Challenges and Opportunities for Human Space Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Challenges and Opportunities for Human Space Exploration S. HRG. 113–624 CHALLENGES AND OPPORTUNITIES FOR HUMAN SPACE EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SCIENCE AND SPACE OF THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED THIRTEENTH CONGRESS FIRST SESSION APRIL 23, 2013 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PUBLISHING OFFICE 94–152 PDF WASHINGTON : 2015 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\94152.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED THIRTEENTH CONGRESS FIRST SESSION JOHN D. ROCKEFELLER IV, West Virginia, Chairman BARBARA BOXER, California JOHN THUNE, South Dakota, Ranking BILL NELSON, Florida ROGER F. WICKER, Mississippi MARIA CANTWELL, Washington ROY BLUNT, Missouri FRANK R. LAUTENBERG, New Jersey MARCO RUBIO, Florida MARK PRYOR, Arkansas KELLY AYOTTE, New Hampshire CLAIRE MCCASKILL, Missouri DEAN HELLER, Nevada AMY KLOBUCHAR, Minnesota DAN COATS, Indiana MARK WARNER, Virginia TIM SCOTT, South Carolina MARK BEGICH, AlaskaS TED CRUZ, Texas RICHARD BLUMENTHAL, Connecticut DEB FISCHER, Nebraska BRIAN SCHATZ, Hawaii RON JOHNSON, Wisconsin WILLIAM COWAN, Massachusetts ELLEN L. DONESKI, Staff Director JAMES REID, Deputy Staff Director JOHN WILLIAMS, General Counsel DAVID SCHWIETERT, Republican Staff Director NICK ROSSI, Republican Deputy Staff Director REBECCA SEIDEL, Republican General Counsel and Chief Investigator SUBCOMMITTEE ON SCIENCE AND SPACE BILL NELSON, Florida, Chairman TED CRUZ, Texas, Ranking Member BARBARA BOXER, California ROGER F. WICKER, Mississippi MARK PRYOR, Arkansas MARCO RUBIO, Florida AMY KLOBUCHAR, Minnesota DEAN HELLER, Nevada MARK WARNER, Virginia DAN COATS, Indiana RICHARD BLUMENTHAL, Connecticut RON JOHNSON, Wisconsin WILLIAM COWAN, Massachusetts (II) VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\94152.TXT JACKIE C O N T E N T S Page Hearing held on April 23, 2013 .............................................................................. 1 Statement of Senator Nelson .................................................................................. 1 Statement of Senator Cruz ..................................................................................... 3 Statement of Senator Blumenthal .......................................................................... 33 WITNESSES William H. Gerstenmaier, Associate Administrator, Human Exploration and Operations, National Aeronautics and Space Administration ......................... 4 Prepared statement .......................................................................................... 5 Thomas P. Stafford, Lieutenant General, United States Air Force (Ret.); As- tronaut (Ret.) ........................................................................................................ 9 Prepared statement .......................................................................................... 10 Stephen A. Cook, Director, Space Technologies, Dynetics, Inc. ........................... 12 Prepared statement .......................................................................................... 14 APPENDIX Response to written questions submitted by Hon. Amy Klobuchar to William H. Gerstenmaier ................................................................................................... 37 (III) VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00003 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\94152.TXT JACKIE VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00004 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\94152.TXT JACKIE CHALLENGES AND OPPORTUNITIES FOR HUMAN SPACE EXPLORATION TUESDAY, APRIL 23, 2013 U.S. SENATE, SUBCOMMITTEE ON SCIENCE AND SPACE, COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION, Washington, DC. The Subcommittee met, pursuant to notice, at 2:38 p.m. in room SR–253, Russell Senate Office Building, Hon. Bill Nelson, pre- siding. OPENING STATEMENT OF HON. BILL NELSON, U.S. SENATOR FROM FLORIDA Senator NELSON. Good afternoon. Welcome to the second hearing of this subcommittee in the 113th Congress. Today, we are going to focus on the challenges and the opportunities for human space exploration beyond low-Earth orbit. Human space exploration, we want to get back in that business. It is vital to our space program. It is vital to the science commu- nity. It pushes America’s best and brightest to the limits of their creativity, and all of us on Earth benefit from it. The allure of ex- ploration keeps our students in science, technology, engineering, and mathematics. Just look what the Apollo program did, creating a whole generation of young scientists and engineers and mathe- maticians. And, of course, it helps our country in our leadership in aerospace basic research and other high-technology areas. In the authorization bill from two and a half years ago, we re- quired NASA, ‘‘to expand permanent human presence beyond low- Earth orbit,’’ calling on the agency to explore beyond LEO for the first time since the 1972 Apollo 17 mission, beyond low-Earth orbit. Under the guidance of that authorization bill, NASA has been working with the Nation’s space industry to sustain a human pres- ence on board the International Space Station. It is designated as a national laboratory, one component of it. And with NASA’s guid- ance, one U.S. commercial company has already delivered cargo to the station. And just this past Sunday, another commercial com- pany successfully tested its new rocket, and that rocket will deliver cargo to the station later on. Efforts to enable commercial crew de- livery capabilities are also well under way, and we look forward to those successes. And so NASA sits at the nexus of the public and private space sectors, and these partnerships enhance what we can accomplish in space. (1) VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00005 Fmt 6633 Sfmt 6633 S:\GPO\DOCS\94152.TXT JACKIE 2 For exploration beyond low-Earth orbit, LEO, NASA is currently building and testing hardware for the new Space Launch System and the Orion crew capsule. These technologies will carry our as- tronauts further into space than ever before. In 2014, a test of Orion will fly the capsule 15 times higher than the ISS before returning it to Earth at speeds near those that Gen- eral Stafford, who is one of our participants today, reached in his reentry in the Apollo 10 mission. And that Orion capsule is now undergoing final construction in the O&C building at the Kennedy Space Center. Its heat shield, the largest ever built, is on its way from Massachusetts. And following this test, the heavy-lift rocket and the capsule will fly together for the first time in 2017 and then carry its first crew in 2021. NASA is also preparing its people and infrastructure to support this space exploration. To ensure that future missions have ade- quate ground support, of course, what they are going through is the upgrades of all of the ground support equipment and launch infra- structure. And those will enable us in NASA, the military, and also the operations in the commercial space sector. So where do we go with these capabilities? Mars is the goal. With the right technology, SLS and Orion will be able to enable a wide range of human missions and destinations, which describe, going back to the authorization bill, include, ‘‘the surface of the Moon and near-Earth asteroids.’’ Two weeks ago, NASA announced its plan to capture a small as- teroid and redirect it to a stable orbit around the Moon. And the concept is still being studied, but if NASA can find a suitable aster- oid and redirect it with a robotic mission in time, our astronauts could visit and study the asteroid during a 2021 SLS-Orion flight. And so we are going to hear about that today. Research is also under way to better prepare astronauts for the dangers of exploration beyond low-Earth orbit. The Johnson Space Center in Texas, the hometown of this subcommittee’s Ranking Member, Senator Cruz, houses NASA’s Human Research Program. Many who have traveled into space participate in an annual phys- ical at the Johnson Space Center. NASA is going to continue to learn about the effects of micro- gravity on the body when an American and a Russian start their 1-year stay on board the International Space Station. We are learn- ing a lot about the effects of zero-G and bone loss as a result of zero-G. We are going to learn at the Johnson Space Center all of the effects that we possibly can on radiation on the human body and how to protect us when we are going all the way to Mars, and what are the kinds of shields that we have to have in case there is a solar explosion on the way to those planets, or, in fact, if we are on a Moon base, what do we have to protect human life. So NASA’s exploration efforts are strong, and they are well under way. And there are a lot of challenges, particularly in this fiscal climate that we find ourselves. But with the leadership that we have seen, with the creativity, with the dedicated contractor force and the civil service workforce, then we would have reason to believe that NASA can achieve the goals. VerDate Nov 24 2008 10:51 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00006 Fmt 6633 Sfmt 6633 S:\GPO\DOCS\94152.TXT JACKIE 3 And
Recommended publications
  • Russia's Posture in Space
    Russia’s Posture in Space: Prospects for Europe Executive Summary Prepared by the European Space Policy Institute Marco ALIBERTI Ksenia LISITSYNA May 2018 Table of Contents Background and Research Objectives ........................................................................................ 1 Domestic Developments in Russia’s Space Programme ............................................................ 2 Russia’s International Space Posture ......................................................................................... 4 Prospects for Europe .................................................................................................................. 5 Background and Research Objectives For the 50th anniversary of the launch of Sputnik-1, in 2007, the rebirth of Russian space activities appeared well on its way. After the decade-long crisis of the 1990s, the country’s political leadership guided by President Putin gave new impetus to the development of national space activities and put the sector back among the top priorities of Moscow’s domestic and foreign policy agenda. Supported by the progressive recovery of Russia’s economy, renewed political stability, and an improving external environment, Russia re-asserted strong ambitions and the resolve to regain its original position on the international scene. Towards this, several major space programmes were adopted, including the Federal Space Programme 2006-2015, the Federal Target Programme on the development of Russian cosmodromes, and the Federal Target Programme on the redeployment of GLONASS. This renewed commitment to the development of space activities was duly reflected in a sharp increase in the country’s launch rate and space budget throughout the decade. Thanks to the funds made available by flourishing energy exports, Russia’s space expenditure continued to grow even in the midst of the global financial crisis. Besides new programmes and increased funding, the spectrum of activities was also widened to encompass a new focus on space applications and commercial products.
    [Show full text]
  • Ceramic Matrix Composites with Nano Technology–An Overview
    International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 2 (2014), pp. 99-102 © Research India Publications http://www.ripublication.com/iraer.htm Ceramic Matrix Composites with Nano Technology–An Overview Saubhagya Sharma, Samresh Kumar Shashi and Vikram Tomar Department of Material Science & Nano Technology, University of Petroleum & Energy Studies, Dehradun, Uttrakhand. Abstract Ceramic matrix composites (CMCs) are promising materials for use in high temperature structural applications. This class of materials offers high strength to density ratios. Also, their higher temperature capability over conventional super alloys may allow for components that require little or no cooling. This benefit can lead to simpler component designs and weight savings. These materials can also contribute in increasing the operating efficiency due to higher operating temperatures being achieved. Using carbon/carbon composites with the help of Nanotechnology is more beneficial in structural engineering and can decrease the production cost. They can withstand high stresses and temperatures than the traditional alumina, silicon carbide which fracture easily under mechanical loads Fundamental work in processing, characterization and analysis is important before the structural properties of this new class of Nano composites can be optimized. The fields of the Nano composite materials have received a lot of attention to scientists and engineers in recent years. The fabrication of such composites using Nano technology can make a revolution in the field of material science engineering and can make the composites able to be used in long lasting applications. 1. Introduction As we know that Composite materials are the type of materials that are formed by combining two or more materials of different physical and chemical properties.
    [Show full text]
  • Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-Related Effects?
    Kulesa 1 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? By Gloria Kulesa Weather Impacts On Aviation In addition, weather continues to play a significant role in a number of aviation Introduction accidents and incidents. While National Transportation Safety Board (NTSB) reports ccording to FAA statistics, weather is most commonly find human error to be the the cause of approximately 70 percent direct accident cause, weather is a primary of the delays in the National Airspace contributing factor in 23 percent of all System (NAS). Figure 1 illustrates aviation accidents. The total weather impact that while weather delays declined with overall is an estimated national cost of $3 billion for NAS delays after September 11th, 2001, delays accident damage and injuries, delays, and have since returned to near-record levels. unexpected operating costs. 60000 50000 40000 30000 20000 10000 0 1 01 01 0 01 02 02 ul an 01 J ep an 02 J Mar May S Nov 01 J Mar May Weather Delays Other Delays Figure 1. Delay hours in the National Airspace System for January 2001 to July 2002. Delay hours peaked at 50,000 hours per month in August 2001, declined to less than 15,000 per month for the months following September 11, but exceeded 30,000 per month in the summer of 2002. Weather delays comprise the majority of delays in all seasons. The Potential Impacts of Climate Change on Transportation 2 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? Thunderstorms and Other Convective In-Flight Icing.
    [Show full text]
  • REASONS to MIND ASTEROIDS with the Rapid Progress Made In
    ASTEROID MINING & ITS LEGAL IMPLICATIONS Neil Modi & Devanshu Ganatra Presentation ID- IAC- 16.E7.IP.23.x32357 REASONS TO MINE ASTEROIDS With the rapid progress made in technology, humans are taking huge steps in space today. There is huge potential in space, and particularly in asteroid mining. ENERGY CRISIS RARE EARTH METALS • Non-renewable fossil fuels like coal, oil currently account for 81% of • Many of the metals widely used in almost all industrial products the world’s primary energy. were always limited and are now in SHORT SUPPLY leading to skyrocketing manufacturing costs. • EARLIER, renewable energy could not compete with non-renewable sources because it relied on metals in short supply. Resources found • These include Platinum Group Metals (PMGS) and others like on asteroids would solve this problem completely. gold, cobalt, iron, molybdenum etc. Image Credit-The U.S. Energy Image Credit- FuelSpace.org- ‘How Asteroids Can Information Administration Save Mankind’ PROJECTED SCARCITY OF RESOURCES ON EARTH Image Credit-Shackleton Energy Company Image Credit- Chris Clugston’s ‘An Oil Drum- An Analysis’ (2010) THE NEED FOR WATER 1. SUPPORT SYSTEM FOR ASTRONAUTS- Since the main constituents of water HYDRATION AND OXYGEN are hydrogen and oxygen, it is a source of oxygen for life support. TO ASTRONAUTS 2. PROTECTION FROM RADIATION- Water absorbs and blocks infrared radiation, which means that by storing heat it helps to maintain temperature. 3. ROCKET FUEL- Rocket propellant is hydrogen and oxygen based, with a large percentage of the weight of a spacecraft taken up by fuel. 4. SPACE EXPLORATION- A GAS STATION IN SPACE KEY TO SPACE BLOCKS EXPLORATION WATER RADIATION Today billions of dollars are spent in rocket fuel to sustain space explorations.
    [Show full text]
  • A Perspective on the Design and Development of the Spacex Dragon Spacecraft Heatshield
    A Perspective on the Design and Development of the SpaceX Dragon Spacecraft Heatshield by Daniel J. Rasky, PhD Senior Scientist, NASA Ames Research Center Director, Space Portal, NASA Research Park Moffett Field, CA 94035 (650) 604-1098 / [email protected] February 28, 2012 2 How Did SpaceX Do This? Recovered Dragon Spacecraft! After a “picture perfect” first flight, December 8, 2010 ! 3 Beginning Here? SpaceX Thermal Protection Systems Laboratory, Hawthorne, CA! “Empty Floor Space” December, 2007! 4 Some Necessary Background: Re-entry Physics • Entry Physics Elements – Ballistic Coefficient – Blunt vs sharp nose tip – Entry angle/heating profile – Precision landing reqr. – Ablation effects – Entry G’loads » Blunt vs Lifting shapes – Lifting Shapes » Volumetric Constraints » Structure » Roll Control » Landing Precision – Vehicle flight and turn-around requirements Re-entry requires specialized design and expertise for the Thermal Protection Systems (TPS), and is critical for a successful space vehicle 5 Reusable vs. Ablative Materials 6 Historical Perspective on TPS: The Beginnings • Discipline of TPS began during World War II (1940’s) – German scientists discovered V2 rocket was detonating early due to re-entry heating – Plywood heatshields improvised on the vehicle to EDL solve the heating problem • X-15 Era (1950’s, 60’s) – Vehicle Inconel and Titanium metallic structure protected from hypersonic heating AVCOAT » Spray-on silicone based ablator for acreage » Asbestos/silicone moldable TPS for leading edges – Spray-on silicone ablator
    [Show full text]
  • The Space Race
    The Space Race Aims: To arrange the key events of the “Space Race” in chronological order. To decide which country won the Space Race. Space – the Final Frontier “Space” is everything Atmosphere that exists outside of our planet’s atmosphere. The atmosphere is the layer of Earth gas which surrounds our planet. Without it, none of us would be able to breathe! Space The sun is a star which is orbited (circled) by a system of planets. Earth is the third planet from the sun. There are nine planets in our solar system. How many of the other eight can you name? Neptune Saturn Mars Venus SUN Pluto Uranus Jupiter EARTH Mercury What has this got to do with the COLD WAR? Another element of the Cold War was the race to control the final frontier – outer space! Why do you think this would be so important? The Space Race was considered important because it showed the world which country had the best science, technology, and economic system. It would prove which country was the greatest of the superpowers, the USSR or the USA, and which political system was the best – communism or capitalism. https://www.youtube.com/watch?v=xvaEvCNZymo The Space Race – key events Discuss the following slides in your groups. For each slide, try to agree on: • which of the three options is correct • whether this was an achievement of the Soviet Union (USSR) or the Americans (USA). When did humans first send a satellite into orbit around the Earth? 1940s, 1950s or 1960s? Sputnik 1 was launched in October 1957.
    [Show full text]
  • Water Rocket Booklet
    A guide to building and understanding the physics of Water Rockets Version 1.02 June 2007 Warning: Water Rocketeering is a potentially dangerous activity and individuals following the instructions herein do so at their own risk. Exclusion of liability: NPL Management Limited cannot exclude the risk of accident and, for this reason, hereby exclude, to the maximum extent permissible by law, any and all liability for loss, damage, or harm, howsoever arising. Contents WATER ROCKETS SECTION 1: WHAT IS A WATER ROCKET? 1 SECTION 3: LAUNCHERS 9 SECTION 4: OPTIMISING ROCKET DESIGN 15 SECTION 5: TESTING YOUR ROCKET 24 SECTION 6: PHYSICS OF A WATER ROCKET 29 SECTION 7: COMPUTER SIMULATION 32 SECTION 8: SAFETY 37 SECTION 9: USEFUL INFORMATION 38 SECTION 10: SOME INTERESTING DETAILS 40 Copyright and Reproduction Michael de Podesta hereby asserts his right to be identified as author of this booklet. The copyright of this booklet is owned by NPL. Michael de Podesta and NPL grant permission to reproduce the booklet in part or in whole for any not-for-profit educational activity, but you must acknowledge both the author and the copyright owner. Acknowledgements I began writing this guide to support people entering the NPL Water Rocket Competition. So the first acknowledgement has to be to Dr. Nick McCormick, who founded the competition many years ago and who is still the driving force behind the activity at NPL. Nick’s instinct for physics and fun has brought pleasure to thousands. The inspiration to actually begin writing this document instead of just saying that someone ought to do it, was provided by Andrew Hanson.
    [Show full text]
  • Brief Introduction to Orbital Mechanics Page 1
    Brief Introduction to Orbital Mechanics Page 1 Brief Introduction to Orbital Mechanics We wish to work out the specifics of the orbital geometry of satellites. We begin by employing Newton's laws of motion to determine the orbital period of a satellite. The first equation of motion is F = ma (1) where m is mass, in kg, and a is acceleration, in m/s2. The Earth produces a gravitational field equal to Gm g(r) = − E r^ (2) r2 24 −11 2 2 where mE = 5:972 × 10 kg is the mass of the Earth and G = 6:674 × 10 N · m =kg is the gravitational constant. The gravitational force acting on the satellite is then equal to Gm mr^ Gm mr F = − E = − E : (3) in r2 r3 This force is inward (towards the Earth), and as such is defined as a centripetal force acting on the satellite. Since the product of mE and G is a constant, we can define µ = mEG = 3:986 × 1014 N · m2=kg which is known as Kepler's constant. Then, µmr F = − : (4) in r3 This force is illustrated in Figure 1(a). An equal and opposite force acts on the satellite called the centrifugal force, also shown. This force keeps the satellite moving in a circular path with linear speed, away from the axis of rotation. Hence we can define a centrifugal acceleration as the change in velocity produced by the satellite moving in a circular path with respect to time, which keeps the satellite moving in a circular path without falling into the centre.
    [Show full text]
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]
  • L-8: Enabling Human Spaceflight Exploration Systems & Technology
    Johnson Space Center Engineering Directorate L-8: Enabling Human Spaceflight Exploration Systems & Technology Development Public Release Notice This document has been reviewed for technical accuracy, business/management sensitivity, and export control compliance. It is Montgomery Goforth suitable for public release without restrictions per NF1676 #37965. November 2016 www.nasa.gov 1 NASA’s Journey to Mars Engineering Priorities 1. Enhance ISS: Enhanced missions and systems reliability per ISS customer needs 2. Accelerate Orion: Safe, successful, affordable, and ahead of schedule 3. Enable commercial crew success 4. Human Spaceflight (HSF) exploration systems development • Technology required to enable exploration beyond LEO • System and subsystem development for beyond LEO HSF exploration JSC Engineering’s Internal Goal for Exploration • Priorities are nice, but they are not enough. • We needed a meaningful goal. • We needed a deadline. • Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025 • Develop and mature the technologies and systems needed • Develop and mature the personnel needed L-8 Characterizing L-8 JSC Engineering: HSF Exploration Systems Development • L-8 Is Not: • A program to go to Mars • Another Technology Road-Mapping effort • L-8 Is: • A way to translate Agency Technology Roadmaps and Architectures/Scenarios into a meaningful path for JSC Engineering to follow. • A way of focusing Engineering’s efforts and L-8 identifying our dependencies • A way to ensure Engineering personnel are ready to step up
    [Show full text]
  • The Esa Exploration Programme – Exomars and Beyond
    Lunar and Planetary Science XXXVI (2005) 2408.pdf THE ESA EXPLORATION PROGRAMME – EXOMARS AND BEYOND. G. Kminek1 and the Exploration Team, 1European Space Agency, D/HME, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands, [email protected]. Management and Organization: The countries Technology Development for Exploration: Two participating in the European Exploration Programme categories for exploration technology developments Aurora have recently confirmed and increased their have been identified: contribution. The ESA Council has later approved the Generic Exploration Technology: They have a Agency’s budgets for 2005, including the budget for long-term strategic value, both for robotic and human Aurora. These developments enable major industrial exploration missions. Planetary protection, habitable activities to continue in line with original plans. These systems, risk assessment for human missions to planets, include work on the ExoMars mission and the Mars grey and black water recycling as well as psychological Sample Return mission, in-orbit assembly, rendezvous support for the Concordia Antarctic Station, Facility and docking, habitation and life support systems plus a for Integrated Planetary Exploration Simulations are broad range of technology development work. examples of selected generic exploration technologies. The Aurora Exploration Programme has been inte- Mission Specific Technologies: Specifically devel- grated into the Human Spaceflight and Microgravity oped for the programme’s missions, and will eventually Directorate , which now forms the Human Spaceflight, be implemented after reaching a minimum technology Microgravity, and Exploration Directorate of ESA. readiness level. EVD, sealing and sealing monitoring Early Robotic Missions: Robotic mission have technology, containment technology, specific instru- been identified as necessary prerequisite before send- ment developments, sample handling and distribution ing human to Mars.
    [Show full text]