bis(1-methyl-1-phenylethyl) Dicumyl peroxide (DCUP) a The Chemical Abstracts Service Registry Number (CAS RN) is the property of the American Chemical Society and any use or redistribution, except as required in supporting regulatory requirements and/or for reports to the Government of Canada when the information and the reports are required by law or administrative policy, is not permitted without the prior, written permission of the American Chemical Society. Cumene hydroperoxide (CHP) and dicumyl peroxide (DCUP), herein referred to as CHP and DCUP, do not occur naturally in the environment.
    [Show full text]
  • Sulfur Dioxide in Wine Using the Aeration Oxidation Method
    Presque Isle Wine Cellars “Serving the Winemaker Since 1964” (814) 725-1314 www.piwine.com Testing For Free (Unbound) Sulfur Dioxide In Wine Using The Aeration Oxidation Method This instruction sheet also includes very good information on how to care for and prepare laboratory equipment to get the most accurate results Categories of Sulfur Dioxide (hereafter called SO 2): SO 2 is added to wine as a preservative and protector. • Free (unbound) SO 2 – It is this free SO 2 that is the ‘workhorse’ at protecting wine. • Bound SO 2 – This can be measured but it is not as critical that it be done. Some of the bound SO 2 is loosely bound and can release into free SO 2 when running some tests. Care must be taken to prevent this in order to avoid a false reading. • Total SO 2 – This is merely the sum of the bound SO 2 and the free SO 2. For many Aeration Oxidation is the most reasonably accurate method to test SO 2 levels in wine. There is a slight overestimation of the SO 2 level in red wine because some of the SO 2 that is bound to color pigments will release and be erroneously read as being free SO 2. The older the red wine is the less this occurs. At any rate the overestimation is slight and not of significant consequence. Labware Needed: I. Aeration Oxidation apparatus for measuring free SO 2 A. The parts include: (if more than one is needed that number is shown in ( ) : • Metal stand (rod & base)(there may be some value in having two stands) • 100 ml round bottom double neck flask • Clamp (to attach the 100 ml flask to the metal rod) • Bored rubber stopper # 5 with a ¼ inch hole 3 • Bored rubber stopper # 5 with a /8 inch hole • Pasteur pipet (2) (Only one is needed but an extra is included because of fragility) • Glass tip • Tubing to run from the top of the 100 ml flask to the upright on the impinger top • Complete impinger unit (this means it has a top & a bottom).
    [Show full text]
  • Peroxide-Forming Chemicals
    Peroxide-Forming Chemicals Overview Peroxide-forming chemicals are a class of compounds that have the ability to form shock-sensitive explosive peroxide crystals. Many of the organic solvents commonly used in laboratories have the potential to form explosive peroxide crystals. Diethyl ether and tetrahydrofuran are two of the more common peroxide-forming chemicals used today. Therefore, it is extremely important that this procedure be followed regarding the identification, handling, storage, and disposal of peroxide-forming chemicals. Peroxide Formation Under normal storage conditions the materials listed in this document have the potential to generate and accumulate peroxide crystal formations, which may violently detonate when subjected to thermal or mechanical shock. Peroxide-forming chemicals react with oxygen – even at low concentrations – to form peroxy compounds. The risk associated with peroxide formation increases if the peroxide crystallizes or becomes concentrated by evaporation or distillation. Factors that affect rate of peroxide formation include exposure to air, light and heat, moisture, and contamination from metals. Manufacturers may add an inhibitor to peroxide forming chemicals to counter peroxide formation. For many peroxide-forming solvents, butylated hydroxy toluene (BHT) is commonly added. BHT ‘scavenges’ oxygen in the solvent and prevents it from reacting with the solvent to form peroxides. Over time, BHT or other inhibitor in the solvent can become exhausted allowing peroxides to form. Distilling the solvent can completely remove the BHT and make the solvent immediately susceptible to peroxide formation. Peroxide crystals may form on the container plug or the threads of the lid and detonate when the lid is twisted. Do not open a liquid organic peroxide or peroxide-forming chemical if crystals or a precipitate are present.
    [Show full text]
  • This Student Paper Was Written As an Assignment in the Graduate Course
    77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. JS Eastvold Hypothiocyanous Acid 1 Hypothiocyanous Acid: An Overview By Joshua S. Eastvold Anatomy and Cell Biology The University of Iowa Iowa City, IA 52242 For 77:222, Spring 2005 February 9, 2005 Abbreviations EPO eosinophil peroxidase HOSCN hypothiocyanous acid HO2SCN cyanosulfurous acid LPO lactoperoxidase Nbs 5-thio-2-nitrobenzoic acid NCS-O-SCN2− dithiocyanate ether anion OCN− cyanate OSCN− hypothiocyanite SCN− thiocyanate (SCN)2 thiocyanogen S(CN)2 sulfur dicyanide − (SCN)3 trithiocyanate SCNO− isomeric triooxime JS Eastvold Hypothiocyanous Acid 2 Table of Contents ……………………………………………………………….
    [Show full text]
  • Hydrogen Peroxide Oxygenation of Alkanes Including Methane and Ethane Catalyzed by Iron Complexes in Acetonitrile Georgiy B
    Published in Advanced Synthesis & Catalysis, 346, issues 2-3, 317 - 332, 2004 1 which should be used for any reference to this work Hydrogen Peroxide Oxygenation of Alkanes Including Methane and Ethane Catalyzed by Iron Complexes in Acetonitrile Georgiy B. Shul×pin,a,* Galina V. Nizova,a Yuriy N. Kozlov,a Laura Gonzalez Cuervo,b Georg S¸ss-Finkb a Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, ulitsa Kosygina, dom 4, Russia Fax: ( 7095)-1376130, e-mail: [email protected] b Institut de Chimie, Universite¬ de Neucha√tel, Avenue de Bellevaux 51, Case postale 2, 2007 Neucha√tel, Switzerland Received: September 9, 2003; Accepted: January 17, 2004 Abstract: This paper describes an investigation of the amount of PCA. The investigation of kinetics and alkane oxidation with hydrogen peroxide in acetoni- selectivities of the oxidations demonstrated that the trile catalyzed by iron(III) perchlorate (1), iron(III) mechanisms of the reactions are different. Thus, in chloride (2), iron(III) acetate (3) and a binuclear the oxidations catalyzed by the 1, 3 PCA and 4 iron(III) complex with 1,4,7-triazacyclononane (4). PCA systems the main oxidizing species is hydroxyl The corresponding alkyl hydroperoxides are the main radical, and the oxidation in the presence of 2 as a products. Nevertheless in the kinetic study of cyclo- catalyst has been assumed to proceed (partially) with hexane oxidation, the concentrations of oxygenates the formation of ferryl ion, (FeIVO)2. In the (cyclohexanone and cyclohexanol) were measured oxidation catalyzed by the 4 PCA system (TONs after reduction of the reaction solution with triphe- attain 240) hydroxyl radicals were generated in the nylphosphine (which converts the cyclohexyl hydro- rate-determining step of monomolecular decomposi- peroxide to the cyclohexanol).
    [Show full text]
  • Fast Oxidation of Sulfur Dioxide by Hydrogen Peroxide in Deliquesced Aerosol Particles
    Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles Tengyu Liua,1, Simon L. Cleggb, and Jonathan P. D. Abbatta,1 aDepartment of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; and bSchool of Environmental Sciences, University of East Anglia, NR4 7TJ Norwich, United Kingdom Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved December 2, 2019 (received for review September 20, 2019) Atmospheric sulfate aerosols have important impacts on air quality, Oxidation experiments with high solute strength aerosol face climate, and human and ecosystem health. However, current air- significant challenges due to the need for online measurement of quality models generally underestimate the rate of conversion of the reaction kinetics using aerosol particles, and the necessity for sulfur dioxide (SO2) to sulfate during severe haze pollution events, good control of AWC and aerosol pH (27). Sulfate formation indicating that our understanding of sulfate formation chemistry is rates for many aqueous SO2 oxidation pathways involving O3, incomplete. This may arise because the air-quality models rely upon O2+TMI, and NO2 are strongly pH-dependent (6) and are kinetics studies of SO2 oxidation conducted in dilute aqueous solu- subject to 1 to 2 orders of magnitude change if the pH changes by tions, and not at the high solute strengths of atmospheric aerosol 1 unit because the solubility and effective Henry’s law constant of particles. Here, we utilize an aerosol flow reactor to perform direct SO2 positively depend on pH (28). This sensitivity of sulfate investigation on the kinetics of aqueous oxidation of dissolved SO2 formation rates to pH poses experimental challenges in controlling + by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, aerosol pH because product hydrogen ions (H ) will perturb the deliquesced aerosol particles at relative humidity of 73 to 90%.
    [Show full text]