Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-Related Effects?

Total Page:16

File Type:pdf, Size:1020Kb

Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-Related Effects? Kulesa 1 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? By Gloria Kulesa Weather Impacts On Aviation In addition, weather continues to play a significant role in a number of aviation Introduction accidents and incidents. While National Transportation Safety Board (NTSB) reports ccording to FAA statistics, weather is most commonly find human error to be the the cause of approximately 70 percent direct accident cause, weather is a primary of the delays in the National Airspace contributing factor in 23 percent of all System (NAS). Figure 1 illustrates aviation accidents. The total weather impact that while weather delays declined with overall is an estimated national cost of $3 billion for NAS delays after September 11th, 2001, delays accident damage and injuries, delays, and have since returned to near-record levels. unexpected operating costs. 60000 50000 40000 30000 20000 10000 0 1 01 01 0 01 02 02 ul an 01 J ep an 02 J Mar May S Nov 01 J Mar May Weather Delays Other Delays Figure 1. Delay hours in the National Airspace System for January 2001 to July 2002. Delay hours peaked at 50,000 hours per month in August 2001, declined to less than 15,000 per month for the months following September 11, but exceeded 30,000 per month in the summer of 2002. Weather delays comprise the majority of delays in all seasons. The Potential Impacts of Climate Change on Transportation 2 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? Thunderstorms and Other Convective In-Flight Icing. In the period 1989-early 1997, Weather. Hazards associated with convective the NTSB indicated that in-flight icing was a weather include thunderstorms with severe contributing or causal factor in approximately 11 turbulence, intense up- and downdrafts, percent of all weather-related accidents among lightning, hail, heavy precipitation, icing, wind general aviation aircraft. Icing was cited in shear, microbursts, strong low-level winds, and roughly 6 percent of all weather-related tornadoes. According to National Aviation accidents among air taxi/commuter and Safety Data Analysis Center (NASDAC) agricultural aircraft. The percentage was 3 analysis, between 1989 and early 1997, percent for commercial air carrier accidents. The thunderstorms were listed as a contributing 1994 crash of an ATR-72 near Roselawn, factor in 2-4 percent of weather-related Indiana, which claimed 68 lives, took place accidents, depending on the category of aircraft during icing conditions. involved. Precipitation was listed as a factor in 6 percent of commercial air carrier accidents, In-flight icing is not only dangerous, but roughly 10 percent of general aviation accidents, also has a major impact on the efficiency of and nearly 19 percent of commuter/air taxi flight operations. Rerouting and delays of accidents. American Airlines has estimated that commercial carriers, especially regional carriers 55 percent of turbulence incidents are caused by and commuter airlines, to avoid icing conditions convective weather. lead to late arrivals and result in a ripple effect throughout the NAS. Diversions en route cause In addition to safety, convective weather additional fuel and other costs for all classes of poses a problem for the efficient operation of the aircraft. NAS. Thunderstorms and related phenomena can close airports, degrade airport capacities for Icing poses a danger to aircraft in several ways: acceptance and departure, and hinder or stop ground operations. Convective hazards en route S Structural icing on wings and control lead to rerouting and diversions that result in surfaces increases aircraft weight, degrades excess operating costs and lost passenger time. lift, generates false instrument readings, and Lightning and hail damage can remove aircraft compromises control of the aircraft. See from operations and result in both lost revenues Figure 2. and excess maintenance costs. In Figure 1, the vast majority of the warm season delays are due S Mechanical icing in carburetors, engine air to convective weather. intakes, and fuel cells impairs engine performance, leading to reduction of power. Figure 2. Photo of structural icing on an aircraft’s wing. The Potential Impacts of Climate Change on Transportation Kulesa 3 Small aircraft routinely operate at altitudes injury and temporary loss of aircraft control. where temperatures and clouds are most Recently an air carrier en route from Japan to the favorable for ice formation, making these U.S. encountered turbulence which caused the aircraft vulnerable to icing for long periods of death of a passenger. time. Larger aircraft are at risk primarily during ascent from and descent into terminal areas. Clear-air turbulence is not only dangerous, it also has a major impact on the efficiency of Turbulence. Non-convective turbulence is a flight operations due to rerouting and delays of major aviation hazard. All aircraft are aircraft. vulnerable to turbulent motions. Non-convective turbulence can be present at any altitude and in a Ceiling and Visibility. Low ceiling and reduced wide range of weather conditions, often visibility are safety hazards for all types of occurring in relatively clear skies as clear-air aviation. The NASDAC study of NTSB turbulence. Any aircraft entering turbulent statistics indicated that ceiling and visibility conditions is vulnerable to damage; smaller were cited as contributing factors in 24 percent aircraft (both fixed- and rotary-wing) are of all general aviation accidents between 1989 susceptible at lower levels of turbulent intensity and early 1997. They were also cited as than are large aircraft. See Figure 3. contributing factors in 37 percent of commuter/air taxi accidents during the same The effects of turbulence range from a period. Low ceiling and poor visibility accidents jostling of the aircraft that is mildly occur when pilots who are not properly rated or discomforting for passengers and crews to are flying an aircraft not equipped with the sudden accelerations that can result in serious necessary instrumentation encounter such conditions, resulting in loss of control, or controlled flight into terrain. Figure 3. Photo of an aircraft missing an engine which had been torn off by turbulence. The Potential Impacts of Climate Change on Transportation 4 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? The NTSB statistics also imply that air and runway surfaces in slush or standing water carriers have the expertise, procedures, and at near-freezing conditions are also susceptible equipment necessary to fly safely in reduced to surface contamination, even after visibility conditions. Low ceiling and poor precipitation has stopped. Even a very small visibility were cited as contributing factors in amount of ice on a wing surface can increase less than 2 percent of the commercial air carrier drag and reduce airplane lift by 25 percent. This (Part 121) accidents between 1989 and early type of ice accumulation has been a cause or a 1997. factor in 10 commercial aircraft takeoff accidents between 1978 and 1997. Ice blockage In 1991, the University of Illinois used of airspeed or altitude measurement simulated weather conditions to test twenty instrumentation can cause loss of control or Visual Flight Rule (VFR) rated pilots. When navigation errors. deprived of visual contact, each pilot experienced loss of control. On average, it took Ice and snow also have an impact on approximately 178 seconds giving each pilot terminal operations. Boarding gates, taxiways, less than 3 minutes to live after entering a cloud. and runways may become unusable. Airport operational capacities may be sharply reduced. Low ceiling and poor visibility are not just a See Figure 5. safety issue. They can also severely degrade the efficiency of commercial and military aviation. Reduced ceiling and/or visibility can severely reduce the capacity of an airport and lead to airborne or ground delays that result in diversions, cancellations, missed connections, and extra operational costs. See Figure 4. Figure 5. Photo of an aircraft being de-iced on the ground. Volcanic Ash. Volcanic ash is pulverized rock. It is composed largely of materials with a melting temperature below the operating temperature of a jet engine at cruise altitude. Volcanic ash in the atmosphere is usually accompanied by gaseous solutions of sulphur Figure 4. Photo from an aircraft on approach to San dioxide and chlorine. The combination of the Francisco International Airport. Two parallel pulverized rock and acidic gases can runways can be seen. Pilots of aircraft on parallel significantly affect the performance of jet approaches must be able to see each other. engines at cruise altitudes. Ash clouds are often invisible, particularly at night. Ground De-Icing. Aircraft on the ground during periods of freezing or frozen precipitation and To put this problem in perspective, the ash other icing conditions are susceptible to the from the Mount Pinatubo eruption in 1991 buildup of ice on control surfaces, instrument circled the globe within a matter of days and orifices, propellers, and engine inlets and affected a multitude of air traffic routes. interiors. Aircraft that are moving along taxiway Consequently, aircraft that traversed this thin The Potential
Recommended publications
  • Water Rocket Booklet
    A guide to building and understanding the physics of Water Rockets Version 1.02 June 2007 Warning: Water Rocketeering is a potentially dangerous activity and individuals following the instructions herein do so at their own risk. Exclusion of liability: NPL Management Limited cannot exclude the risk of accident and, for this reason, hereby exclude, to the maximum extent permissible by law, any and all liability for loss, damage, or harm, howsoever arising. Contents WATER ROCKETS SECTION 1: WHAT IS A WATER ROCKET? 1 SECTION 3: LAUNCHERS 9 SECTION 4: OPTIMISING ROCKET DESIGN 15 SECTION 5: TESTING YOUR ROCKET 24 SECTION 6: PHYSICS OF A WATER ROCKET 29 SECTION 7: COMPUTER SIMULATION 32 SECTION 8: SAFETY 37 SECTION 9: USEFUL INFORMATION 38 SECTION 10: SOME INTERESTING DETAILS 40 Copyright and Reproduction Michael de Podesta hereby asserts his right to be identified as author of this booklet. The copyright of this booklet is owned by NPL. Michael de Podesta and NPL grant permission to reproduce the booklet in part or in whole for any not-for-profit educational activity, but you must acknowledge both the author and the copyright owner. Acknowledgements I began writing this guide to support people entering the NPL Water Rocket Competition. So the first acknowledgement has to be to Dr. Nick McCormick, who founded the competition many years ago and who is still the driving force behind the activity at NPL. Nick’s instinct for physics and fun has brought pleasure to thousands. The inspiration to actually begin writing this document instead of just saying that someone ought to do it, was provided by Andrew Hanson.
    [Show full text]
  • Aviation Annual Report
    2018 Aviation Annual Report Aviation Aircraft Use Summary U.S. Forest Service 2018 Table of Contents Executive Summary ....................................................................................................................................... 1 Table 1 – 2018 Forest Service Total Aircraft Available ..................................................................... 2 Introduction: The Forest Service Aviation Program...................................................................................... 3 Aviation Utilization and Cost Information .................................................................................................... 4 2018 At-A-Glance ...................................................................................................................................... 4 Aviation Use .......................................................................................................................................... 4 Table 2 and Figure 1 – Aircraft Total Use CY 2014-2018................................................................... 4 Figure 2 – CY 2018 Flight Hours by Month........................................................................................ 5 Table 3 and Figure 3 – Percent of CY 2018 Flight Time by Aircraft Type .......................................... 5 Table 4 – CY 2018 Aircraft Use by Region/Agency ............................................................................ 6 Aviation Cost ........................................................................................................................................
    [Show full text]
  • APPLICATION for FLIGHT SCHOOL LICENSE Page 1 of 2 of 4Transportation9 Informationrequired by Act 327, P.A
    Michigan Department APPLICATION FOR FLIGHT SCHOOL LICENSE Page 1 of 2 of 4Transportation9 Informationrequired by Act 327, P.A. of 1945 to apply for license. AERONAUTICS 00 (01/21) USE ONLY RETURN TO: DATE Michigan Department of Transportation Finance Cashier AMOUNT P. 0. Box 30648 Lansing, Ml 48909 LIC.NO. (517) 242-7771 or (517) 335-9283 EXP.DATE FEES: Initial - $25.00, Annual Renewal - $10.00, Late Renewal - $25.00. SCHOOL NAME PHONE NO. DATE I OWNER(S) SCHOOL MANAGER MAILLING ADDRESS CITY I ZIP CODE NAME OF THE AIRPORT WHERE FLIGHT SCHOOL WILL BE BASED FAX I E-MAIL Courses Offered: □ Private □ Part 141 School □ Type Ratings D Flight Instructor D Ground School □ Recreation □ Commercial D Sea Plane D Instrument □ Glider □ Sport □ Multi Engine D Airline Transport D Helicopter MAINTENANCE PERSONNEL Name Address FAA Certificate Number Chief Mechanic INSTRUCTOR FLIGHT Name Address FAA Certificate Number Chief Flight Instructor □ Instrument □ Multi Enoine □ Instrument □ Multi Enqine □ Instrument □ Multi Engine □ Instrument □ Multi Enoine □ Instrument □ Multi Engine □ Instrument □ Multi Enoine □ Instrument □ Multi Enqine Flight School Aircraft Michigan To be completed by State Registrar Aircraft Make Model N Number AERO USE ONLY Registration 1. □ Yes □ No 2. □ Yes □ No 3. □ Yes □ No 4. □ Yes □ No 5. □ Yes □ No 6. □ Yes □ No 7. □ Yes □ No MDOT4009 (01/21) Page 2 of 2 Flight School Manager Compliance Checklist and Certification Please answer the questions below. Refer to the enclosed Michigan Aeronautics Code, section 259.85 (Flight Schools) requirements. Yes No Do You: □ □ Operate from an airport licensed by the State of Michigan? □ □ Have a written commercial operating agreement with the airport at which the school is based? (Submit a copy with this application or submit airport manager signature).
    [Show full text]
  • Efficient Light Aircraft Design – Options from Gliding
    Efficient Light Aircraft Design – Options from Gliding Howard Torode Member of General Aviation Group and Chairman BGA Technical Committee Presentation Aims • Recognise the convergence of interest between ultra-lights and sailplanes • Draw on experiences of sailplane designers in pursuit of higher aerodynamic performance. • Review several feature of current sailplanes that might be of wider use. • Review the future for the recreational aeroplane. Lift occurs in localised areas A glider needs efficiency and manoeuvrability Drag contributions for a glider Drag at low speed dominated by Induced drag (due to lift) Drag at high ASW-27 speeds Glider (total) drag polar dominated by profile drag & skin friction So what are the configuration parameters? - Low profile drag: Wing section design is key - Low skin friction: maximise laminar areas - Low induced drag – higher efficiencies demand greater spans, span efficiency and Aspect Ratio - Low parasitic drag – reduce excrescences such as: undercarriage, discontinuities of line and no leaks/gaps. - Low trim drag – small tails with efficient surface coupled with low stability for frequent speed changing. - Wide load carrying capacity in terms of pilot weight and water ballast Progress in aerodynamic efficiency 1933 - 2010 1957: Phoenix (16m) 1971: Nimbus 2 (20.3m) 2003: Eta (30.8m) 2010: Concordia (28m) 1937: Wiehe (18m) Wooden gliders Metal gliders Composite gliders In praise of Aspect Ratio • Basic drag equation in in non-dimensional, coefficient terms: • For an aircraft of a given scale, aspect ratio is the single overall configuration parameter that has direct leverage on performance. Induced drag - the primary contribution to drag at low speed, is inversely proportional to aspect ratio • An efficient wing is a key driver in optimising favourable design trades in other aspects of performance such as wing loading and cruise performance.
    [Show full text]
  • Preventive Maintenance
    Maintenance Aspects of Owning Your Own Aircraft Introduction According to 14 CFR Part 43, Maintenance, Preventive Maintenance, Rebuilding, and Alteration, the holder of a pilot certificate issued under 14 CFR Part 61 may perform specified preventive maintenance on any aircraft owned or operated by that pilot, as long as the aircraft is not used under 14 CFR Part 121, 127, 129, or 135. This pamphlet provides information on authorized preventive maintenance. How To Begin Here are several important points to understand before you attempt to perform your own preventive maintenance: First, you need to understand that authorized preventive maintenance cannot involve complex assembly operations. Second, you should carefully review 14 CFR Part 43, Appendix A, Subpart C (Preventive Maintenance), which provides a list of the authorized preventive maintenance work that an owner pilot may perform. Third, you should conduct a self-analysis as to whether you have the ability to perform the work satisfactorily and safely. Fourth, if you do any of the preventive maintenance authorized in 14 CFR Part 43, you will need to make an entry in the appropriate logbook or record system in order to document the work done. The entry must include the following information: • A description of the work performed, or references to data that are acceptable to the Administrator. • The date of completion. • The signature, certificate number, and kind of certificate held by the person performing the work. Note that the signature constitutes approval for return to service only for work performed. Examples of Preventive Maintenance Items The following is a partial list of what a certificated pilot who meets the conditions in 14 CFR Part 43 can do: • Remove, install, and repair landing gear tires.
    [Show full text]
  • Integrated Diagnostics of Rocket Flight Control
    IEEE AEROSPACE CONFERENCE ¢ MARCH 2005, BIG SKY, MT Integrated Diagnostics of Rocket Flight Control Dimitry Gorinevsky¤, Sikandar Samary; Honeywell Labs, Fremont, CA 94539 John Bain, Honeywell Space Systems, Houston, TX 77058 and Gordon Aaseng, Honeywell Space Systems, Glendale, AZ 85308 Abstract— This paper describes an integrated approach to the approach by using simulated telemetry data for a launch parametric diagnostics demonstrated in a flight control sim- vehicle of Space Shuttle class. Faults seeded in the simula- ulation of a space launch vehicle. The proposed diagnostic tion are subsequently estimated by the VHM algorithms to approach is able to detect incipient faults despite the natural validate their performance. The estimated fault parameters masking properties of feedback in the guidance and control include air drag change from aerodynamic surface damage. loops. Estimation of time varying fault parameters uses para- This could model leading edge damage like that sustained metric vehicle-level data and detailed dynamical models. The in the Columbia Accident STS-107 mission. We also con- algorithms explicitly utilize the knowledge of fault mono- sider estimation and trending of such parameters as propul- tonicity (damage can only increase, never improve with time) sion performance, thrust vectoring actuator/gimbal wear, and where available. The developed algorithms can be applied a drift in one of GN&C sensors (pitch angle). These faults to health management of next generation space systems. We are choosen as plausible representative faults that demon- present a simulation case study of rocket ascent application strate the detection algorithm effectiveness. Development of to illustrate and validate the proposed approach. a practical VHM system would require an additional careful analysis and engineering of the fault models in the VHM al- TABLE OF CONTENTS gorithms.
    [Show full text]
  • NASA Styrofoam Tray Glider.Pdf
    RIGHT FLIGHT Objectives The students will: Construct a flying model glider. Determine weight and balance of a glider. Standards and Skills Science Science as Inquiry Physical Science Science and Technology Unifying Concepts and Processes Science Process Skills Observing Measuring Collecting Data Inferring Predicting Making Models Controlling Variables Mathematics Problem Solving Reasoning Prediction Measurement Background On December 17, 1903, two brothers, Wilbur and Orville Wright, became the first humans to fly a controllable, powered airplane. To unravel the mysteries of flight, the Wright brothers built and experimented extensively with model gliders. Gliders are airplanes without motors or a power source. 52 Aeronautics: An Educator’s Guide EG-2002-06-105-HQ Building and flying model gliders helped the Wright brothers learn and understand the importance of weight and balance in air- planes. If the weight of the airplane is not positioned properly, the airplane will not fly. For example, too much weight in the front (nose) will cause the airplane to dive toward the ground. The precise balance of a model glider can be determined by varying the location of small weights. Wilbur and Orville also learned that the design of an airplane was very important. Experimenting with models of different designs showed that airplanes fly best when the wings, fuselage, and tail are designed and balanced to interact with each other. The Wright Flyer was the first airplane to complete a controlled takeoff and landing. To manage flight direction, airplanes use control surfaces. Elevators are control surfaces that make the nose of the airplane pitch up and down. A rudder is used to move the nose left and right.
    [Show full text]
  • Evolving Green Aviation Transport System: a Hoilistic Approah to Sustainable Green Market Development
    American Journal of Climate Change, 2012, 1, 164-180 http://dx.doi.org/10.4236/ajcc.2012.13014 Published Online September 2012 (http://www.SciRP.org/journal/ajcc) Evolving Green Aviation Transport System: A Hoilistic Approah to Sustainable Green Market Development A. N. Sarkar International Business & Research, Asia-Pacific Institute of Management, New Delhi, India Email: [email protected] Received June 24, 2012; revised July 25, 2012; accepted August 10, 2012 ABSTRACT Aviation is one of the fastest growing industries as well as transportation modes in the world. Global aviation contrib- utes about 2% of global greenhouse gas emissions and supports 8% of the world economic activity in terms of GDP. With the phenomenal growth in air trafficking by the national and international airliners the total carbon space available for flying is getting progressively diminished and the consequential emission levels are also becoming alarming over passage of time. The paper describes the concept of evolution of Green Transport system with focus on manufacturing of green aircraft and sustainable green marketing involving green supply chain. This entails introduction of New and innovative technologies, including aircraft designing, improving operational efficiency, air traffic control & monitoring etc; combined with emission mitigation efforts towards sustainable growth of the industry, can make enormous im- provements in emission control and reduction in a planned and system-based manner. These integrated approaches are proposed to be used to harmonize the systems and processes that can essentially constitute the suggested framework of the Green Aviation Transport system. The paper, inter alia, discusses various conceptual, strategic, technological and economic and environmental dimensions of the Green Aviation transport system with focus on creating new Green Marketing opportunities for the aviation industry in future.
    [Show full text]
  • Aviation Acronyms
    Aviation Acronyms 5010 AIRPORT MASTER RECORD (FAA FORM 5010-1) 7460-1 NOTICE OF PROPOSED CONSTRUCTION OR ALTERATION 7480-1 NOTICE OF LANDING AREA PROPOSAL 99'S NINETY-NINES (WOMEN PILOTS' ASSOCIATION) A/C AIRCRAFT A/DACG ARRIVAL/DEPARTURE AIRFIELD CONTROL GROUP A/FD AIRPORT/FACILITY DIRECTORY A/G AIR - TO - GROUND A/G AIR/GROUND AAA AUTOMATED AIRLIFT ANALYSIS AAAE AMERICAN ASSOCIATION OF AIRPORT EXECUTIVES AAC MIKE MONRONEY AERONAUTICAL CENTER AAI ARRIVAL AIRCRAFT INTERVAL AAIA AIRPORT AND AIRWAY IMPROVEMENT ACT AALPS AUTOMATED AIR LOAD PLANNING SYSTEM AANI AIR AMBULANCE NETWORK AAPA ASSOCIATION OF ASIA-PACIFIC AIRLINES AAR AIRPORT ACCEPTANCE RATE AAS ADVANCED AUTOMATION SYSTEM AASHTO AMERICAN ASSOCIATION OF STATE HIGHWAY & TRANSPORTATION OFFICIALS AC AIRCRAFT COMMANDER AC AIRFRAME CHANGE AC AIRCRAFT AC AIR CONTROLLER AC ADVISORY CIRCULAR AC ASPHALT CONCRETE ACAA AIR CARRIER ACCESS ACT ACAA AIR CARRIER ASSOCIATION OF AMERICA ACAIS AIR CARRIER ACTIVITY INFORMATION SYSTEM ACC AREA CONTROL CENTER ACC AIRPORT CONSULTANTS COUNCIL ACC AIRCRAFT COMMANDER ACC AIR CENTER COMMANDER ACCC AREA CONTROL COMPUTER COMPLEX ACDA APPROACH CONTROL DESCENT AREA ACDO AIR CARRIER DISTRICT OFFICE ACE AVIATION CAREER EDUCATION ACE CENTRAL REGION OF FAA ACF AREA CONTROL FACILITY ACFT AIRCRAFT ACI-NA AIRPORTS COUNCIL INTERNATIONAL - NORTH AMERICA ACID AIRCRAFT IDENTIFICATION ACIP AIRPORT CAPITAL IMPROVEMENT PLANNING ACLS AUTOMATIC CARRIER LANDING SYSTEM ACLT ACTUAL CALCULATED LANDING TIME Page 2 ACMI AIRCRAFT, CREW, MAINTENANCE AND INSURANCE (cargo) ACOE U.S. ARMY
    [Show full text]
  • AVIATION 3 B
    AVI ATION STEM-Based BOY SCOUTS OF AMERICA MERIT BADGE SERIES AVI ATION “Enhancing our youths’ competitive edge through merit badges” Requirements 1. Do the following: a. Define “aircraft.” Describe some kinds and uses of air- craft today. Explain the operation of piston, turboprop, and jet engines. b. Point out on a model airplane the forces that act on an airplane in flight. c. Explain how an airfoil generates lift, how the primary con- trol surfaces (ailerons, elevators, and rudder) affect the airplane’s attitude, and how a propeller produces thrust. d. Demonstrate how the control surfaces of an airplane are used for takeoff, straight climb, level turn, climbing turn, descending turn, straight descent, and landing. e. Explain the following: the sport pilot, the recreational pilot, and the private pilot certificates; the instrument rating. 2. Do TWO of the following: a. Take a flight in an aircraft, with your parent’s permission. Record the date, place, type of aircraft, and duration of flight, and report on your impressions of the flight. b. Under supervision, perform a preflight inspection of a light airplane. c. Obtain and learn how to read an aeronautical chart. Measure a true course on the chart. Correct it for magnetic variation, compass deviation, and wind drift to determine a compass heading. 35862 ISBN 978-0-8395-3293-4 ©2014 Boy Scouts of America 2016 Printing d. Using one of many flight simulator software packages available for computers, “fly” the course and heading you established in requirement 2c or another course you have plotted. e. Explain the purposes and functions of the various instru- ments found in a typical single-engine aircraft: attitude indicator, heading indicator, altimeter, airspeed indicator, turn and bank indicator, vertical speed indicator, compass, navigation (GPS and VOR) and communication radios, tachometer, oil pressure gauge, and oil temperature gauge.
    [Show full text]
  • FAA Guide to Low Flying Aircraft
    FAA Guide to Low-Flying Aircraft The Federal Aviation Administration (FAA) is the government agency responsible for aviation safety. We welcome information from citizens that will enable us to take corrective measures including legal enforcement action against individuals violating Federal Aviation Regulations (CFR). It is FAA policy to investigate citizen complaints of low-flying aircraft operated in violation of the CFR that might endanger persons or property. Remember that the FAA is a safety organization with legal enforcement responsibilities. We will need facts before we conduct an investigation. To save time, please have this information ready if you witness another low-flying aircraft. Please keep your notes: we may request a written statement. Here is the type of information we need: • Identification – Can you identify the aircraft? Was it military or civil? Was it a high or low wing aircraft? What was the color? Did you record the registration number which appears on the fuselage or tail? (On U.S. registered aircraft, that number will be preceded with a capital "N".) • Time and Place – Exactly when did the incident(s) occur? Where did this happen? What direction was the aircraft flying? • Altitude – How high or low was the aircraft flying? On what do you base your estimate? Was the aircraft level with or below the elevation of a prominent object such as a tower or building? Once we have the appropriate facts, personnel from the Flight Standards District Office (FSDO) will attempt to identify the offending aircraft operator. We can do this in several ways. For example, we can check aircraft flight records with our air traffic control information and/or sightings from other observers, such as local law enforcement officers.
    [Show full text]
  • DEP .ARTMENT of CIVIL AVIATION .1.USTR.L.Ll.I
    DEP.ARTMENT OF CIVIL AVIATION .1.USTR.l.Ll.I. Number 84 April 1973 / 7 Number 84 April 1973 DEPARTMENT OF CIVIL AVIATION AUSTRALIA Contents Page He Didn't Recover ..... 2 That Sensitive Touch . 6 What About The Pilot? .. ... .... .. ... .. .. .... .. .. .. 10 How Safe Is Gliding? .... .... .. ....... .. .. .. .. ... .. 14 The Price of Knowing Better . 16 A Mouthful Of Red Dirt 21 In Brief . .. ... .. .. ..... 24 A viario11 Safety Digest is prepared in the Air Safety fovesligal ion Branch arid published by the Depart111~111 of Civil A viati'?n at two monthly intervals. It is distributed free of charge to Australian licence holders (except student pilots), registered air­ craft owners and certain other persons and organfaations having a vested operational interest in. A_ustraJiat~ civil aviation. Aviation Safety Digest is also a vailable on subscription from the Australian Government Publ1shmg Service us shown on the order form below. Contributions for publication should be addressed to Tire Editor, Aviation Safety D igest, Box /839Q, G .P.0. Melbourne, 3001. Change of address: R eaders on the Department's free distribtt lion list should notify rheir nearest Regional Office, S11 b­ scriberJ' should notify the A ustralian Government Publishing Service. © Commonwealth of Australia 1972. T he contents of /his publication mar n ot be reproduced in whole or in part, without the wrillen authorilJ' of the Department of Civil A viation. Where material is indicat ed to be extracted from or based on another publication, the authority of the originator should be sought. Editor: Ci.· M acurtlwr Job. Assistant Editor: R , J. M aclean. Design: N. Wintrip untl P.
    [Show full text]