Therapeutic Targeting of Oncogenic Tyrosine Phosphatases Rochelle Frankson, Zhi-Hong Yu, Yunpeng Bai, Qinglin Li, Ruo-Yu Zhang, and Zhong-Yin Zhang

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Targeting of Oncogenic Tyrosine Phosphatases Rochelle Frankson, Zhi-Hong Yu, Yunpeng Bai, Qinglin Li, Ruo-Yu Zhang, and Zhong-Yin Zhang Published OnlineFirst August 30, 2017; DOI: 10.1158/0008-5472.CAN-17-1510 Cancer Review Research Therapeutic Targeting of Oncogenic Tyrosine Phosphatases Rochelle Frankson, Zhi-Hong Yu, Yunpeng Bai, Qinglin Li, Ruo-Yu Zhang, and Zhong-Yin Zhang Abstract Protein tyrosine phosphatases (PTP) are exciting and novel metabolic syndromes, and autoimmune diseases. The Src homol- targets for cancer drug discovery that work in concert with protein ogy domain containing phosphatase 2 (SHP2) and the three- tyrosine kinases (PTK) in controlling cellular homeostasis. Given membered family of phosphatases of regenerating liver (PRL) are the activating role that some PTKs play in initiating growth factor– infamously oncogenic members of the PTP superfamily. Both are mediated cellular processes, PTPs are usually perceived as the established regulators of major cancer pathways such as Ras/ negative regulators of these events and therefore tumor suppres- ERK1/2, Src, JAK/STAT, JNK, NF-kB, and PTEN/PI3K/AKT. Fur- sive in nature. However, mounting evidence indicate that PTPs do thermore, upregulation, mutation, or other dysregulation of these not always antagonize the activity of PTKs in regulating tyrosine PTPs has been positively correlated with cancer initiation and phosphorylation, but can also play dominant roles in the initi- progression. This review will provide topical coverage of target ation and progression of signaling cascades that regulate cell validation and drug discovery efforts made in targeting these functions. It follows, therefore, that PTP malfunction can actively oncogenic PTPs as compelling candidates for cancer therapy. contribute to a host of human disorders, in particular, cancer, Cancer Res; 77(21); 1–5. Ó2017 AACR. Introduction include a better coverage of PTP function and target validation. In turn, this has generated heightened interest over their candidacy Protein tyrosine phosphorylation is essential for regulating a for therapeutic development. Previously insurmountable obsta- myriad of cellular processes, including cell growth and survival. cles such as inhibitor potency, specificity and bioavailability are Dysregulation of tyrosine phosphorylation mediated cell signal- being addressed by methods of drug design that exploit unique ing is a well-recognized cause for diseases. Numerous medicinal structural features proximal to the catalytic and regulatory sites. agents acting on protein tyrosine kinases (PTK) have reached This review aims to shine the spotlight on two oncogenic PTPs: the the clinic in recent years. Because protein tyrosine phosphoryla- Src homology 2 domain containing phosphatase 2 (SHP2) and tion is a dynamic and reversible posttranslational modification the phosphatases of regenerating liver (PRL). SHP2 and PRLs play that is orchestrated by a regulatory partnership between PTKs and critical roles in cancer progression and are emerging as compelling protein tyrosine phosphatases (PTP), there is the potential to therapeutic targets for cancer drug discovery. modulate disease progression by targeting the PTPs. Indeed, malfunction of PTP activity contributes to the development and SHP2 Is a Bona Fide Oncoprotein progression of aberrations such as cancer, metabolic and auto- immune disorders, infectious disease and neurodegeneration. SHP2, encoded by the PTPN11 gene, is an allosteric phospha- Given the involvement of PTPs to human malady, a more com- tase containing two SH2 domains (i.e., N-SH2 and C-SH2), a PTP prehensive investigation of them is paramount to the develop- catalytic domain and a C-terminal tail (Fig. 1A). In the basal state, ment of more effective therapeutic interventions. In this review, SHP2 is kept in an autoinhibited conformation by intramolecular we will focus on the PTPs and their eligibility as targets of drug interactions between the N-SH2 domain and the catalytic cleft of discovery in cancer. Although several PTPs have been implicated the PTP domain (2). However, upon growth factor or cytokine as potential tumor suppressors, growing evidence establish that a stimulation, binding of specific pTyr motifs from growth factor large number of PTPs function as powerful tumor promoters in receptors or adaptor proteins to the N-SH2 domain releases many types of cancers (1). Over the years, our understanding of autoinhibition and activates SHP2 (Fig. 1A). This elegant allo- how PTPs contribute to signaling and disease has expanded to steric mechanism ensures that SHP2 exerts its phosphatase activity only when recruited to appropriate cellular locales (3). SHP2 is required for full activation of the Ras/ERK1/2 pathway, a major Departments of Medicinal Chemistry and Molecular Pharmacology and Chem- signaling cascade in cancer biology. Although there is general istry, Center for Cancer Research and Institute for Drug Discovery, Purdue agreement that SHP2 acts downstream of growth factor receptors University, West Lafayette, Indiana. and upstream of Ras, the mechanistic underpinnings of how Corresponding Author: Zhong-Yin Zhang, Purdue University, 575 Stadium Mall SHP2 mediates Ras/ERK1/2 activation remains an active area Drive, RHPH 202A, West Lafayette, IN 47907. Phone: 765-496-3720; Fax: 765- of research. Current models suggest that SHP2 fulfills its positive 494-1414; E-mail: [email protected] role in signaling by dephosphorylating pTyr residues, such as doi: 10.1158/0008-5472.CAN-17-1510 the RasGAP-binding site on receptor tyrosine kinases, the CSK- Ó2017 American Association for Cancer Research. binding sites on paxillin and PAG/CBP, or the Grb2/SOS binding www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst August 30, 2017; DOI: 10.1158/0008-5472.CAN-17-1510 Frankson et al. AB Growth factor Growth factor Allosteric Active site directed inhibitors inhibitor CI N O IIB-08 RTK RTK CI NO2 NH HO 2 N O N HN NH N HO N HO3S N N N N N O O H GS-493 Cbp NH 2 N N N PP Sprouty PP SHP099 H P CSK HO I O P NO2 HO 11a-1 S SHP2 Src SHP2 O P CSK PP P PP Stablize RAS autoinhibited Paxillin conformation Block active site RAF PI3K JAK2 Activated by pTyr PP PP N-SH2 RasGAP motif in RTKs/scaffold pY pY MEK C-SH2 proteins PTP N-SH2 C-SH2 PTP C-tail κ C-tail JNKERK1/2 AKT NF- B STAT Cell proliferation, differentiation, survival CD Growth factor Active site Antibodies directed inhibitors RTK CNNMs O NH Trimer S disrupter NH PP 2 PTEN PRL Src Thienopyridone PRL PRL N O N O HO NH PP N O Br O 2+ OH PI3K AKT p115 RhoGAP ERK1/2 [Mg ] O Analog 3 PRL Cmpd-43 PP EMT, cell proliferation, migration, tumor progression © 2017 American Association for Cancer Research Figure 1. Signaling mechanisms and therapeutic targeting of SHP2 and PRLs. A, The schematic structure of SHP2, strategies of targeting SHP2 for cancer therapy, and the latest small-molecule SHP2 inhibitors. B, SHP2 promotes multiple oncogenic signaling pathways. C, PRL-mediated signaling in cancer. D, Strategies of targeting PRLs for cancer therapy and representative PRL inhibitors. EMT, epithelial–mesenchymal transition. site on Sprouty1 (Fig. 1B), which negatively regulate Ras/ERK1/2 also show that the leukemia associated PTPN11 E76K mutation in pathway activation (4). Most recent data indicate that dephos- the bone marrow microenvironment promotes the development phorylation of Ras/pTyr32 by SHP2 can also lead to Ras activation and progression of myeloproliferative neoplasm (8). Although (5). In addition to the Ras/ERK1/2 pathway, SHP2 has also been PTPN11 mutations are less frequently observed in solid tumors shown to promote PI3K/AKT, JAK/STAT, JNK, and NF-kB signal- than in leukemia, SHP2 overexpression is common in many types ing (Fig. 1B), which are strongly associated with various human of carcinoma. For example, SHP2 is overexpressed in approxi- þ þ cancers (3, 4, 6). mately 80% of HER2 ERa⁄PR infiltrating ductal carcinoma, and Genetic and clinical studies have linked SHP2 with many elevated SHP2 level in breast cancer tissues is positively correlated human diseases including cancers. Germline gain-of-function with lymph node metastasis and higher tumor grade (9). Fur- PTPN11 mutations cause approximately 40% to 50% of Noonan thermore, SHP2 signature genes are overexpressed in approxi- syndrome, an autosomal dominant developmental disorder with mately 55% of human primary breast tumors and correlated with increased risk of malignancy. Somatic gain-of-function PTPN11 invasive ductal carcinoma and poor prognosis (10). In addition, mutations are broadly associated with leukemia (including juve- SHP2 is positively correlated with EGFR expression in breast nile myelomonocytic leukemia) and various solid tumors includ- cancers (11), consistent with the obligatory requirement of SHP2 ing lung adenocarcinoma, colon cancer, neuroblastoma, mela- in receptor tyrosine kinase signaling. SHP2 is also upregulated in noma and hepatocellular carcinoma (4, 6, 7). Recent evidence human prostate cancer and positively correlates with advanced OF2 Cancer Res; 77(21) November 1, 2017 Cancer Research Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst August 30, 2017; DOI: 10.1158/0008-5472.CAN-17-1510 Phosphatases as Targets for Cancer Drug Discovery disease stage, tumor metastasis and shortened patient survival obtained with SHP2 inhibitors of diverse structural scaffolds and (12). In fact, increased SHP2 expression is also found in gastric, distinct mode of action strongly
Recommended publications
  • Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
    Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology.
    [Show full text]
  • NIH Public Access Author Manuscript Stem Cells
    NIH Public Access Author Manuscript Stem Cells. Author manuscript; available in PMC 2015 July 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Stem Cells. 2014 July ; 32(7): 1956–1967. doi:10.1002/stem.1672. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal Michihiro Kobayashia, Yunpeng Baib, Yuanshu Dongb, Hao Yua, Sisi Chenb, Rui Gaoa, Lujuan Zhangb, Mervin C. Yodera,b, Reuben Kapura,b, Zhong-Yin Zhangb,*, and Yan Liua,b,* aDepartment of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202 bDepartment of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 Abstract Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in hematopoietic stem cells is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family [aka PRL (phosphatase of regenerating liver) phosphatases], consisting of PTP4A1/PRL1, PTP4A2/PRL2 and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self- renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Biogenesis and Maintenance of Cytoplasmic Domains in Myelin of the Central Nervous System
    Biogenesis and Maintenance of Cytoplasmic Domains in Myelin of the Central Nervous System Dissertation for the award of the degree “Doctor rerum naturalium” of the Georg-August-Universität Göttingen within the doctoral program Molecular Biology of Cells of the Georg-August University School of Science (GAUSS) submitted by Caroline Julia Velte from Usingen, Germany Göttingen 2016 Members of the Thesis Committee: Prof. Dr. Mikael Simons, Reviewer Max Planck Institute of Experimental Medicine, Göttingen Prof. Dr. Andreas Janshoff, Reviewer Georg-August University, Göttingen Prof. Dr. Dirk Görlich Max Planck Institute of Biophysical Chemistry, Göttingen Date of the thesis defense: 27th of June 2016 Don't part with your illusions. When they are gone, you may still exist, but you have ceased to live. (Mark Twain) III Affidavit I hereby declare that my PhD thesis “Biogenesis and Maintenance of Cytoplasmic Domains in Myelin of the Central Nervous System” has been written independently with no other aids or sources than quoted. Furthermore, I confirm that this thesis has not been submitted as part of another examination process neither in identical nor in similar form. Caroline Julia Velte April 2016 Göttingen, Germany V Publications Nicolas Snaidero*, Caroline Velte*, Matti Myllykoski, Arne Raasakka, Alexander Ignatev, Hauke B. Werner, Michelle S. Erwig, Wiebke Moebius, Petri Kursula, Klaus-Armin Nave, and Mikael Simons Antagonistic Functions of MBP and CNP Establish Cytosolic Channels in CNS Myelin, Cell Reports 18 *equal contribution (January 2017) E. d’Este, D. Kamin, C. Velte, F. Göttfert, M. Simons, S.W. Hell Subcortical cytoskeleton periodicity throughout the nervous system, Scientific Reports 6 (March 2016) K.A.
    [Show full text]
  • Hypomethylation-Linked Activation of PLCE1 Impedes Autophagy and Promotes Tumorigenesis Through MDM2-Mediated Ubiquitination and Destabilization of P53
    Author Manuscript Published OnlineFirst on February 17, 2020; DOI: 10.1158/0008-5472.CAN-19-1912 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hypomethylation-linked activation of PLCE1 impedes autophagy and promotes tumorigenesis through MDM2-mediated ubiquitination and destabilization of p53 Yunzhao Chen1,3*, Huahua Xin1*, Hao Peng1*, Qi Shi1, Menglu Li1, Jie Yu3, Yanxia Tian1, Xueping Han1, Xi Chen1, Yi Zheng4, Jun Li5, Zhihao Yang1, Lan Yang1, Jianming Hu1, Xuan Huang2, Zheng Liu2, Xiaoxi Huang2, Hong Zhou6, Xiaobin Cui1**, Feng Li1,2** 1 Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China; 2 Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; 3 The people's hospital of Suzhou National Hi-Tech District, Suzhou 215010, China; 4 Department of Gastroenterology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China; 5 Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China; 6 Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia. Running title: PLCE1 impedes autophagy via MDM2-p53 axis in ESCC *These authors contributed equally to this work. Corresponding authors: **Xiaobin Cui, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China. Phone: 86.0377.2850955; E-mail: [email protected]; **Feng Li, Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
    [Show full text]
  • "Description"" ""Generatio"
    TABLE S4 "ID ""Description"" ""GeneRatio"" ""BgRatio"" ""pvalue"" ""p.adjust"" ""qvalue"" ""geneID"" ""Count""" "GO:0003712 ""GO:0003712"" ""transcription coregulator activity"" ""84/1859"" ""454/22744"" 9.49597175224444e-13 9.80933882006851e-10 8.20651874588704e-10 ""Ncoa2/Zfp451/Dhx9/Hnrnpu/Cited2/Ncoa7/Ccar1/ Sirt1/Arid5b/Sirt6/Med1/Rara/Atxn7l3/Ddx5/Wbp2/Hdac9/Zmynd11/Cdyl/ Mier3/Sfmbt1/Gata4/Med4/Basp1/Zfpm2/Zhx2/Ddx17/Mkl2/Hes1/Nrip1/Usp16/ Elob/Rrp1b/Rxrb/Kat2b/Mta3/Hsbp1l1/Tle4/Sfr1/Eid1/Cops2/Sox12/Raly/ Ncoa6/Rbm39/Lpin3/Skil/Jade1/Maml3/Supt20/Med12l/Hdgf/Glmp/Nfib/Jun/ Pex14/Rere/Psmd9/Ncor2/Trim24/Ruvbl1/Rybp/Bhlhe40/Atf7ip/Ube3a/Mef2a/ Nrg1/Rbpms/Cnot7/Sin3b/Pou4f2/Pkn1/Cdyl2/Taf5l/Irf2bp2/Birc2/Yap1/ Skor1/Tfdp2/Rad54l2/Ctnnb1/Limd1/Med14/Rap2c/Tbl1x"" 84" "GO:0003779 ""GO:0003779"" ""actin binding"" ""65/1859"" ""414/22744"" 2.57546466939442e-07 8.86818334494813e-05 7.41914559148359e-05 ""Actr3/Cxcr4/Hnrnpu/Enah/Utrn/Epb41l2/Marcks/Ctnna3/Eef2/Pawr/ Ccdc88a/Anxa6/Gas7/Lasp1/Tns4/Syne2/Sipa1l1/Syne3/Phactr1/Enc1/Pxk/ Vcl/Ang/Myo10/Mtss1/Triobp/Mkl2/Afdn/Daam2/Svil/Ctnna1/Synpo/Myo5b/ Nrap/Ablim1/Shtn1/Fmnl2/Itprid2/Ino80/Pfn2/Myoz2/Pdlim5/Cap1/Macf1/ Epb41/Wasf2/Myom3/Ywhah/Coro1c/Ssh1/Hip1/Ppp1r9a/Wasl/Ctnna2/Mical3/ Eps8/Tlnrd1/Myom2/Klhl2/Sntb2/Spire2/Coro2b/Clasp2/Hdac6/Diaph2"" 65" "GO:0046332 ""GO:0046332"" ""SMAD binding"" ""22/1859"" ""84/22744"" 6.87941766027971e-07 0.000177660961076723 0.000148631628923412 ""Bmpr2/Cited2/Usp15/Ddx5/Axin2/Ppm1a/Yy1/Gata4/Tgif1/Ldlrad4/Smad7/ Acvr2a/Pmepa1/Skil/Trim33/Jun/Mef2a/Ipo7/Skor1/Rnf111/Tcf12/Ctnnb1""
    [Show full text]
  • Disruption of Epithelial Architecture Caused by Loss of PTEN Or by Oncogenic Mutant P110a/PIK3CA but Not by HER2 Or Mutant AKT1
    Oncogene (2013) 32, 4417–4426 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Disruption of epithelial architecture caused by loss of PTEN or by oncogenic mutant p110a/PIK3CA but not by HER2 or mutant AKT1 FM Berglund1,3, NR Weerasinghe1,3, L Davidson1,3, JC Lim1,{, BJ Eickholt2 and NR Leslie1 Genetic changes in HER2, PTEN, PIK3CA and AKT1 are all common in breast cancer and lead to the elevated phosphorylation of downstream targets of the PI3K/AKT signalling pathway. Changes in HER2, PTEN, PIK3CA and AKT have all been reported to lead to both enhanced proliferation and failures in hollow lumen formation in three dimensional epithelial culture models, but it is not clear whether these failures in lumen formation are caused by any failure in the spatial coordination of lumen formation (hollowing) or purely a failure in the apoptosis and clearance of luminal cells (cavitation). Here, we use normal murine mammary gland (NMuMG) epithelial cells, which form a hollow lumen without significant apoptosis, to compare the transformation by these four genetic changes. We find that either mutant PIK3CA expression or PTEN loss, but not mutant AKT1 E17K, cause disrupted epithelial architecture, whereas HER2 overexpression drives strong proliferation without affecting lumen formation in these cells. We also show that PTEN requires both lipid and protein phosphatase activity, its extreme C-terminal PDZ binding sequence and probably Myosin 5A to control lumen formation through a mechanism that does not correlate with its ability to control AKT, but which is selectively lost through mutation in some tumours.
    [Show full text]
  • A Role for Nuclear PTEN in Neuronal Differentiation
    The Journal of Neuroscience, February 15, 2000, 20(4):1404–1413 A Role for Nuclear PTEN in Neuronal Differentiation Mahesh B. Lachyankar,1 Nazneen Sultana,1 Christopher M. Schonhoff,2 Prasenjit Mitra,1 Wojciech Poluha,1 Stephen Lambert,3 Peter J. Quesenberry,4 N. Scott Litofsky,5 Lawrence D. Recht,6 Roya Nabi,7 Susan J. Miller,8 Shinji Ohta,8 Benjamin G. Neel,8 and Alonzo H. Ross1 Departments of 1Pharmacology and Molecular Toxicology, 2Biochemistry and Molecular Biology, 3Cell Biology, 4Medicine (Cancer Center), 5Surgery, and 6Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, 7Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, and 8Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center, Boston, Massachusetts 02215 Mutations of phosphatase and tensin homolog deleted on chro- detected in both the nucleus and cytoplasm. Suppression of mosome 10 (PTEN), a protein and lipid phosphatase, have been PTEN levels with antisense oligonucleotides does not block associated with gliomas, macrocephaly, and mental deficien- initiation of neuronal differentiation. Instead, PTEN antisense cies. We have assessed PTENЈs role in the nervous system and leads to death of the resulting, immature neurons, probably find that PTEN is expressed in mouse brain late in develop- during neurite extension. In contrast, PTEN is not required for ment, starting at approximately postnatal day 0. In adult brain, astrocytic differentiation. These observations indicate that PTEN is preferentially expressed in neurons and is especially PTEN acts at multiple sites in the cell, regulating the transition evident in Purkinje neurons, olfactory mitral neurons, and large of differentiating neuroblasts to postmitotic neurons.
    [Show full text]
  • Truseq 48 Gene Cancer Panel
    TruSeq 48 Gene Cancer Panel Indication: Next generation sequencing (NGS) assay for detection of hot spot mutations in 48 cancer-related genes: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53 and VHL. The specific mutations are detected by amplification of the corresponding exons by polymerase chain reaction (PCR). The PCR product is sequenced on a Illumina's MiSeqDx NGS Sequencer. Annotation is provided by Cartagenia Bench Lab NGS. Clinical Panel Gene Exon / Amino Acid (AA) Coverage ABL1 Exons 4-7 (AA 243-362, 395-424) ALK Exons 23, 25 (AA 1172-1176, 1248-1275) BRAF Exon 15 (AA 581-606) EGFR Exons 3, 7, 18-21 (AA 108-142, 287-297, 598-627, 708-728, 729-761, 762-817, 857-875) GNA11 Exons 4-7 (AA 159-172, 172-202, 202-216, 255-297, 304-349, 349-360) GNAQ Exons 4- 7 (AA 159-202, 202-210, 210-263, 261-297, 297-325, 326-360, 355-360) IDH1 Exon 4 (AA 95-133) JAK2 Exon 14 (AA 615-622) KIT Exons 11, 13, 17 (AA 550-587, 641-664, 814-828) KRAS Exons 2-3 (AA 1-22, 38-63) MPL Exon 10 (AA 514-522) NRAS Exons 2-3 (AA 1-19, 38-62) NPM1 Exon 11 (AA 283-295) PIK3CA Exons 2, 5, 8, 10, 21 (AA 84-118, 345-353, 418-441, 538-555, 987-1068) Investigational Panel Gene Exon / Amino Acid (AA) Coverage AKT1 Exon 4 (AA 16-49) APC Exon 16 (AA 875-918, 1113-1153, 1257-1575) ATM Exons 8, 9, 12, 17, 26, 34-36, 50, 54-56, 59,
    [Show full text]
  • Table S1. Complete Gene List. Genbank Refseq and Description of Each Gene Were Provided By
    Document downloaded from http://www.elsevier.es, day 24/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Table S1. Complete gene list. GenBank RefSeq and description of each gene were provided by the array supplier. Unigene GeneBank Symbol Description Gene Name/s Rn.11422 NM_033230 Akt1 V-akt murine thymoma viral oncogene homolog 1 Akt Rn.2104 NM_019288 App Amyloid beta (A4) precursor protein - Rn.23323 NM_001034933 Arsa Arylsulfatase A MGC125207 Rn.94004 NM_033443 Arsb Arylsulfatase B - Rn.6224 NM_001038495 Atg12 ATG12 autophagy related 12 Apg12l, MGC125080 Rn.101734NM_001108809 Atg16l1 ATG16 autophagy related 16-like 1 Apg16l, Wdr30 Rn.104199NM_001191560 Atg16l2 ATG16 autophagy related 16-like 2 RGD1311400 Rn.3084 NM_134394 Atg3 ATG3 autophagy related 3 Apg3l, PIG-1, Pig1 Rn.163086NM_001025711 Atg4b ATG4 autophagy related 4 homolog B Apg4b, MGC112887 Rn.23378 NM_001107948 Atg4c ATG4 autophagy related 4 homolog C - Rn.98385 NM_001014250 Atg5 ATG5 autophagy related 5 - Rn.162765NM_001012097 Atg7 ATG7 autophagy related 7 Apg7l Rn.35248 NM_001014218 Atg9a ATG9 autophagy related 9 homolog A MGC105908, RGD1310450 Rn.36696 NM_022698 Bad BCL2-associated agonist of cell death MGC72439 Rn.14598 NM_053812 Bak1 BCL2-antagonist/killer 1 MGC108627 Rn.10668 NM_017059 Bax Bcl2-associated X protein - Rn.9996 NM_016993 Bcl2 B-cell CLL/lymphoma 2 Bcl-2 Rn.10323 NM_031535 Bcl2l1 Bcl2-like 1 Bcl-xl, Bcl2l, Bclx, bcl-X Rn.2776 NM_053739 Becn1 Beclin 1, autophagy related - Rn.31142 NM_022684
    [Show full text]
  • The Functions of Tumor Suppressor PTEN in Innate and Adaptive Immunity
    Cellular & Molecular Immunology (2017) 14, 581–589 & 2017 CSI and USTC All rights reserved 2042-0226/17 $32.00 www.nature.com/cmi REVIEW The functions of tumor suppressor PTEN in innate and adaptive immunity Lang Chen1 and Deyin Guo2 The tumor suppressor phosphatase and tensin homolog (PTEN) is a lipid and protein phosphatase that is able to antagonize the PI3K/AKT pathway and inhibit tumor growth. PTEN also possesses phosphatase-independent functions. Genetic alterations of PTEN may lead to the deregulation of cell proliferation, survival, differentiation, energy metabolism and cellular architecture and mobility. Although the role of PTEN in tumor suppression is extensively documented and well established, the evidence for its roles in immunity did not start to accumulate until recently. In this review, we will focus on the newly discovered functions of PTEN in the regulation of innate and adaptive immunity, including antiviral responses. Cellular & Molecular Immunology (2017) 14, 581–589; doi:10.1038/cmi.2017.30; published online 26 June 2017 Keywords: adaptive immunity; innate immunity; PTEN; tumor suppressor PTEN AND TUMOR SUPPRESSION found in tumor cells (http://cancer.sanger.ac.uk/cosmic/search? In 1997, two groups independently found that there is a tumor q = pten). Some mutations can even directly change the suppressor gene located on chromosome 10q23.1,2 Li et al.1 conformation of PTEN or can impair its phosphatase activity. named the gene PTEN, abbreviated from phosphatase and Researchers have also discovered that mutation of one of the tensin homolog (PTEN) deleted on chromosome 10, which PTEN alleles could affect the function of PTEN.
    [Show full text]
  • Hypomethylation-Linked Activation of PLCE1 Impedes
    Published OnlineFirst February 17, 2020; DOI: 10.1158/0008-5472.CAN-19-1912 CANCER RESEARCH | MOLECULAR CELL BIOLOGY Hypomethylation-Linked Activation of PLCE1 Impedes Autophagy and Promotes Tumorigenesis through MDM2-Mediated Ubiquitination and Destabilization of p53 Yunzhao Chen1,2, Huahua Xin1, Hao Peng1, Qi Shi1, Menglu Li1,JieYu2, Yanxia Tian1, Xueping Han1, Xi Chen1, Yi Zheng3,JunLi4, Zhihao Yang1, Lan Yang1, Jianming Hu1, Xuan Huang5, Zheng Liu5, Xiaoxi Huang5, Hong Zhou6, Xiaobin Cui1, and Feng Li1,5 ABSTRACT ◥ Esophageal squamous cell carcinoma (ESCC) is one of the dead- Significance: These findings identify hypomethylation- liest malignant diseases. Multiple studies with large clinic-based mediated activation of PLCE1 as a potential oncogene that cohorts have revealed that variations of phospholipase C epsilon 1 blocks cellular autophagy of esophageal carcinoma by facilitat- (PLCE1) correlate with esophageal cancer susceptibility. However, ing the MDM2-dependent ubiquitination of p53 and subsequent the causative role of PLCE1 in ESCC has remained elusive. Here, we degradation. observed that hypomethylation-mediated upregulation of PLCE1 Graphical Abstract: http://cancerres.aacrjournals.org/content/ expression was implicated in esophageal carcinogenesis and poor canres/80/11/2175/F1.large.jpg. prognosis in ESCC cohorts. PLCE1 inhibited cell autophagy and suppressed the protein expression of p53 and various p53-targeted genes in ESCC. Moreover, PLCE1 decreased the half-life of p53 and Normal cells Cancer cells promoted p53 ubiquitination, whereas it increased the half-life of PLCE1 Cytoplasm Cytoplasm mouse double minute 2 homolog (MDM2) and inhibited its ubiqui- wtp53 wtp53 tination, leading to MDM2 stabilization. Mechanistically, the func- MDM2 MDM2 wtp53 MDM2 MDM2 Nucleus tion of PLCE1 correlated with its direct binding to both p53 and Nucleus wtp53 Ub Ub MDM2, which promoted MDM2-dependent ubiquitination of p53 PLCE1 MDM2 wtp53 Ub wtp53 wtp53 and subsequent degradation in vitro.
    [Show full text]