Diplophrys Mutabilis Sp. Nov., a New Member of Labyrinthulomycetes from Freshwater Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Diplophrys Mutabilis Sp. Nov., a New Member of Labyrinthulomycetes from Freshwater Habitats Diplophrys mutabilis sp. nov., a New Member of Labyrinthulomycetes from Freshwater Habitats 著者 Takahashi Yuiki, Yoshida Masaki, Inouye Isao, Watanabe Makoto M. journal or Protist publication title volume 165 number 1 page range 50-65 year 2014-01 権利 (C) 2013 Elsevier GmbH. “NOTICE: this is the author’s version of a work that was accepted for publication in Protist. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Protist,165,1,2014. http://dx.doi.org/10.1016/j.protis.2013.10.001 URL http://hdl.handle.net/2241/121354 doi: 10.1016/j.protis.2013.10.001 1 Diplophrys mutabilis sp. nov., a New Member of 2 Labyrinthulomycetes from Freshwater Habitats 3 4 Yuiki Takahashi, Masaki Yoshida¹, Isao Inouye, and Makoto M. Watanabe 5 6 Faculty of Life & Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 7 Tsukuba, Ibaraki 305-8572, Japan 8 ¹Corresponding author: Tel +81-29-853-8812; E-mail 9 [email protected] 10 11 12 13 14 15 16 17 18 1 19 20 Abstract 21 Diplophrys is a ubiquitous protist genus belonging to the class 22 Labyrinthulomycetes. Although most members of Labyrinthulomycetes prefer 23 marine habitats, the genus Diplophrys exclusively consists of the freshwater 24 species Diplophrys archeri and Diplophrys parva. To investigate the genus 25 Diplophrys, several novel strains were isolated from Japanese freshwater 26 environment, and cultures of the strains were established. Among the strains, an 27 organism isolated from Lake Nojiri displayed some characteristic features 28 different from that of both D. archeri and D. parva. Thus, we described this strain 29 as a new species, Diplophrys mutabilis. D. mutabilis can be cultured using dried 30 water flea as food. This species had an orbicular to fusiform shape, and it 31 occasionally penetrated prey with prominent cytoplasm. From molecular 32 phylogenetic analysis based on 18S rRNA sequences, D. mutabilis evidently 33 belongs to Amphitremida, Labyrinthulomycetes. This study suggests that these 34 species form a unique group in Labyrinthulomycetes. 35 36 Keywords 37 38 Amphitremida, Diplophrys mutabilis, lipid body, phylogeny, ultrastructure 39 2 40 41 Introduction 42 Labyrinthulomycetes is a heterotrophic protist group belonging to the protistan 43 supergroup stramenopiles (Dick 2001 (as “Straminipila”); Patterson 1989), and 44 the class is characterized by the following features: biflagellate zoospores 45 possessing an anterior flagellum with tripartite tubular mastigonemes (Kazama 46 1973), rhizoid-like ectoplasmic net elements produced by a unique organelle, 47 bothrosome (sagenogen, sagenogenetosome) (Moss 1980; Perkins 1972; 48 Porter 1972), and multilamellate cell walls composed of Golgi body-derived 49 scales (Alderman et al. 1974; Darley et al. 1973).Honda et al. 1999 classified 50 Labyrinthulomycetes genus into two families: Thraustochytriaceae, 51 characterized by globose cells forming ectoplasmic nets that are derived from a 52 single bothrosome, and Labyrinthulaceae, spindle-shaped cells with gliding 53 motility using the channels of ectoplasmic nets extending from a number of 54 bothrosomes (Honda et al.1999). Thraustochytriaceae includes Althornia, 55 Aurantiochytrium, Botryochytrium, Japonochytrium, Oblongichytrium, 56 Parietichytrium, Schizochytrium, Sicyoidochytrium, Thraustochytrium, and 57 Ulkenia, whereas Labyrinthulaceae includes only the genera Aplanochytrium 58 and Labyrinthula (Anderson and Cavalier-Smith 2012; Yokoyama and Honda 59 2007; Yokoyama et al. 2007). Some genera such as Diplophrys and 60 Sorodiplophrys are also included in Labyrinthulomycetes even though they are 61 treated as incertae sedis (Dick 2001). 62 Labyrinthulomycetes species play ecological roles as decomposers or 63 parasites. Naganuma et al. (1998) estimated the abundance of the 64 Thraustochytriaceae in the Seto Inland Sea in Japan and demonstrated that their 3 65 biomass in coastal waters could reach 43% of the bacterial biomass. Some 66 studies estimated the biomass of these organisms in the oceanic water column 67 as being as high as 675 × 10³ cell/L (Damare and Raghukumar 2008; Naganuma 68 et al. 2006). Such high abundance and widespread occurrences indicate their 69 ecological importance in coastal and oceanic environments. Conversely, the 70 reality of Labyrinthulomycetes species in terrestrial water is poorly understood, 71 and only a few freshwater genera have been described. Of these, the most 72 common freshwater genus is Diplophrys. 73 Diplophrys was described with a type species Diplophrys archeri collected from 74 a freshwater habitat in Great Britain (Barker 1868). This genus is characterized 75 by the following features: nearly orbicular or broadly elliptical cells, a layer of 76 scales covering the cell comprised of fine organic discs that can only be 77 visualized by electron microscopy, a turf of filiform pseudopodia emanated from 78 two opposite points, and an oil-like refractive orange-to-amber–colored globule 79 immersed in the cytoplasm (Patterson 1996). 80 A new terrestrial species, Diplophrys stercorea, which possesses filopodia and 81 a refractive granule, was added to the genus (Cienkowski, 1876). Although D. 82 stercorea has a similar shape as D. archeri, it was moved to a separate genus, 83 Sorodiplophrys L. Olive & M Dykstra (Dykstra and Olive 1975), based on its 84 terrestrial habitat and aggregative behavior. 85 In addition, a marine protist having a prominent refractive granule, ectoplasmic 86 elements, and gliding motility was isolated from both the Pacific and Atlantic 87 coasts of the United States and named Diplophrys marina (Dykstra and Porter 88 1984). As a result of molecular phylogenetic analysis based on 18S rDNA 4 89 sequences, D. marina was classified into Thraustochytriaceae rather than into 90 Labyrinthulaceae (Leander and Porter 2001). Although the phylogenetic position 91 of D. marina appeared to be clarified, its gliding motility is characteristic of 92 Labyrinthulaceae species. Recently, D. marina was transferred to the genus 93 Amphifila upon the report of the novel species Diplophrys parva (Anderson and 94 Cavalier-Smith 2012). In the paper, the authors proposed the reclassification of 95 the entire class Labyrinthulomycetes, and the genus Diplophrys was classified 96 into the order Thraustochytrida, family Diplophryidae. However, in the following 97 year, Gomaa et al. described the new order Amphitremida, and Diplophrys 98 members were transferred to this order together with testaceous amoeboid 99 organisms with a bipolar symmetry (Gomaa et al. 2013). Based on these recent 100 classifications, Labyrinthulomycetes should be composed of three orders: 101 Thraustochytrida, Labyrinthulida, and Amphitremida including Diplophryidae. 102 Though Diplophrys encountered unheralded testaceous neighbors, related 103 uncultured organisms remain to be discovered, and the diversity of the genus 104 itself is unclear. 105 In this study, we describe a new species in Diplophrys isolated from Lake 106 Nojiri, Nagano, Japan using ultrastructural morphological features. The 107 phylogenetic position of the new species is also consolidated using 18S rRNA 108 sequence 109 110 Materials and Methods 111 Sample collection and cultivation 5 112 In November 2011, D. mutabilis was isolated from freshwater samples collected 113 from Lake Nojiri, Nagano Pref., Japan. Surface water was collected in a 114 sampling bottle. 115 Single-species cultures were established using the single-cell isolation 116 technique with micropipettes. For feeding, autoclaved distilled water and 117 commercially available dried water flea for aquarium fish were used. 5 – 10 of 118 dried water fleas were added to 5 ml of distilled water and autoclaved at 120 °C 119 for 20 min. The cultures were maintained in test tubes at room temperature in a 120 shaded space. Another novel strain, Amphifilidae H-1, was isolated from 121 freshwater samples collected from the surface layer water of Pond Hiuchi, 122 Ibaraki Pref., Japan, in June 2011. The culture of strain H-1 was established and 123 maintained using the same technique utilized for D. mutabilis. Diplophrys ATCC 124 PRA-36 strain HAVA-2 was also obtained from the American Type Culture 125 Collection for molecular phylogenetic analysis. 126 127 Morphological observations 128 For light microscopy, a Zeiss AX10 microscope (Carl Zeiss, Göttingen, 129 Germany) and an Olympus IX71 microscope (Olympus, Tokyo, Japan) equipped 130 with Nomarski differential interference contrast optics was used. IX71 was also 131 used for fluorescent microscopy with Nile red-stained cells. 132 For scanning electron microscopy (SEM), cultured samples were mounted onto 133 glass plates coated with poly L-lysine and fixed at 4°C for 2 h in 5% 6 134 glutaraldehyde. After rinsing with 0.2 M sodium cacodylate buffer (pH 7.2) 135 several times, the prefixed samples were fixed in 1% osmium tetroxide for 30 136 min. These samples were then dehydrated through a graded ethanol series (50, 137 75, 90, 95, and 100%), keeping them in each concentration for 15 min, followed 138 by substitution with dehydrated t-butyl alcohol. The specimens were freeze-dried 139 using a VFD-21S freeze drier (SHINKU-DEVICE, Ibaraki, Japan) and mounted 140 onto specimen stubs. These specimens were coated
Recommended publications
  • Physiology and Biochemistry of the Tropical Seagrass Thalassia Testudinum in Response to Hypersalinity Stress and Labyrinthula Sp
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2011 Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection Stacey Marie Trevathan-Tackett University of North Florida Suggested Citation Trevathan-Tackett, Stacey Marie, "Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection" (2011). UNF Graduate Theses and Dissertations. 391. https://digitalcommons.unf.edu/etd/391 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2011 All Rights Reserved Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection by Stacey Marie Trevathan-Tackett A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology University of North Florida College of Arts and Sciences December, 2011 Unpublished Work © 2011 Stacey Marie Trevathan-Tackett Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Acknowledgements I first would like to acknowledge NOAA and the Nancy Foster Scholarship for funding both school and living expenses for the majority of my Master‟s career allowing me to focus all of my time and efforts toward research. Also, I would like to thank the Dodson Grant, the Coastal Biology program and the Graduate School at UNF for their continued financial support and resources during graduate school.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Are Blastocystis Species Clinically Relevant to Humans?
    Are Blastocystis species clinically relevant to humans? Robyn Anne Nagel MB, BS, FRACP A thesis submitted for the degree of Doctor of Philosophy at the University of Queensland in 2015 School of Veterinary Science Title page Culture of human faecal specimen Blastocystis organisms, vacuolated and granular forms, Photographed RAN: x40 magnification, polarised light ii Abstract Blastocystis spp. are the most common enteric parasites found in human stool and yet, the life cycle of the organism is unknown and the clinical relevance uncertain. Robust cysts transmit infection, and many animals carry the parasite. Infection in humans has been linked to Irritable bowel syndrome (IBS). Although Blastocystis carriage is much higher in IBS patients, studies have not been able to confirm Blastocystis spp. are the direct cause of symptoms. Moreover, eradication is often unsuccessful. A number of approaches were utilised in order to investigate the clinical relevance of Blastocystis spp. in human IBS patients. Deconvolutional microscopy with time-lapse imaging and fluorescent spectroscopy of xenic cultures of Blastocystis spp. from IBS patients and healthy individuals was performed. Green autofluorescence (GAF), most prominently in the 557/576 emission spectra, was observed in the vacuolated, granular, amoebic and cystic Blastocystis forms. This first report of GAF in Blastocystis showed that a Blastocystis-specific fluorescein-conjugated antibody could be partially distinguished from GAF. Surface pores of 1m in diameter were observed cyclically opening and closing over 24 hours and may have nutritional or motility functions. Vacuolated forms, extruded a viscous material slowly over 12 hours, a process likely involving osmoregulation. Tear- shaped granules were observed exiting from the surface of an amoebic form but their identity and function could not be elucidated.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • Genetic Diversity of Labyrinthula Spp. in Seagrass Zostera Marina Beds in the North Atlantic Ocean and the Baltic Sea
    Genetic diversity of Labyrinthula spp. in seagrass Zostera marina beds in the North Atlantic Ocean and the Baltic Sea Submitted by Matsapume Detcharoen In partial fulfillment of the requirements for the Degree of Master of Science in Biology Ludwig-Maximilians-Universität München Faculty of Biology August 2015 Abstract Die sogenannte Seegras – „Wasting Disease“ führte in den 1930er Jahren zu einem Massenrückgang des Seegrases Zostera marina im nördlichen Atlantik. Labyrinthula zosterae ist der potentielle Erreger der Krankheit, der zu dem Verlust von Seegrasbetten führen kann. Dieser Organismus infiziert die Blätter des Seegrases. Frühere Studien, die die Vielfalt der Labyrinthula spp untersuchten, basierten auf der Kultivierung von Labyrinthula. Diese Studie ist die erste Studie, die Blattproben zur molekularen Identifizierung von Labyrinthula verwendet und erforscht die Vielfalt der Gattung Labyrinthula. Proben von sechs Standorten wurden untersucht, dabei wurde ein 290 bp lange Teilsequenz der 18S rDNA kloniert und Sanger sequenziert. Das Abgleichen der erhaltenen Sequenzen mit NCBI GenBank mittels des blast Algorithmus ergab, dass die meisten Sequenzen von 77 bis 100% mit L. zosterae übereinstimmen, während inige Sequenzen der Standorte Wackerballig und Sandspollen eine 84-94 prozentige Übereinstimmung mit Labyrinthula spp zeigten. Keine der mutmaßlichen Labyrinthula spp. Sequenzen wurden mit bekannten Sequenzen aus der Datenbank zusammengefasst. Es wurden sieben OTUs generiert. Der Test von verschiedenen DNA-Extraktionmethoden ergab für ein Pflanzen- und ein Gewebe-Extraktionskit ähnliche Ergebnisse. Nichtsdestotrotz hat das Pflanzen-Kit mehr Vorteile wegen geringerer Kosten und dem geringeren Zeitaufwand. Zusammenfassend zeigt diese Studie, dass bisher unbekannte Labyrinthula spp. in den Seegraspopulationen vorkommen, und dass das in dieser Studie verwendete Verfahren für weitere Anwendungen geeignet ist.
    [Show full text]
  • Eukaryotes Blastocystis Species and Other Microbial Cluster Assembly
    Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes Anastasios D. Tsaousis, Eleni Gentekaki, Laura Eme, Daniel Gaston and Andrew J. Roger Eukaryotic Cell 2014, 13(1):143. DOI: 10.1128/EC.00158-13. Published Ahead of Print 15 November 2013. Downloaded from Updated information and services can be found at: http://ec.asm.org/content/13/1/143 http://ec.asm.org/ These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 50 articles, 28 of which can be accessed free at: http://ec.asm.org/content/13/1/143#ref-list-1 on February 24, 2014 by Dalhousie University CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes Anastasios D. Tsaousis,a,b Eleni Gentekaki,a Laura Eme,a Daniel Gaston,a Andrew J. Rogera ‹Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canadaa; Laboratory of Molecular and Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury, United Kingdomb The cytosolic iron/sulfur cluster assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight Downloaded from proteins in opisthokont lineages, such as animals and fungi.
    [Show full text]
  • Ectocarpus: an Evo‑Devo Model for the Brown Algae Susana M
    Coelho et al. EvoDevo (2020) 11:19 https://doi.org/10.1186/s13227-020-00164-9 EvoDevo REVIEW Open Access Ectocarpus: an evo-devo model for the brown algae Susana M. Coelho1* , Akira F. Peters2, Dieter Müller3 and J. Mark Cock1 Abstract Ectocarpus is a genus of flamentous, marine brown algae. Brown algae belong to the stramenopiles, a large super- group of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context. Keywords: Ectocarpus, Life-cycle, Sex determination, Gametophyte, Sporophyte, Brown algae, Marine, Complex multicellularity, Phaeoviruses Natural habitat and life cycle Ectocarpus is a cosmopolitan genus, occurring world- Ectocarpus is a genus of small, flamentous, multicellu- wide in temperate and subtropical regions, and has been lar, marine brown algae within the order Ectocarpales. collected on all continents except Antarctica [1]. It is pre- Brown algae belong to the stramenopiles (or Heter- sent mainly on rocky shores where it grows on abiotic okonta) (Fig. 1a), a large eukaryotic supergroup that (rocks, pebbles, dead shells) and biotic (other algae, sea- is only distantly related to animals, plants and fungi.
    [Show full text]
  • Plenary Lecture & Symposium
    PLENARY LECTURE & SYMPOSIUM SYMPOSIuM From genomics to flagellar and ciliary struc - MONDAY 29 JulY tures and cytoskeleton dynamics (by FEPS) PlENARY lECTuRE (ISoP Honorary Member lECTuRE) Chairs (by ISoP) Cristina Miceli , University of Camerino, Camerino, Italy Helena Soares , University of Lisbon and Gulbenkian Foun - Introduction - John Dolan , CNRS-Sorbonne University, Ville - dation, Lisbon, Portugal franche-sur-Mer, France. Jack Sunter - Oxford Brookes University, Oxford, UK- Genome Tom Fenchel University of Copenhagen, Copenhagen, Den - wide tagging in trypanosomes uncovers flagellum asymmetries mark Dorota Wloga - Nencki Institute of Experimental Biology, War - ISoP Honorary Member saw, Poland - Deciphering the molecular mechanisms that coor - dinate ciliary outer doublet complexes – search for “missing Size, Shape and Function among Protozoa links” Helena Soares - University of Lisbon and Polytechnic Institute of Lisbon, Lisbon, Portugal - From centrosomal microtubule an - SYMPOSIuM on ciliate biology and taxonomy in memory choring and organization to basal body positioning: TBCCD1 an of Denis lynn (by FEPS/ISoP) elusive protein Chairs Pierangelo luporini , University of Camerino, Camerino, Italy Roberto Docampo , University of Georgia, Athens, Georgia TuESDAY 30 JulY Alan Warren - Natural History Museum, London, UK. The bio - logy and systematics of peritrich ciliates: old concepts and new PlENARY lECTuRE (PAST-PRESIDENT LECTURE, by ISoP) findings Rebecca Zufall - University of Houston, Houston, USA. Amitosis Introduction - Avelina Espinosa , Roger Williams University, and the Evolution of Asexuality in Tetrahymena Ciliates Bristol, USA Sabine Agatha - University of Salzburg, Salzburg, Austria. The biology and systematics of oligotrichean ciliates: new findings David Bass and old concepts Natural History Museum London, London & Cefas, Weymouth, laura utz - School of Sciences, PUCRS, Porto Alegre, Brazil.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]
  • Associated Heterotrophic Protists, Stereomyxa Ramosa, Nitzschia Alba and Labyrinthula Sp
    AQUATIC MICROBIAL ECOLOGY Vol. 21: 49-57,2000 Published February 21 Aquat Microb Ecol Utilisation of seaweed carbon by three surface- associated heterotrophic protists, Stereomyxa ramosa, Nitzschia alba and Labyrinthula sp. Evelyn ~rmstrong'~~~*,Andrew ~ogerson~,John W. ~eftley~ 'University Marine Biological Station Millport, Isle of Curnbrae KA28 OEG, Scotland, UK 'Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, Florida 33004, USA 'Scottish Association for Marine Science, Dunstaffnage Marine Laboratory. PO Box 3, Oban. Argyll PA34 4AD. Scotland, UK ABSTRACT: In view of the abundance of protists associated with seaweeds and the diversity of nutri- tional strategies displayed by protists in general, the ability of 3 closely associated protists to utilise sea- weed carbon was investigated. Stereomyxa ramosa, Nitzschja alba and Labyrinthula sp. were cultured with seaweed polysaccharides as well as seaweed itself. N. alba and Labyrinthula sp. were found to utilise seaweed polysaccharides in axenic culture. All 3 protists were capable of penetrating intact but 'damaged' (autoclaved) seaweed particularly when bacteria were present. The possibility that these and other heterotrophic protists are directly removing macroalgal carbon in the field is discussed. KEY WORDS: Protist . Heterotroph - Seaweed. Carbon . Utilisation INTRODUCTION (Lucas et al. 1981, Rieper-Kirchner 1989).This conver- sion of dissolved carbon into particulate forms (as bac- Heterotrophic protists are abundant on seaweed sur- terial biomass) is thought to be a major link to higher faces (Rogerson 1991, Armstrong et al. 2000) because trophic levels (Newell et al. 1980). To compete effec- seaweeds are rich in bacterial prey (Laycock 1974, tively with bacteria, heterotrophic protists would need Shiba & Taga 1980).
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]