Physics Matters September 2011 Volume 6 at Syracuse University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Issued by the Association of Jewish Refugees in Great Britain
Vol. XVI No. 3 March, 1961 INFORMATION ISSUED BY THE ASSOCIATION OF JEWISH REFUGEES IN GREAT BRITAIN I FAIRFAX MANSIONS, Offict and Coiuulting Heurs : FINCHLEY ROAO (Cornar Fairfax Road), LONDON. N.W.3 Mondaylo Thunday 10 a.nt.—l p.m. 3—6 p.nt. Telephon*: MAIda Val* 9096'7 (e*n*ral Officel Friday 10 a.m.—I p.m. MAIda Val* 4449 (Empioymant Ag*ncy and Social S*rvic*s D*pt.| About 2,945,000 claims have been lodged under the Federal Indemnification Law (BEG) of which A WIDE RANGE OF TASKS about 1,577,000 have been settled. The payments made are about 8,731 million DM and the total expenditure to be expected about 17,200 million Report on AJR Board Meeting DM. The work would probably not be completed by the end of 1962 as visualised in the Law. ^^ore than 60 board members, including dele liabilities would become greater, especially in view The " Council" has proposed several improve gates from the provinces, attended the AJR Board of the expansion of the work for the new homes ments of the BEG which should be incorporated meeting which was held in London on January to be established. As a further and very important into a final law on indemnification (Wiedergut- ^2nd. The comprehensive reports and the vivid device of reducing the deficit, the AJR Charitable machungs-SchlussgesetzX, the enactment of which discussion reaffirmed the variety of important tasks Trust has been established which can accept pay was intended by the German authorities but would ".* AJR and its associated bodies have to cope ments under covenant from which the charitable probably be held over until after the election of With and the organisational strength on which part of the AJR's activities are to be financed. -
Philipp Frank at Harvard University: His Work and His Influence
Philipp Frank at Harvard University: His Work and His Influence The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Holton, Gerald. 2006. Phillip Frank at Harvard: His Work and his Influence. Synthese 153 (2): 297-311. doi.org/10.1007/ s11229-005-5471-3 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37837879 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 10/12/04 Lecture at Philipp Frank Conferences in Prague & Vienna, Sept-Oct. ‘04 Philipp Frank at Harvard: His Work and his Influence by Gerald Holton My pleasant task today is to bring to life Philipp Frank’s work and influence during his last three decades, when he found a refuge and a position in America. In what follows, I hope I may call him Philipp--having been first a graduate student in one of his courses at Harvard, then his teaching assistant sharing his offices, then for many years his colleague and friend in the same Physics Department, and finally, doing research on his archival holdings kept at Harvard. I also should not hide my large personal debt to him, for without his recommendation in the 1950s to the Albert Einstein Estate, I would not have received its warm welcome and its permission, as the first one to do historical research in the treasure trove of unpublished letters and manuscripts, thus starting me on a major part of my career in the history of science. -
Erich Kretschmann As a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument
Erich Kretschmann as a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument Marco Giovanelli Abstract The present paper attempts to show that a 1915 article by Erich Kretschmann must be credited not only for being the source of Einstein’s point-coincidence remark, but also for having anticipated the main lines of the logical-empiricist interpretation of general relativity. Whereas Kretschmann was inspired by the work of Mach and Poincaré, Einstein inserted Kretschmann’s point-coincidence parlance into the context of Ricci and Levi-Civita’s absolute differential calculus. Kretschmann himself realized this and turned the point-coincidence ar- gument against Einstein in his second and more famous 1918 paper. While Einstein had taken nothing from Kretschmann but the expression “point-coincidences”, the logical empiricists, however, instinctively dragged along with it the entire apparatus of Kretschmann’s conven- tionalism. Disappointingly, in their interpretation of general relativity, the logical empiricists unwittingly replicated some epistemological remarks Kretschmann had written before General Relativity even existed. Keywords: Erich Kretschmann, Point Coincidence Argument, Moritz Schlick, General Relativity, Logical Empiricism, Conventionalism 1. Introduction In the early 1980s, John Stachel (Stachel, 1980) and John Norton (Norton, 1984) famously shed new light on Einstein’s celebrated, yet somewhat cryptic, claim that all physical measurements amount to a determination of space-time coincidences, such as the matching of a pointer with a scale, or, if the world consisted of nothing but particles in motion, the meetings of their world-lines. In Einstein’s published writings, this remark — which Stachel has success- fully labeled the “point-coincidence argument” — amounts to the requirement of “general covariance”: since all coordinate systems necessarily agree on coin- cidences, that is, in everything observable, there is no reason to privilege one coordinate system over another. -
A Selected Bibliography of Publications By, and About, Niels Bohr
A Selected Bibliography of Publications by, and about, Niels Bohr Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 1.308 Title word cross-reference + [VIR+08]. $1 [Duf46]. $1.00 [N.38, Bal39]. $105.95 [Dor79]. $11.95 [Bus20]. $12.00 [Kra07, Lan08]. $189 [Tan09]. $21.95 [Hub14]. $24.95 [RS07]. $29.95 [Gor17]. $32.00 [RS07]. $35.00 [Par06]. $47.50 [Kri91]. $6.95 [Sha67]. $61 [Kra16b]. $9 [Jam67]. − [VIR+08]. 238 [Tur46a, Tur46b]. ◦ [Fra55]. 2 [Som18]. β [Gau14]. c [Dar92d, Gam39]. G [Gam39]. h [Gam39]. q [Dar92d]. × [wB90]. -numbers [Dar92d]. /Hasse [KZN+88]. /Rath [GRE+01]. 0 [wB90, Hub14, Tur06]. 0-19-852049-2 [Ano93a, Red93, Seg93]. 0-19-853977-0 [Hub14]. 0-521-35366-1 [Kri91]. 0-674-01519-3 [Tur06]. 0-85224-458-4 [Hen86a]. 0-9672617-2-4 [Kra07, Lan08]. 1 2 1.5 [GRE+01]. 100-˚aret [BR+85]. 100th [BR+85, KRW05, Sch13, vM02]. 110th [Rub97a]. 121 [Boh87a]. 153 [MP97]. 16 [SE13]. 17 [Boh55a, KRBR62]. 175 [Bad83]. 18.11.1962 [Hei63a]. 1911 [Meh75]. 1915 [SE13]. 1915/16 [SE13, SE13]. 1918 [Boh21a]. 1920s [PP16]. 1922 [Boh22a]. 1923 [Ros18]. 1925 [Cla13, Bor13, Jan17, Sho13]. 1927 [Ano28]. 1929 [HEB+80, HvMW79, Pye81]. 1930 [Lin81, Whe81]. 1930/41 [Fer68, Fer71]. 1930s [Aas85b, Stu79]. 1933 [CCJ+34]. -
A Selection of New Arrivals September 2017
A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation). -
Observables and Hamilton-Jacobi Approaches to General Relativity. I
Observables and Hamilton-Jacobi approaches to general relativity. I. The Earlier History Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany Abstract The main focus is on the Hamilton-Jacobi techniques in classical general relativity that were pursued by Peter Bergmann and Arthur Komar in the 1960’s and 1970’s. They placed special emphasis on the ability to construct the factor group of canonical transformations, where the four-dimensional diffeomorphism phase space transformations were factored out. Equivalence classes were identified by a set of phase space functions that were invari- ant under the action of the four-dimensional diffeomorphism group. This is contrasted and compared with approaches of Paul Weiss, Julian Schwinger, Richard Arnowitt, Stanley Deser, Charles Misner, Karel Kuchar – and es- pecially the geometrodynamical program of John Wheeler and Bryce DeWitt where diffeomorphism symmetry is replaced by a notion of multifingered time. The origins of all of these approaches are traced to Elie Cartan’s invariant in- tegral formulation of classical dynamics. A related correspondence concerning the thin sandwich dispute is also documented. 1 Introduction Given that the classical Hamilton-Jacobi theory played such a prominent role in the formulation of Schrødinger quantum wave mechanics, it is remarkable that gen- eral relativists did not make a serious effort in applying the technique until the early 1960’s. The origins of this attempt in flat spacetime field theory can be arXiv:2106.11894v1 [physics.hist-ph] 22 Jun 2021 traced to Dirac’s groundbreaking 1933 paper, The Lagrangian in quantum mechan- ics [Dirac, 1933], where he established the link, for systems with a finite number of degrees of freedom, between initial and final classical action configuration vari- ables, Hamilton principal functions, and quantum transition amplitudes. -
The Universe of General Relativity, Springer 2005.Pdf
Einstein Studies Editors: Don Howard John Stachel Published under the sponsorship of the Center for Einstein Studies, Boston University Volume 1: Einstein and the History of General Relativity Don Howard and John Stachel, editors Volume 2: Conceptual Problems of Quantum Gravity Abhay Ashtekar and John Stachel, editors Volume 3: Studies in the History of General Relativity Jean Eisenstaedt and A.J. Kox, editors Volume 4: Recent Advances in General Relativity Allen I. Janis and John R. Porter, editors Volume 5: The Attraction of Gravitation: New Studies in the History of General Relativity John Earman, Michel Janssen and John D. Norton, editors Volume 6: Mach’s Principle: From Newton’s Bucket to Quantum Gravity Julian B. Barbour and Herbert Pfister, editors Volume 7: The Expanding Worlds of General Relativity Hubert Goenner, Jürgen Renn, Jim Ritter, and Tilman Sauer, editors Volume 8: Einstein: The Formative Years, 1879–1909 Don Howard and John Stachel, editors Volume 9: Einstein from ‘B’ to ‘Z’ John Stachel Volume 10: Einstein Studies in Russia Yuri Balashov and Vladimir Vizgin, editors Volume 11: The Universe of General Relativity A.J. Kox and Jean Eisenstaedt, editors A.J. Kox Jean Eisenstaedt Editors The Universe of General Relativity Birkhauser¨ Boston • Basel • Berlin A.J. Kox Jean Eisenstaedt Universiteit van Amsterdam Observatoire de Paris Instituut voor Theoretische Fysica SYRTE/UMR8630–CNRS Valckenierstraat 65 F-75014 Paris Cedex 1018 XE Amsterdam France The Netherlands AMS Subject Classification (2000): 01A60, 83-03, 83-06 Library of Congress Cataloging-in-Publication Data The universe of general relativity / A.J. Kox, editors, Jean Eisenstaedt. p. -
Philipp G. Frank: Critic of Modern Science
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1969 Philipp G. Frank: Critic of Modern Science Justin. Synnestvedt Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Philosophy Commons Recommended Citation Synnestvedt, Justin., "Philipp G. Frank: Critic of Modern Science" (1969). Master's Theses. 2487. https://ecommons.luc.edu/luc_theses/2487 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © Justin. Synnestvedt PHILIPP G. FRANK: CRITIC OF MODERN SCIENCP. by Justin Synnestvedt A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Master of Arts November 1969 -- PREFACE The purpoae of till• paper i• to preMnt Pblllpp G. Frank a• epitoml&lna aome of the develop11ent• 'tbat have occurred in the philo•opby of acle.nce during th.la century. Frank i• particularly well aulted ae a •ubject for thl• •tudy, for aeveral raa•ona. In the tlr•t place, b.e baa been an i.nf luential contributor to the growth of modern science, tbrough hi• work aa Proteaaor of Theo• retical Pbyeica at Prague, fr• 1912 to 1938, aact aa Lecturer on Physic• and Mathematica at Banard, fc• 1939 until hi• ret!zwnt 1n 1954. -
Die Ausgrenzung Und Vertreibung Von Physikern Im Nationalsozialismus - Welche Rolle Spielte Die DPG?
1 Die Ausgrenzung und Vertreibung von Physikern im Nationalsozialismus - welche Rolle spielte die DPG? In: D. Hoffmann; M. Walker (Hrsg.): Physiker zwischen Autonomie und Anpassung. Berlin: Wiley, 2006, S. 91-138. Einleitung Die „Machtergreifung“ der Nationalsozialisten führte bereits im Frühjahr 1933 zu einer schwerwiegenden Zäsur im deutschen Kultur- und Geistesleben. Das Instrumentarium dafür verschaffte sich die neue Regierung mit jener Gesetzgebung, die euphemistisch angeblich „das Berufsbeamtentum wiederherstellen“ wollte, aber als wichtigste Bestimmung die sogenannten Nichtarier aus dem öffentlichen Dienst entfernte. An den deutschen Universitäten kam es daraufhin zu einer großen Zahl von Beurlaubungen und Entlassungen. Das trieb viele von den Betroffenen, insbesondere die Jüngeren unter ihnen, denen damit die Existenzgrundlage entzogen worden war, recht bald in die Emigration. Es war 1933 noch nicht zwingend abzusehen, dass es sich nicht nur um eine vorübergehende Maßnahme, sondern erst um den Beginn einer Abfolge von diskriminierenden Gesetzen und Verordnungen handelte. Sie schufen die Grundlage dafür, politische Gegner und „Nichtarier“ bzw. später in etwas engerem Sinn als Juden definierte Bürger aus dem öffentlichen Leben Deutschlands völlig auszuschließen. Die Physik gehörte zu den davon überdurchschnittlich stark betroffenen Disziplinen.1 Vor diesem Hintergrund stellt sich die Frage, inwieweit die Berufsorganisation der Physiker, die Deutsche Physikalische Gesellschaft (DPG), willens und in der Lage war, eventuelle Handlungsspielräume zu nutzen, um auch die Interessen der auf diese Weise ausgegrenzten Kollegen zu vertreten. Anmerkungen 1 Siehe z. B. S.L.Wolff, Vertreibung und Emigration in der Physik, Physik in unserer Zeit 24 (1993), S. 267-273. 2 Die Reaktionen der DPG auf die Entlassungen durch die nationalsozialistische Gesetzgebung Für die DPG gab es zwei zentrale Aufgabenbereiche. -
Female Perpetrators of the Nazi Final Solution
Trinity College Trinity College Digital Repository Senior Theses and Projects Student Scholarship Spring 2015 Ordinary Women: Female Perpetrators of the Nazi Final Solution Haley A. Wodenshek Trinity College, [email protected] Follow this and additional works at: https://digitalrepository.trincoll.edu/theses Part of the European History Commons, and the Women's Studies Commons Recommended Citation Wodenshek, Haley A., "Ordinary Women: Female Perpetrators of the Nazi Final Solution". Senior Theses, Trinity College, Hartford, CT 2015. Trinity College Digital Repository, https://digitalrepository.trincoll.edu/theses/522 Ordinary Women: Female Perpetrators of the Nazi Final Solution Haley Wodenshek History Department Senior Thesis Advisor: Allison Rodriguez Class of 2015 2 Table of Contents Acknowledgements……………..………………………………………………………... 1 “We believe in Adolf Hitler, our Eternal Führer”………………………………………... 2 An Introduction to the Role of Nazi Women Chapter 1: “Power would tame [Hitler’s] extremism, they said”………………………. 22 The Rise and Fall of the Weimar Republic Chapter 2: Hitler’s Girls………………………………………………………………… 43 Chapter 3: Hitler’s Girls Go East……………………………………………………….. 67 Chapter 4: The Case Studies of Herta Oberheuser, Irma Grese & Ilse Koch…………... 85 The Case of Herta Oberheuser ............................................................................. 87 The Case of Irma Ilse Ida Grese, #9 ………………………………………....... 108 The Case of Ilse Koch ........................................................................................ 127 Conclusion: Fleeing the East, The Final Retreat ……………………………………... 149 “My [sic] wife, sir, wouldn’t hurt a fly.” Works Cited…………………………………………………………………………… 158 3 Acknowledgements *** This work is dedicated to my mother Anne Wodenshek, who has always pushed me to become the strong and independent woman I am today, and who gave me the gift of education. *** I would like to extend my deepest gratitude to my Thesis advisor, Professor Allison Rodriguez for helping me through this yearlong process. -
Black Holes in Loop Quantum Gravity Alejandro Perez
Black Holes in Loop Quantum Gravity Alejandro Perez To cite this version: Alejandro Perez. Black Holes in Loop Quantum Gravity. Rept.Prog.Phys., 2017, 80 (12), pp.126901. 10.1088/1361-6633/aa7e14. hal-01645217 HAL Id: hal-01645217 https://hal.archives-ouvertes.fr/hal-01645217 Submitted on 17 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Black Holes in Loop Quantum Gravity Alejandro Perez1 1 Centre de Physique Th´eorique,Aix Marseille Universit, Universit de Toulon, CNRS, UMR 7332, 13288 Marseille, France. This is a review of the results on black hole physics in the framework of loop quantum gravity. The key feature underlying the results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields and specially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the mo- ment) speculative issues such as those concerning the fate of information in black hole evaporation. -
General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 37
General relativity - Wikipedia, the free encyclopedia Page 1 of 37 General relativity From Wikipedia, the free encyclopedia General relativity or the general theory of relativity is the geometric General relativity [1] theory of gravitation published by Albert Einstein in 1916. It is the Introduction current description of gravitation in modern physics. General relativity Mathematical formulation generalises special relativity and Newton's law of universal gravitation, Resources providing a unified description of gravity as a geometric property of Fundamental concepts Special relativity Equivalence principle World line · Riemannian geometry Phenomena Kepler problem · Lenses · Waves Frame-dragging · Geodetic effect Event horizon · Singularity Black hole Equations Linearized Gravity Post-Newtonian formalism Einstein field equations Friedmann equations ADM formalism BSSN formalism Advanced theories Kaluza–Klein Quantum gravity Solutions Schwarzschild Reissner-Nordström · Gödel Kerr · Kerr-Newman Kasner · Taub-NUT · Milne · Robertson-Walker pp-wave Scientists Einstein · Minkowski · Eddington Lemaître · Schwarzschild http://en.wikipedia.org/wiki/General_relativity 5/23/2011 General relativity - Wikipedia, the free encyclopedia Page 2 of 37 Robertson · Kerr · Friedman Chandrasekhar · Hawking · others space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four- momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Many predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Examples of such differences include gravitational time dilation, the gravitational redshift of light, and the gravitational time delay.