The James Webb Space Telescope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Michael Garcia Hubble Space Telescope Users Committee (STUC)
Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size. -
James Webb Space Telescope… Smashingly Cold Pg 8
National Aeronautics and Space Administration view Volume 6 Issue 11 NASA’S Mars Atmosphere Mission Gets Green Light to Proceed to Development Pg 3 James Webb Space Telescope… Smashingly Cold Pg 8 i am goddard: Curtis Johnson goddard Pg 12 www.nasa.gov 02 NASA and OPTIMUS PRIME GoddardView Collaborate to Educate Youth Volume 6 Issue 11 By Rani Gran NASA has developed a contest to raise students’ awareness of technology transfer Table of Contents efforts and how NASA technologies contribute to our everyday lives. Goddard Updates NASA is collaborating with Hasbro using the correlation between the popular NASA and OPTIMUS PRIME Collaborate to Transformers brand, featuring its leader OPTIMUS PRIME, and spinoffs from NASA Educate Youth – 2 Updates technologies created for aeronautics and space missions that are used here on Earth. NASA’S Mars Atmosphere Mission Gets Green The goal is to help students understand that NASA technology ‘transforms’ into things Light to Proceed to Development – 3 that are used daily. These transformed technologies include water purifiers, medical Cluster Helps Disentangle Turbulence in the imaging software, or fabric that protects against UV rays. Solar Wind – 4 Mobile Mars Laboratory Almost Ready for Flight – 5 The Innovative Partnerships Program Office NASA Makes the Invisible Visible in Medical at Goddard, in conjunction with NASA’s Imaging – 6 Office of Education, has designed Two Goddard Fermi Telescope Scientists Win a video contest for students Lindsay Awards – 7 from third to eighth grade. James Webb Space Telescope…Smashingly Cold – 8 Each student, or group of Goddard Goddard Community students, will submit a Paid to Have Fun – 9 three- to five-minute video OutsideGoddard: Bluegrass Camp – 10 on a selected NASA spinoff i am goddard: Curtis Johnson – 12 technology listed in the 2009 Spinoff publica- tion. -
NASA Mission Directorates and Center Alignment Research Areas
Appendix A: NASA Mission Directorates and Center Alignment NASA’s Mission to pioneer the future in space exploration, scientific discovery, and aeronautics research, draws support from four Mission Directorates and nine NASA Centers plus JPL, each with a specific responsibility. A.1 Aeronautics Research Mission Directorate (ARMD) conducts high-quality, cutting-edge research that generates innovative concepts, tools, and technologies to enable revolutionary advances in our Nation’s future aircraft, as well as in the airspace in which they will fly. ARMD programs will facilitate a safer, more environmentally friendly, and more efficient national air transportation system. Using a Strategic Implementation Plan NASA Aeronautics Research Mission Directorate (ARMD) sets forth the vision for aeronautical research aimed at the next 25 years and beyond. It encompasses a broad range of technologies to meet future needs of the aviation community, the nation, and the world for safe, efficient, flexible, and environmentally sustainable air transportation. Additional information on the Aeronautics Research Mission Directorate (ARMD) can be found at: http://www.aeronautics.nasa.gov. Areas of Interest - POC: Tony Springer, [email protected] Researchers responding to the ARMD should propose research that is aligned with one or more of the ARMD programs. Proposers are directed to the following: • ARMD Programs: http://www.aeronautics.nasa.gov/programs.htm • The National Aeronautics and Space Administration (NASA), Headquarters, Aeronautics Research Mission Directorate (ARMD) Current Year version of the NASA Research Announcement (NRA) entitled, "Research Opportunities in Aeronautics (ROA)” has been posted on the NSPIRES web site at http://nspires.nasaprs.com (select “Solicitations” and then “Open Solicitations”). -
Prof. Scott Christopher Chapman Current Address: Dalhousie University Dept
CURRICULUM VITAE Name: Prof. Scott Christopher Chapman Current Address: Dalhousie University Dept. of Physics and Atmospheric Science Coburg Road Halifax, B3H1A6, Canada Phone: (902) 494 2370 Fax: (902) 494 2377 e-mail: [email protected] Citizenship: Canadian Birthdate: May 13, 1971 Work/Educational Background 08/2012{present Dalhousie University Professor in Astrophysics 06/2011{08/2012 University of Cambridge, IoA Professor in Astrophysics 10/2007{05/2011 University of Cambridge, IoA Reader, Associate Professor in Astrophysics 06/2006{10/2007 University of Victoria Adjunct assistant professor, Canadian Space Agency Fellow (6 months deferred for parental leave) 06/2001{01/2006 California Institute of Technology Senior Postdoctoral Fellow 05/1999{06/2001 Carnegie Observatories Magellan Fellow 10/1996{09/1999 University of British Columbia PhD, supervisors: Gordon Walker, Simon Morris \The nature of active galaxies" 09/1995{10/1996 University of British Columbia MSc, supervisor: Gordon Walker \A precisely aligned CCD mosaic for astronomy" 09/1990{05/1995 University of British Columbia BSc (Honours Physics/Math) 09/1988{05/1990 Van. Academy of Music/ Diploma (violin performance, minor: philosophy) Simon Fraser University Grants and Awards (totaling over US$3mil) 2012 PI CFI - Leaders Opportunity Fund (Dalhousie) 5 years 2012 PI NSERC - Discovery grant (Dalhousie) 5 years 2012 PI Dalhousie faculty startup grant 2009 CoI Cambridge, IoA Observational Rolling Grant \Obscured star formation at high-z" 2008 PI Spitzer research grant, cycle -
HEIC1117: EMBARGOED UNTIL 15:00 CET/09:00 Am EST 10 Nov, 2011
HEIC1117: EMBARGOED UNTIL 15:00 CET/09:00 am EST 10 Nov, 2011 http://www.spacetelescope.org/news/heic1117/ Science release: Hubble Uncovers Tiny Galaxies Bursting with Starbirth in Early Universe 10-Nov 2011 Using its infrared vision to peer nine billion years back in time, the NASA/ESA Hubble Space Telescope has uncovered an extraordinary population of tiny, young galaxies that are brimming with star formation. The galaxies are churning out stars at such a rate that the number of stars in them would double in just ten million years. For comparison, the Milky Way has taken a thousand times longer to double its stellar population. These newly discovered dwarf galaxies are around a hundred times smaller than the Milky Way. Their star formation rates are extremely high, even for the young Universe, when most galaxies were forming stars at higher rates than they are today. They have turned up in the Hubble images because the radiation from young, hot stars has caused the oxygen in the gas surrounding them to light up like a fluorescent sign. Astronomers believe this rapid starbirth represents an important phase in the formation of dwarf galaxies, the most common galaxy type in the cosmos. “The galaxies have been there all along, but up until recently astronomers have been able only to survey tiny patches of sky at the sensitivities necessary to detect them,” says Arjen van der Wel of the Max Planck Institute for Astronomy in Heidelberg, Germany, lead author of a paper that will appear in a forthcoming issue of the Astrophysical Journal. -
Request for Proposals
Request for Proposals Kansas NASA EPSCoR Program Partnership Development Grant (PDG) NASA in Kansas Proposal Due: Noon, October 31, 2019 Anticipated Grant End Date: June 30, 2020 With support from NASA and the Kansas Board of Regents - the Kansas NASA EPSCoR Program (KNEP) is preparing to award Partnership Development Grants (PDG) to Kansas investigators, under the KNEP Research Infrastructure Development (RID) program. These grants are intended to facilitate the development of beneficial and promising NASA collaborations. The PDG recipient is expected to initiate, develop, and formalize a meaningful professional relationship with a NASA researcher. Given this expectation, it is vital investigators and students travel to a NASA center if selected for an award. Ideally the faculty member, student, and research host become co-participants in a promising research effort. Indeed, the PDG award should lead to sustained collaborations, joint publications, and, most importantly, future grant proposals. Award Criteria PDG awards are competitive, with a strong emphasis on: § Addressing NASA Mission Directorate and Kansas interests (required) § Developing new, sustained, and meaningful NASA contacts (required) § Involving US-students, especially underrepresented and underserved Kansas undergraduate and graduate students, in the research (required) § Strengthening collaboration among academia, government agencies, business, and industry § Exploring new and unique R&D opportunities § Shared publications and future EPSCoR and non-EPSCoR grant submissions -
Connecting Scientists with NASA Astrophysics
219th AAS Meeting – Austin, TX “Connecting Scientists with NASA Astrophysics Education and Public Outreach” Splinter Meeting January 12, 2012, 9:30AM-11:00AM Facilitators: NASA Astrophysics Science E/PO Forum Text of Presentation Slides Slide 1: Splinter Meeting Plan • Introduction, Who we are, Why we are here • Showcase of NASA Astrophysics E/PO resources and opportunities • Explore resources and opportunities, one-on-one Slide 2: Who We Are: NASA Science E/PO Forums Presenter: Mangala Sharma (msharma[at]stsci.edu) URL: Smdepo.org The 4 SMD E/PO Forums connect scientists with E/PO information, resources, opportunities, potential partners related to NASA SMD E/PO. Slide 3: Who We Are (2): NASA SMD E/PO • Part of NASA’s education effort, supports Agency education goals • SMD’s vision for E/PO: To share the story, the science, and the adventure of NASA’s scientific explorations… through stimulating and informative activities and experiences… • Scientists + educators working together! Slide 4: Why We Are Here Presenter: Mangala Sharma URL: Smdepo.org • To connect scientists, NASA Astrophysics E/PO teams and SMD E/PO program officers • Explore and collect NASA Astrophysics E/PO resources you can use in your own E/PO • Discover how to participate in current and future SMD E/PO opportunities • Connect with other scientists interested in E/PO Slide 5: NASA SMD E/PO Grant Opportunities Presenter: James Lochner (James.C.Lochner[at]nasa.gov) URL: http://tinyurl.com/smd-epo-guides EPOESS: 1 to 4 year grants for projects in Formal and Informal Education, Higher Education, and Outreach. • No funding limit, but previous awards ~ $100K-$200K in first year. -
The James Webb Space Telescope: Mission Overview and Status
The James Webb Space Telescope: Mission Overview and Status Matthew A. Greenhouse and the JWST Science Working Group' Goddard Space Flight Center Code 443.2 Greenbelt, MD 20771 USA Abstract- The James Webb Space Telescope (JWST) is the Infrared The lWST architecture is prinuirily shaped by successor to tbe Hubble Space Telescope. It is a cryogenic infrared 2 requirements associated with answering the above questions. space observatory with • 25 m aperture (6 m class) telescope In contrast to the Hubble Space Telescope (HST), the lWST yielding diffraction limited IIDgular resolution at a wave1engtll of :z is designed as an infrared optimized telescope to observe um. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band the redshifted ultraviolet radiation from the first galaxies imagery, coronagraphy, as well as mulu-Gbject and Integral-field and supernovae of the flfSt stars. To achieve the nly spectroscopy over the 0.6 <).. < 5.0 um spectrum. An actively cooled sensitivity needed to observe this era (z - 6-20), the mid..fnfrared instrument provides broad-band imagery, observatory must have a telescope aperture that is larger in ooronagrapby, and integral-field spectroscopy over the 5.0 < A. < 29 diameter than the largest rocket faring, and the entire optical um spectrum. The JWST is being developed by NASA, in system must be cooled to -40-50 K. Finally, the resulting partRership with the European and Canadian Space Agencies, al a large deployable cryogenic telescope must achieve HST-like general user facility with science observations to be proposed by the angular resolution across the SWIR spectrum. -
Astro2020 Science White Paper: JWST GTO/ERS Deep Surveys
Astro2020 Science White Paper: JWST GTO/ERS Deep Surveys Thematic Areas: ☐ Planetary Systems ☐ Star and Planet Formation ☐Formation and Evolution of Compact Objects ☒ Cosmology and Fundamental Physics ☐Stars and Stellar Evolution ☐Resolved Stellar Populations and their Environments ☒Galaxy Evolution ☐Multi-Messenger Astronomy and Astrophysics Principal Author: Marcia Rieke University of Arizona [email protected] 520-621-2731 Co-authors: Santiago Arribas Centro de Astrobiología, Madrid Andrew Bunker University of Oxford Stephané Charlot Sorbonne Université Institut d ’Astrophysique de Paris Steve Finkelstein University of Texas Austin Roberto Maiolino University of Cambridge Brant Robertson UC Santa Cruz and Institute for Advanced Study Chris Willott Hertzberg Institute of Astrophysics Rogier Windhorst Arizona State University Harvard-Smithsonian Center for Astrophysics: Daniel Eisenstein Erica Nelson Sandro Tacchella University of Arizona: Eiichi Egami Ryan Endsley Brenda Frye Kevin Hainline Raphael Hviding George Rieke Christina Williams Christopher Willmer Charity Woodrum Abstract : Discovering and characterizing the first galaxies to form in the early Universe is one of the prime reasons for building a large, cold telescope in space, the James Webb Space Telescope (JWST). This white paper describes an integrated Guaranteed Time Observer program using 800 hours of prime time and 800 hours of parallel time to study the formation and evolution of galaxies from z ~2 to z~14, combining NIRSpec, NIRCam, and MIRI data in a coordinated -
Women of Goddard: Careers in Science, Technology, Engineering, and Mathematics
Women of Goddard: Careers in Science, Technology, Engineering, and Mathematics Engineering, Technology, Careers in Science, of Goddard: Women National Aeronautics and Space Administration Goddard of Parkinson, Millar, Thaller Millar, Parkinson, Careers in Science Technology Engineering & Mathematics Women www.nasa.gov Women of Goddard NASA’s Goddard Space Flight Center IV&V, WV Goddard Institute for Space Studies, Greenbelt, Maryland, Main Campus Wallops Flight Facility, Virginia New York City Testing and Integration Facility, Greenbelt Home of Super Computing and Data Storage, Greenbelt GSFC’s new Sciences and Exploration Building, Greenbelt Women of Goddard: Careers in Science, Technology, Engineering, and Mathematics Editors: Claire L. Parkinson, Pamela S. Millar, and Michelle Thaller Graphics and Layout: Jay S. Friedlander In Association with: The Maryland Women’s Heritage Center (MWHC) NASA Goddard Space Flight Center, Greenbelt, Maryland, July 2011 Women of Goddard Careers in Foreword Science A century ago women in the United States could be schoolteachers and nurses but were largely excluded from the vast majority of other jobs that could Technology be classified as Science, Technology, Engineering, or Mathematics (STEM careers). Some inroads were fortuitously made during World Wars I and II, when because of Engineering the number of men engaged in fighting overseas it became essential that women fill in on jobs of all types on the home front. However, many of these inroads Mathematics were lost after the wars ended and the men -
Update December 2012
National Aeronautics and Space Administration Update December 2012 jwst.nasa.gov Issue #14, December 2012 James Webb Space Telescope First Flight Mirrors Arrive At Goddard By Lee Feinberg The JWST program passed a major milestone Northrop Grumman, is responsible for the Webb’s recently as the first flight mirrors arrived at God- optical technology and lightweight mirror system. The dard Space Flight Center’s Space System Devel- mirrors that arrived at Goddard were shipped from opment and Integration Facility (SSDIF) clean- Ball Aerospace in custom containers designed spe- room. The first two flight Primary Mirror Segment cifically for the multiple trips the mirrors made through Assemblies (PMSAs), labeled A3 and B2, arrived at eight U.S. states while completing their manufactur- Goddard on September 17th. The mirror contain- ing. Each of the 18 hexagonal-shaped mirror assem- ers were lifted off the truck and moved into the blies that make up the primary mirror measures more SSDIF cleanroom. Once inside the cleanroom, the than 1.3 meters (4.2 feet) across, and weighs approxi- mirror containers were opened and an incoming mately 40 kilograms, or 88 pounds. JWST will be the inspection was performed on September 19th. first space astronomy observatory to use an actively- The mirrors were moved up onto the cleanroom controlled, segmented mirror. mezzanine where they are now being stored inside their shipping containers under dry nitrogen purge The third flight Primary Mirror Segment Assembly to keep them clean and dry until telescope assem- (PMSA) C3 and the flight Secondary Mirror Assembly bly begins. A video of the first mirror arrivals can (SMA) arrived at Goddard on November 5th. -
Arxiv:1410.7398V3 [Astro-Ph.GA] 11 Feb 2015 Ihrslto,E.G., Resolution, High N Ihrslto Etfaeu Mgs(E.G., Images UV Rest-Frame High-Resolution 2011; Al
DRAFT VERSION JUNE 18, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 <Z< 3 1 2 3 1 4 5 YICHENG GUO ,HENRY C. FERGUSON ,ERIC F. BELL ,DAVID C. KOO ,CHRISTOPHER J. CONSELICE , MAURO GIAVALISCO , 2 6 2 7 8 9 2 SUSAN KASSIN ,YU LU ,RAY LUCAS ,NIR MANDELKER ,DANIEL M. MCINTOSH , JOEL R. PRIMACK ,SWARA RAVINDRANATH , 1 10 7 1 1 2 GUILLERMO BARRO ,DANIEL CEVERINO ,AVISHAI DEKEL ,SANDRA M. FABER , JEROME J. FANG ,ANTON M. KOEKEMOER , 2 11 12 12 KAI NOESKE , MARC RAFELSKI , , AMBER STRAUGHN 1 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD, USA 3 Department of Astronomy, University of Michigan, Ann Arbor, MI, USA 4 School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK 5 Department of Astronomy, University of Massachusetts, Amherst, MA, USA 6 Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA, USA 7 Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 Israel 8 Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, USA 9 Department of Physics, University of California, Santa Cruz, CA, USA 10 Departamento de F´ısica Te´orica, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain 11 NASA Postdoctoral Program Fellow and 12 Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA Draft version June 18, 2018 ABSTRACT Although giant clumps of stars are thought to be crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed.