And 13-Galactosidases from Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Col.: Curculionide)

Total Page:16

File Type:pdf, Size:1020Kb

And 13-Galactosidases from Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Col.: Curculionide) Plant Protect. Sci. Vol. 48, 2012, No. 2: 85-93 Biochemical Characterisation of a- and 13-Glucosidases and a- and 13-Galactosidases from Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Col.: Curculionide) NASIR SABERI RISER', MOHAMMAD GHADAMYARI' and BEHNAM MOTAMEDINIYA2 'Department of Plant Protection, Faculty of Agriculture, University of Guilan, Rasht, Iran; 2Agricultural and Natural Resource Research Centre of Baluchestan, Baluchestan, Iran Abstract RISEH N.S., GHADAMYARI M., MOTAMEDINIYA B. (2012): Biochemical characterisation of a- and ii-glucosidases and a- and B-galactosidases from red palm weevil, Rhynchophorus ferrugineus (Olivier) (Col.: Curculionide). Plant Protect. Sci., 48: 85-93. The red palm weevil, Rhynchophorus ferrugineus (Olivier), is one of the most destructive pests of palm trees in the southeast of Iran. Digestion in the alimentary canal of the red palm weevil is facilitated by some carbohydrases. Results of the in vitro studies indicated the presence of a- and (3-glucosidases and a- and (3-galactosidases in the digestive system and haemolymph of this pest. In the digestive system of females, the activities of a-glucosidase and (3-galactosidase were higher than those of (3-glucosidase and a-galactosidase. Also, the specific activity of a- and (3-glucosidases and a- and (3-galactosidases in the female digestive system was much higher than that in larvae. Results showed that the highest activities of a- and (3-glucosidases were at pH 5 and of a- and (3-galactosidases at pH 4. The R. ferrugineus a- and (3-glucosidases and a- and (3-galactosidases have an optimum temperature activity at 50, 50-60, 40-60, and 40°C, respectively. A zymogram pattern in the native gel revealed that R. ferrugineus a- and (3-glucosidases and a- and (3-galactosidases in the digestive system showed 2, 3, 1 and 1 major bands, respectively. The activity of a-glucosidase in the digestive system of larvae and female adults was higher than that of the other carbohydrases. Therefore, it is the most important subject for further study and design of a new approach to the control of this pest using carbohydrase inhibitors. Keywords: carbohydrates; digestive system; palm trees Most living organisms are able to exploit en- dase), Pyrhocoridae zeamais (Coleoptera: Curcu- vironmental polysaccharides. a-Glucosidase lionidae), Apis mellifera (Hymenoptera: Apidae), (EC 3.2.1.20) is an enzyme that catalyses the hy- Drosophila melanogaster (Diptera: Drosophilidae), drolysis of 1,4-a-glucosidic linkages, releasing and Glyphodes pyloalis (Lep.: Pyralidae) (HUBER a-glucose. This enzyme strongly hydrolyses su- & MATHISON 1976; TANIMURA et al. 1979; BAKER crose, maltose, maltodextrin, and pNP-a-D-glu- 1991; SILVA & TERRA 1997; GHADAMYARI et al. copyranoside. It can be found in the alimentary2010). 13-Glucosidase hydrolyses 13 1-4 linkages canal, salivary secretions of insects (LAGADic &between two glucoses or glucose-substituted mol- CHARARAS 1988; RAMZI & HOSSININAVEH 2010) ecules (such as cellobiose) (TERRA et al. 1996). and hypopharyngeal glands of some insects, such In addition to the important digestive role of as Apis mellifera (BAKER & LEHNER 1972; TERRA et enzymes, they can also act as elicitors (trigger- al. 1996). So far, a-glucosidases have been isolateding agents of plant defence mechanisms) in plants and characterised from many insects including when they are encountered with the feeding dam- Dysdercus peruvianus (Hemiptera: Pyrrhocori-age of the insect pests (MATTIACCI et al. 1995). 85 Vol. 48, 2012, No. 2: 85-93 Plant Protect. Sci. a-D-Galactosidases (EC 3.2.1.22) are exo-actingdigestive system of insects but our knowledge of glycoside hydrolases that cleave a-linked galactosea- and P-galactosidases in the digestive system of residues from carbohydrates such as melibiose,insects is still rudimentary. The aim of the present raffinose, stachyose, and gluco- or galactomannansstudy was to determine biochemical characterisa- (METER & REID 1982). a-D-Galactosidases have tion of carbohydrate-hydrolysing enzymes in the been isolated from a variety of animal, plant anddigestive system of the red palm weevil in order microbial sources, but there is little information to gain a better understanding of the digestive about this enzyme in insects. 13-D-Galactosidase (EC physiology of this insect. 3.2.1.23) is a hydrolase enzyme that catalyses the hydrolysis of P-galactosides into monosaccharides (SEZGINTURK & DIKKAYA 2008). Also, our knowl- MATERIAL AND METHODS edge of this enzyme in insects is still rudimentary. The damage caused by R. ferrugineus was re- Insect. The insect was collected from palm trees ported for the first time in 1990 on traditionalin Sistan and Baluchestan province of Iran. The date palm groves in Saravan region (Sistan and last larval instar and adults were randomly selected Baluchestan province, Iran). This pest is a seriousfor measuring the enzyme activity. pest of various palm species including dates in Iran. Chemicals. p-Nitrophenol and bovine serum al- The immature stages develop within the tree trunk, bumin were purchased from Merck (Darmstadt, destroy its vascular system and eventually cause the Germany). p-Nitrophenyl-a-D-glucopyranoside collapse and death of the tree (Ju et al. 2011). The (pNaG), p-nitrophenyl-P-D-glucopyranoside red palm weevil has been managed in Iran through(pN(3G), p-nitrophenyl-a-D-galactopyranoside employing an integrated pest management (IPM) ( pNaGa), p-nitrophenyl-P-D-galactopyranoside strategy comprising several tactics such as mass (pN (3G a), 4- methylumb elliferyl- 13-D -glucopyrano si- trapping with pheromone-baited traps. Althoughde (4-MU(3G), 4-methylumbelliferyl-a-D-gluco- these tactics have been widely used, controlling this pyranoside (4-MUaG), 4-methylumbelliferyl-P-D-ga- pest has not been very effective yet when there is lact op yr a no side (4-MU(3Ga) and 4-methyl-um- an outbreak of the red palm weevil. Currently, some belliferyl-P-D-galactopyranoside (4-MUaG a) were of the major aspects in pest control are to achieve obtained from Sigma (St. Louis, USA). the selective inhibition of the digestive enzymes Sample preparation. Larvae and adults were of many insect pests. Carbohydrases are activeimmobilised on ice and dissected under a stereo upon a large range of substrates and in some casesmicroscope in ice-cold saline buffer. Digestive they are implicated in plant resistance to insectsystems were removed and their contents were predation. Besides hydrolysing several carbohy-eliminated. Digestive systems of the last larval drates, thus liberating monosaccharides that caninstar were divided into three distinct divisions be absorbed, they can cleave plant toxic glycosides. (V1, V2 and V3) (Figure 1). The samples were These, after being hydrolysed by P-glucosidase, cantransferred to a freezer (-20°C). The sample was form cyanide or other toxic compounds such as homogenised in cold double-distilled water using inhibitors of glucose 6-phosphate dehydrogenasea hand-held glass homogeniser and centrifuged at (DESROCHES et al. 1997) or trehalase (NARANo 10 000 rpm for 10 min at 4°C. Also, the haemo- & SACKTOR 1984). As the first step to achievinglymph was collected from larvae. Small incisions this it is necessary to characterise carbohydrate were made in the soft cuticle anterior to the second hydrolases of the digestive system. The study ofthoracic segment of larvae and the haemolymph insect digestive enzymes is important becausewas collected with a 75 1.t1 glass capillary tube. the gut is the major interface between the insect Then the haemolymph was quickly added to a and its environment. To understand how diges- tube containing an anticoagulant solution (glucose tive enzymes act on their substrate in insects, it 1.0 g; citrate 0.4 g; NaC1 0.21 g; double-distilled is essential to develop methods of insect control. water was added to 50 ml). After collecting, the So far, research has been done on proteases in thesamples were transferred to a freezer (-20°C). digestive system of the red palm weevil (ALAR- Determination of a- and /3- glucosidase and CON et al. 2002) but works on carbohydrases ofa- and fl-galactosidase activity, Activities of a- and R. ferrugineus have been missing. Also, there areP-glucosidases and a- and P-galactosidases activi- some researches on a- and P-glucosidases in the ties were measured with pNaG, pNI3G, pNaGa, and 86 Plant Protect. Sci. Vol. 48, 2012, No. 2: 85-93 determined at several pH values using 40mM glycine-phosphate-acetic-citric buffer. The ef- fect of temperature on a- and P-glucosidase and a- and P-galactosidase activities were measured using the homogenate of adults by incubating the reaction mixture at 20, 30, 40, 50, 60, and 70°C for 30 min, followed by measurement of the activity. Protein concentration. Protein concentration was estimated by the Bradford method (BRADFORD 1976), using bovine serum albumin as standard. Polyacrylamide gel electrophoresis and zymo- gram analysis. Non-denaturing polyacrylamide gel electrophoresis (PAGE) was carried out as de- scribed by DAVIS (1964). For a zymogram analysis of a- and P-glucosidases and a- and P-galactosidases, the samples were mixed with sample buffer and applied onto polyacrylamide gel (4% and 10% po- lyacrylamide for the stacking and resolving gels, Figure 1. Different parts (V1, V2 and V3) of the alimentary respectively). Electrophoresis was performed with canal in the larvae of Rhynchophorus ferrugineus 100 V at 4°C. Afterwards, the gel was immersed in 3mM 4-MUI3G, 4-MUaG, 4-MUI3Ga and 4-MUaGa p1\113Ga as substrate, respectively. Homogenates in 0.1M sodium acetate (pH 5.0) for 10 min at room were incubated for 20 min at 37°C with 45 IA oftemperature to develop bands showing a- and substrate (25mM) and 115 IA of 40mM glycine- P-glucosidase and a- and P-galactosidase activities, phosphate-acetic-citric buffer. The reaction was respectively. The blue-fluorescent bands appeared stopped by addition of 600 IA of NaOH (0.25M). in a few minutes under UV.
Recommended publications
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • The Histone Genes Cluster in Rhynchosciara Americana and Its Transcription Profile in Salivary Glands During Larval Development
    Genetics and Molecular Biology, 39, 4, 580-588 (2016) Copyright © 2016, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2015-0306 Research Article The histone genes cluster in Rhynchosciara americana and its transcription profile in salivary glands during larval development Fábio Siviero1, Paula Rezende-Teixeira1, Alexandre de Andrade1, Roberto Vicente Santelli2 and Glaucia Maria Machado-Santelli1 1Departamento de Biologia Celular e Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. 2Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil. Abstract In this work we report the characterization of the Rhynchosciara americana histone genes cluster nucleotide se- quence. It spans 5,131 bp and contains the four core histones and the linker histone H1. Putative control elements were detected. We also determined the copy number of the tandem repeat unit through quantitative PCR, as well as the unequivocal chromosome location of this unique locus in chromosome A band 13. The data were compared with histone clusters from the genus Drosophila, which are the closest known homologues. Keywords: Rhynchosciara, histone cluster, Sciaridae, codon usage. Received: November 24, 2015; Accepted: February 16, 2016. Introduction in the salivary glands of Rhynchosciara, and to provide mo- Rhynchosciara americana is a dipteran belonging to lecular markers for this species. The replication-dependent the family Sciaridae, commonly known as dark-winged histones and their variants are common chromatin compo- fungus gnats. These are known for its exuberant polytene nents of great interest because of their involvement in the chromosomes and developmentally regulated DNA ampli- modulation of the chromatin transcriptional status and with fication loci present in several tissues, the so-called DNA the replication process.
    [Show full text]
  • Dramatic Nucleolar Dispersion in the Salivary Gland of Schwenkfeldina Sp
    www.nature.com/scientificreports OPEN Dramatic nucleolar dispersion in the salivary gland of Schwenkfeldina sp. (Diptera: Sciaridae) José Mariano Amabis & Eduardo Gorab * Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specifc chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be diferentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may refect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae. Transcriptional activity of ribosomal RNA (rRNA) genes in specifc chromosome regions is the primary event for the local assembly of the nucleolus, the starting site of ribosome biogenesis.
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45
    Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45 Bitki Koruma Bülteni / Plant Protection Bulletin http://dergipark.gov.tr/bitkorb Original article A pest that could be posing a threat to mulberry production of Turkey: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Türkiye dut üretimini tehdit edebilecek bir zararlı: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Gürsel ÇETİNa* Pınar HEPHIZLI GÖKSELa Mustafa ÖZDEMİRb Yılmaz BOZa a*Directorate of Ataturk Central Horticultural Research Institute, Süleyman Bey Mah., Yalı Cad., 77100 Yalova, Turkey bPlant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv. 06172 Yenimahalle, Ankara, Turkey ARTICLE INFO ABSTRACT Article history: Mulberry, Morus spp. (Moraceae) is naturally cultivated in Turkey, and no DOI: 10.16955/bitkorb.669491 chemical input used during the production process. Hitherto, major and common Received : 02.01.2020 species of insect and acari caused the economic yield and quality losses in the Accepted : 28.05.2020 mulberry production have not been recorded. On the other hand, lesser mulberry snout moth, Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae), Keywords: considered being one of the most important pests of mulberry around the world Lesser mulberry snout moth, Glyphodes pyloalis, Morus spp., was detected in the province of Yalova in the last week of August in 2018 for the Crambidae, Lepidoptera first time. Larvae of this pest caused serious damage to leaves of white mulberry (Morus alba L., 1753), black mulberry (Morus nigra L., 1753), and weeping white * Corresponding author: Gürsel ÇETİN mulberry (Morus alba cv. ‘Pendula’) (Urticales: Moraceae) whereas it has newly [email protected] just occurred.
    [Show full text]
  • Toxicity and Genetic Analysis of Scaptotrigona Bipunctata Lepeletier, 1836 Contaminated with the Pyrethroid Cypermethrin
    Pereira et al. Toxicity and genetic analysis of Scaptotrigona bipunctata Lepeletier, 1836 contaminated with the pyrethroid cypermethrin Scientific Electronic Archives Issue ID: Sci. Elec. Arch. Vol. 14 (1) January 2021 DOI: http://dx.doi.org/10.36560/14120211254 Article link http://sea.ufr.edu.br/index.php?journal=SEA&page=article&o p=view&path%5B%5D=1254&path%5B%5D=pdf Included in DOAJ, AGRIS, Latindex, Journal TOCs, CORE, Discoursio Open Science, Science Gate, GFAR, CIARDRING, Academic Journals Database and NTHRYS Technologies, Portal de Periódicos CAPES, CrossRef, ICI Journals Master List. Toxicity and genetic analysis of Scaptotrigona bipunctata Lepeletier, 1836 contaminated with the pyrethroid cypermethrin N. C. Pereira¹*, T. O. Diniz¹, M. C. C. Ruvolo-Takasusuki¹ 1 Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular * Author for correspondence: [email protected] ____________________________________________________________________________________ Abstract. Stingless bees are important pollinators for the native forest of tropical and subtropical regions, predominantly in Latin America. This group contains more than 300 species, many of them native from Brazil. Their colonies present various types of structures, formats and materials. Scaptotrigona bipunctata (Lepeletier, 1836) is a species of stingless bee that builds large colonies within tree trunks. They are ecologically important as pollinators, maintaining the ecological balance. However, studies indicate that the number of bees has been decreasing drastically over the years due to habitat destruction and intensive use of agrochemicals. High doses of insecticides can lead to the death of bees, but low concentrations may promote behavioral changes that affect the colonies and its services to ecosystem and agricultural crops. Around 40% of all insecticides applied in Brazil are toxic to bees.
    [Show full text]
  • Studies on the Susceptibility and Cross Infectivity of Mulberry Pest
    Journal of Entomology and Zoology Studies 2021; 9(2): 962-965 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Studies on the susceptibility and cross infectivity www.entomoljournal.com JEZS 2021; 9(2): 962-965 of mulberry pest Glyphodes pyloalis Walker to © 2021 JEZS Received: 16-01-2021 silkworm, Bombyx mori L Accepted: 21-02-2021 Abeera Imtiyaz College of Temperate Sericulture, Abeera Imtiyaz, Iqra Rafiq, KA Sahaf, Shabir A Bhat, ZI Buhroo, Sher-e-Kashmir University of Agricultural Sciences and Technology Shaheen Gul and S Maqbool of Kashmir Srinagar, Jammu and Kashmir, India Abstract Iqra Rafiq In the present study, susceptibility of the mulberry pest G. pyloalis Walker to the pathogens of silkworm, College of Temperate Sericulture, B. mori L. and susceptibility of the silkworm, B. mori to the pathogens of mulberry pest G. pyloalis was Sher-e-Kashmir University of ascertained. During the study various stages of G. pyloalis were found infected with the Microsporidian Agricultural Sciences and Technology of Kashmir Srinagar, Jammu and (Pebrine) and Nuclear Polyhedral Virus (BmNPV) whereas, fungal and bacterial pathogens were not Kashmir, India observed during the present study. The mean incidence of microsporidian and NPV was observed as 4.22% and 5.99%., respectively. Silkworm, Bombyx mori inoculated with the pathogens isolated from G. KA Sahaf pyloalis (Microsporidian and Nuclear Polyhedral Virus) showed high mortality at larval and pupal stages. College of Temperate Sericulture, Sher-e-Kashmir University of However, silkworms inoculated with Microsporidian showed mortality of 53.66% at larval stage whereas Agricultural Sciences and Technology silkworms inoculated with Nuclear Polyhedral Virus showed mortality of 61.00% at larval stage.
    [Show full text]
  • Methods for Discovery and Characterization of Cellulolytic Enzymes from Insects
    Insect Science (2010) 00, 1–15, DOI 10.1111/j.1744-7917.2010.01322.x REVIEW Methods for discovery and characterization of cellulolytic enzymes from insects Jonathan D. Willis, Cris Oppert and Juan L. Jurat-Fuentes Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA Abstract Cellulosic ethanol has been identified as a crucial biofuel resource due to its sustainability and abundance of cellulose feedstocks. However, current methods to obtain glucose from lignocellulosic biomass are ineffective due to recalcitrance of plant biomass. Insects have evolved endogenous and symbiotic enzymes to efficiently use lignocellulosic material as a source of metabolic glucose. Even though traditional biochemical methods have been used to identify and characterize these enzymes, the advancement of genomic and proteomic research tools are expected to allow new insights into insect digestion of cellulose. This information is highly relevant to the design of improved industrial processes of biofuel production and to identify potential new targets for development of insecticides. This review describes the diverse methodologies used to detect, quantify, purify, clone and express cellulolytic enzymes from insects, as well as their advantages and limitations. Key words biofuels, cellulases, cellulase discovery methods, cellulase substrate, insect digestive fluids, lignocellulosic biomass Insect relevance to lignocellulosic biofuels rent estimates suggest that reducing the cellulase enzyme amounts by half through biotechnology could decrease Current world energy needs demand the development of processing costs by up to 13% (Lynd et al., 2008). industrial-scale processes for the sustainable production Lignocellulosic recalcitrance, which prevents enzy- of fuel from renewable biological resources as economic matic access to fermentable sugars, is derived from the and environmentally sound alternatives to finite fossil tight association of cellulose with hemicellulose and fuels.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Are the TTAGG and TTAGGG Telomeric Repeats Phylogenetically Conserved in Aculeate Hymenoptera?
    Sci Nat (2017) 104: 85 DOI 10.1007/s00114-017-1507-z ORIGINAL PAPER Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera? Rodolpho S. T. Menezes1 & Vanessa B. Bardella 2 & Diogo C. Cabral-de-Mello2 & Daercio A. A. Lucena1 & Eduardo A. B. Almeida1 Received: 24 July 2017 /Revised: 18 September 2017 /Accepted: 20 September 2017 /Published online: 27 September 2017 # Springer-Verlag GmbH Germany 2017 Abstract Despite the (TTAGG)n telomeric repeat supposed Keywords Apocrita . Chromosomes . Evolution . Insects . being the ancestral DNA motif of telomeres in insects, it was Telomere . TTAGG repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other represen- Introduction tatives of Hymenoptera, this motif was noticed, such as dif- ferent ant species and the honeybee. These findings raise the A telomere is an essential nucleoprotein composed of a short question of whether the insect telomeric repeat is or not phy- and tandemly arrayed motif present at each end of eukaryotic logenetically predominant in Hymenoptera. Thus, we evalu- chromosomes (Blackburn 1991). It prevents chromosome ends ated the occurrence of both the (TTAGG)n sequence and the from degrading and avoids chromosomal rearrangements, such vertebrate telomere sequence (TTAGGG)n using dot-blotting as end-to-end fusions by distinguishing natural chromosome hybridization in 25 aculeate species of Hymenoptera. Our ends from chromosomal breaks. Telomeres also compensate results revealed the absence of (TTAGG)n sequence in all for chromosome shortening resulting from incomplete DNA tested species, elevating the number of hymenopteran families replication at chromosome ends (Blackburn 1991; Greider lacking this telomeric sequence to 13 out of the 15 tested and Blackburn 1996).
    [Show full text]
  • Full-Length Transcriptome of Thalassiosira Weissflogii As
    marine drugs Communication Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes Haomiao Cheng 1,2,3, Chris Bowler 4, Xiaohui Xing 5,6,7, Vincent Bulone 5,6,7, Zhanru Shao 1,2,* and Delin Duan 1,2,8,* 1 CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] 5 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; [email protected] (X.X.); [email protected] (V.B.) 6 Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 7 Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 8 State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China * Correspondence: [email protected] (Z.S.); [email protected] (D.D.) Citation: Cheng, H.; Bowler, C.; Xing, X.; Bulone, V.; Shao, Z.; Duan, D. Abstract: β-Chitin produced by diatoms is expected to have significant economic and ecological Full-Length Transcriptome of value due to its structure, which consists of parallel chains of chitin, its properties and the high Thalassiosira weissflogii as a Reference abundance of diatoms.
    [Show full text]
  • CV Dr Jalali Sendi
    Curriculum Vitae Dr. Jalal Jalali Sendi Professor Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran. E mail: [email protected] Tel. Office: +981333690817 Cell phone: +989113309574 Personal Link: https://staff.guilan.ac.ir/jalali/index.php?a=0&lg=1 Researcher ID : C-5364-2017 Author ID : 38561500900 Orc ID: 0000-0002-4917-1068 Educational Qualifications: B.S.(1982) M.S.(1985) Ph.D.(1991)- specialized in Insect Physiology Banaras Hindu University, Uttar Pradesh, India Research Grants: 1) Botanical pesticides from indigenous plants of Guilan Province against insect pests of economic importance University of Guilan, Reseach Office Grant 1385 2) Establishment of a new cell line from hemocyte of rose sawfly Arge rosae (Hym Argidae) and investigation on the responses to pathogenic factors by these cells Iranian National Science Foundation (INSF) Grant No. 911003789 3) Effect of essential Oil and extract formulation of Sweetworm wood Artemisia annua L. on larvae and a cell line of lesser mulberry snout moth, Glyphodes pyloalis Walker Iranian National Science Foundation (INSF) Grant No. 98004512 Publications Book Chapter 1. Artemisia annua - Pharmacology and Biotechnology Chapter 13. Recent Developments in Controlling Insect, Acari, Nematode, and Plant Pathogens of Agricultural and Medical Importance by Artemisia annua L. (Asteraceae) Spriger pp 229-247 2. Recent Progress in Medicinal Plants Chapter 5. Biological Activities of Essential oils on Insects Research Articles: (From 1990 – 2020) ٢. 3. Srivastava,K.P.,Katyar,R.L.,Tiwari,R.K.,Tiwari,J.N. and J.Jalali.1990.Effects of a juvenoid on the morphogenesis of the female reproductive organs in Dysdercus koenigii Fabr.(Hemiptera).Proceedings of the Indian National Science Academy Part- B (Biological Sciences) .
    [Show full text]