RR-04: Biological Activity of Bisphenol a (BPA) Structural Analogues

Total Page:16

File Type:pdf, Size:1020Kb

RR-04: Biological Activity of Bisphenol a (BPA) Structural Analogues NTP RESEARCH REPORT ON BIOLOGICAL ACTIVITY OF BISPHENOL A (BPA) STRUCTURAL ANALOGUES AND FUNCTIONAL ALTERNATIVES NTP RR 4 OCTOBER 2017 NTP Research Report on Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives Research Report 4 October 2017 National Toxicology Program Public Health Service U.S. Department of Health and Human Services ISSN: 2473-4756 Research Triangle Park, North Carolina, USA Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives Table of Contents Tables ............................................................................................................................................. iii Figures............................................................................................................................................ iii About This Report.......................................................................................................................... iv Peer Review ................................................................................................................................... vi Protocol Review ............................................................................................................................. vi Publication Details ........................................................................................................................ vii Acknowledgments......................................................................................................................... vii Abstract ........................................................................................................................................ viii Introduction ......................................................................................................................................1 Background .................................................................................................................................1 Objectives ....................................................................................................................................2 Methods............................................................................................................................................4 Systematic Review Methods .......................................................................................................4 Formulate the Study Question .....................................................................................................4 Search For and Select Studies for Inclusion ...............................................................................5 Literature Search Strategy....................................................................................................5 Searching Other Resources ..................................................................................................5 Study Selection Criteria ..............................................................................................................5 Extract Data from Studies ....................................................................................................6 Assess Internal Validity (“Risk of Bias”) of Individual Human and Animal Studies ........................................................................................................................6 Structural and Biological Similarity Analysis.............................................................................7 Structural Similarity Analysis ..............................................................................................7 HTS Data .............................................................................................................................7 Biological Similarity Analysis Based on HTS Data ............................................................7 Integrated Chemical and Biological Similarity....................................................................8 Results ..............................................................................................................................................9 Literature Search Results ............................................................................................................9 Survey of Evidence ...................................................................................................................10 Human Evidence ................................................................................................................10 Animal Evidence ................................................................................................................10 In Vitro Evidence ...............................................................................................................13 Health Outcomes and Mechanistic Findings.............................................................................13 Repeated Dose Effects .......................................................................................................13 Reproductive and Developmental Effects .........................................................................13 Estrogenic and Anti-estrogenic Activity ............................................................................16 Androgenic and Anti-androgenic Activity.........................................................................21 Thyroid and Anti-thyroid Activity .....................................................................................21 Other Receptor Activity .....................................................................................................22 Acute Toxicity and DNA Damage .....................................................................................22 ii Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives Other Endpoints .................................................................................................................23 Structural and Biological Similarity Analysis...........................................................................23 Structural Similarity Analysis ............................................................................................23 Biological Similarity Analysis Based on HTS Data ..........................................................24 Integrated Chemical and Biological Similarity..................................................................28 Discussion ......................................................................................................................................30 Data Gaps and Research Needs.................................................................................................30 Limitations of the Review .........................................................................................................31 Summary ........................................................................................................................................32 References ......................................................................................................................................33 Appendix A. Supplemental Materials ......................................................................................... A-1 Tables Table 1. BPA Analogues Included in Systematic Review ...............................................................1 Table 2. PECO (Populations, Exposures, Comparators Outcomes) Statement ...............................4 Table 3. Inventory of Published Literature by Chemical and Evidence Stream ............................10 Table 4. Summary of Animal Evidence .........................................................................................12 Table 5. Summary of In Vitro Evidence ........................................................................................14 Table 6. Summary of Most Sensitive Endpoints in Subchronic Studies .......................................15 Table 7. Summary of In Vitro Estrogen Endpoints .......................................................................17 Figures Figure 1. Study Flow Diagram.........................................................................................................9 Figure 2. Estrogenic Activity .........................................................................................................20 Figure 3. Structural Similarity of BPA Analogues to BPA and E2 ................................................24 Figure 4. Biological Similarity Analyses in Tox21 .......................................................................26 Figure 5. Biological Similarity of BPA Analogues to E2 and BPA in Context of the Entire Tox21 Library ................................................................................................................28 Figure 6. Integrated Structural and Biological Similarity of the BPA Analogues to E2 and BPA ................................................................................................................................29 This report has been reformatted to meet new NTP publishing requirements; its content has not changed. iii Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives About This Report Authors Katherine E. Pelch1, Jessica A. Wignall3, Alexandra E. Goldstone3, Pam K. Ross3, Robyn B. Blain3, Andrew J. Shapiro1, Stephanie D. Holmgren2, Jui-Hua Hsieh1, Daniel Svoboda4, Scott S. Auerbach1, Frederick M. Parham1, Scott A. Masten1, Kristina A. Thayer5
Recommended publications
  • Oxidative Stress and BPA Toxicity: an Antioxidant Approach for Male and Female Reproductive Dysfunction
    antioxidants Review Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction Rosaria Meli 1, Anna Monnolo 2, Chiara Annunziata 1, Claudio Pirozzi 1,* and Maria Carmela Ferrante 2,* 1 Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; [email protected] (R.M.); [email protected] (C.A.) 2 Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy; [email protected] * Correspondence: [email protected] (C.P.); [email protected] (M.C.F.) Received: 15 April 2020; Accepted: 7 May 2020; Published: 10 May 2020 Abstract: Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the “fil rouge” of BPA’s toxic mechanisms of action with pleiotropic outcomes on reproduction.
    [Show full text]
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant
    Author Manuscript Published OnlineFirst on December 19, 2016; DOI: 10.1158/1078-0432.CCR-16-2054 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant 2 Prostate Cancer Patient-Derived Xenografts 3 4 Hung-Ming Lam1,2*, Ryan McMullin3*†, Holly M. Nguyen1, Ilsa Coleman4, Michael Gormley5, 5 Roman Gulati4, Lisha G. Brown1, Sarah K. Holt1, Weimin Li5, Deborah S. Ricci6, Karin 6 Verstraeten7, Shibu Thomas5, Elahe A. Mostaghel4, 8, Peter S. Nelson4, 8, Robert L. Vessella1, 7 9, and Eva Corey1 8 9 Affiliation of authors: 1Department of Urology, University of Washington School of 10 Medicine, Seattle, Washington; 2State Key Laboratory of Quality Research in Chinese 11 Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of 12 Science and Technology, Macau (SAR), China; 3LabConnect, Seattle, Washington; 4Fred 13 Hutchinson Cancer Research Center, Seattle, Washington; 5Janssen Research & 14 Development, Spring House, Pennsylvania; 6Janssen Research & Development, Raritan, 15 New Jersey; 7Janssen Research & Development, Beerse, Belgium; 8Department of 16 Medicine, University of Washington, Seattle, Washington; 9Department of Veterans Affairs 17 Medical Center, Seattle, Washington 18 19 *Co-primary lead authors 20 †Current affiliation: Janssen Research & Development, Spring House, Pennsylvania 21 22 23 Running title (60 characters max): Abiraterone Response and Resistance 24 25 Keywords: abiraterone acetate, prostate cancer, xenografts, biomarkers, androgen 26 receptor, glucocorticoid receptor, castration resistance 27 28 Grant/funding support: The work was supported by The Richard M. Lucas Foundation, the 29 Prostate Cancer Foundation, SU2C, a NIH PO1 CA085859, and the PNW Prostate Cancer 1 Downloaded from clincancerres.aacrjournals.org on September 23, 2021.
    [Show full text]
  • Effect of Vitamin C on Bisphenol a Induced Hepato& Nephrotoxicity in Albino Rats
    Haroun et al. 57 EFFECT OF VITAMIN C ON BISPHENOL A INDUCED HEPATO& NEPHROTOXICITY IN ALBINO RATS Marcelle R. Haroun,M.D.*, Ibrahim S. Zamzam, M.D.*,Eslam S. Metwally, M.D.*, and Rabab Sh. EL-Shafey, M.S.C. * *Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Benha University, Egypt [email protected] [email protected] [email protected] [email protected] ABSTRACT Bisphenol-A (BPA) is a worldwide used endocrine disruptor that is incorporated in many plastic industries. The exposure of humans to that substance starts early during the fetal life. Many agencies raised warnings against the excessive use of such substances. The present study aimed to evaluate the oxidative stress effect of BPA on liver and kidney of albino rats, and whether co-administration of vitamin C can ameliorate this oxidative damage. Albino rats were divided into six groups: -ve control group,+ve control group,vitamin C (60mglkg) treated group, BPA treated group, BPA+ high dose of vitamin C (60mglkg) treated group, and BPA+ low dose of vitamin C (5.5mglkg) treated group The oxidative stress arising from BPA was evaluated in liver and kidney tissues. In addition, serum creatinine, uric acid levels, (AST) and (ALT) activities as markers of kidney and liver function were measured. Biochemical analysis revealed significant reduction in activities of enzymatic antioxidants in BPA treated group and BPA + vitamin C treated groups in high & low doses as compared to control group. In addition, there were significant increase in AST, ALT, uric acid, and creatinine levels in BPA treated group and reduction in their concentrations BPA + vitamin C treated groups in high & low doses as compared to control group.
    [Show full text]
  • Replacement Therapy, Not Recreational Tonic Testosterone, Widely Used As a Lifestyle Drug, Is a Medicine and Should Be Kept As Such
    correspondence Replacement therapy, not recreational tonic Testosterone, widely used as a lifestyle drug, is a medicine and should be kept as such. Sir — We read with great interest the News male tonics and remedies — most harmless, your Feature that there is a need for large- Feature “A dangerous elixir?” (Nature 431, but some as drastic as grafting goat testicles scale, long-term clinical trials to address 500–501; 2004) reporting the zeal with onto humans. Unfortunately, a certain several issues associated with testosterone which testosterone is being requested by amount of quackery is now perceived to be use. For example, testosterone therapy may men who apparently view the hormone as associated with testosterone therapy, and the be beneficial against osteoporosis, heart a ‘natural’ alternative to the drug Viagra. increased prescription of the hormone in disease and Alzheimer’s disease, but the Like Viagra, testosterone replacement recent years does little to dispel this notion. dangers remain obscure. therapy — with emphasis on the word Nonetheless, as your Feature highlights, Until we know more, both prescribing ‘replacement’ — is a solution to a very real hypogonadism is a very real clinical clinicians and the male population need to clinical problem. There is a distinction condition. It is characterized by abnormally be aware that testosterone, like any other between patients whose testosterone has low serum levels of testosterone, in medication, should only be administered declined to abnormally low levels, and conjunction with symptoms such as to patients for whom such therapy is individuals seeking testosterone as a pick- mood disturbance, depression, sexual clinically indicated. me-up.
    [Show full text]
  • I LITERATURE-BASED DISCOVERY of KNOWN and POTENTIAL NEW
    LITERATURE-BASED DISCOVERY OF KNOWN AND POTENTIAL NEW MECHANISMS FOR RELATING THE STATUS OF CHOLESTEROL TO THE PROGRESSION OF BREAST CANCER BY YU WANG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics with a concentration in Library and Information Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Adviser: Professor Vetle I. Torvik Professor Erik Russell Nelson i ABSTRACT Breast cancer has been studied for a long period of time and from a variety of perspectives in order to understand its pathogeny. The pathogeny of breast cancer can be classified into two groups: hereditary and spontaneous. Although cancer in general is considered a genetic disease, spontaneous factors are responsible for most of the pathogeny of breast cancer. In other words, breast cancer is more likely to be caused and deteriorated by the dysfunction of a physical molecule than be caused by germline mutation directly. Interestingly, cholesterol, as one of those molecules, has been discovered to correlate with breast cancer risk. However, the mechanisms of how cholesterol helps breast cancer progression are not thoroughly understood. As a result, this study aims to study known and discover potential new mechanisms regarding to the correlation of cholesterol and breast cancer progression using literature review and literature-based discovery. The known mechanisms are further classified into four groups: cholesterol membrane content, transport of cholesterol, cholesterol metabolites, and other. The potential mechanisms, which are intended to provide potential new treatments, have been identified and checked for feasibility by an expert.
    [Show full text]
  • R Graphics Output
    Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 )
    [Show full text]
  • DDT and Its Derivatives Have Remained in the Environment
    International Journal of Molecular Sciences Review A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment Ayami Matsushima Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; [email protected]; Tel.: +81-92-802-4159 Received: 20 March 2018; Accepted: 2 May 2018; Published: 5 May 2018 Abstract: Huge numbers of chemicals are released uncontrolled into the environment and some of these chemicals induce unwanted biological effects, both on wildlife and humans. One class of these chemicals are endocrine-disrupting chemicals (EDCs), which are released even though EDCs can affect not only the functions of steroid hormones but also of various signaling molecules, including any ligand-mediated signal transduction pathways. Dichlorodiphenyltrichloroethane (DDT), a pesticide that is already banned, is one of the best-publicized EDCs and its metabolites have been considered to cause adverse effects on wildlife, even though the exact molecular mechanisms of the abnormalities it causes still remain obscure. Recently, an industrial raw material, bisphenol A (BPA), has attracted worldwide attention as an EDC because it induces developmental abnormalities even at low-dose exposures. DDT and BPA derivatives have structural similarities in their chemical features. In this short review, unclear points on the molecular mechanisms of adverse effects of DDT found on alligators are summarized from data in the literature, and recent experimental and molecular research on BPA derivatives is investigated to introduce novel perspectives on BPA derivatives. Especially, a recently developed BPA derivative, bisphenol C (BPC), is structurally similar to a DDT derivative called dichlorodiphenyldichloroethylene (DDE).
    [Show full text]
  • Pesticides Reduce Symbiotic Efficiency of Nitrogen-Fixing Rhizobia and Host Plants
    Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants Jennifer E. Fox*†, Jay Gulledge‡, Erika Engelhaupt§, Matthew E. Burow†¶, and John A. McLachlan†ʈ *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403; †Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699; ‡Department of Biology, University of Louisville, Louisville, KY 40292 ; §University of Colorado, Boulder, CO 80309; and ¶Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699 Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved May 8, 2007 (received for review January 8, 2007) Unprecedented agricultural intensification and increased crop by plants, in rotation with non-N-fixing crops (8, 15). The yield will be necessary to feed the burgeoning world population, effectiveness of this strategy relies on maximizing symbiotic N whose global food demand is projected to double in the next 50 fixation (SNF) and plant yield to resupply organic and inorganic years. Although grain production has doubled in the past four N and nutrients to the soil. The vast majority of biologically fixed decades, largely because of the widespread use of synthetic N is attributable to symbioses between leguminous plants (soy- nitrogenous fertilizers, pesticides, and irrigation promoted by the bean, alfalfa, etc.) and species of Rhizobium bacteria; replacing ‘‘Green Revolution,’’ this rate of increased agricultural output is this natural fertilizer source with synthetic N fertilizer would cost unsustainable because of declining crop yields and environmental Ϸ$10 billion annually (16, 17).
    [Show full text]
  • CPY Document
    3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not.
    [Show full text]
  • (Danio Rerio). (In Vivo/ in Vitro
    Lire la première partie de la thèse IV. Métabolisme de la BP2 et du BPS dans des modèles in vitro issus de l’Homme et du poisson zèbre utilisés dans l’évaluation toxicologique et le criblage des substances à activité œstrogénique Article 3 Cell-specific biotransformation of benzophenone 2 and Bisphenol-S in zebrafish and human in vitro models used for toxicity and estrogenicity screening Vincent Le Fola,b,c, Selim Aït-Aïssaa,*, Nicolas Cabatonb,c, Laurence Dolob,c, Marina Grimaldid, Patrick Balaguerd, Elisabeth Perdub,c, Laurent Debrauwerb,c, François Briona, Daniel Zalkob,c,* a Institut National de l’Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie in vitro et in vivo, F-60550 Verneuil-en-Halatte, France b INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France c Toulouse University, INP, UMR 1331 TOXALIM, F-31000 Toulouse, France. d Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, F-34298 Montpellier, France. * corresponding authors: E-mail: [email protected], phone +33 561 285 004, fax +33 561 285 244 E-mail: [email protected], phone +33 344 556 511, fax +33 344 556 767 185 L’étude du devenir de la BP2 et du BPS dans différents modèles in vitro du poisson zèbre fait suite à la mise en évidence des différences de réponse œstrogénique observées entre les modèles cellulaires, larvaires et adultes. En complément de ces modèles poisson zèbre, cette étude de devenir de la BP2 et du BPS a également été conduite dans des modèles in vitro humain d’origine hépatique ou mammaire et couramment utilisés dans l’évaluation toxicologique du potentiel œstrogénique des xénobiotiques.
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis Optimization of an LC-MS/MS Method for the Determination of Xenobiotics in Biological Matrices verfasst von / submitted by Thomas Jamnik BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2020 / Vienna 2020 Studienkennzahl lt. Studienblatt / UA 066 863 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Biologische Chemie degree programme as it appears on the student record sheet: Betreut von / Supervisor: Assoz. Prof. Dipl.-Ing. Dr. Benedikt Warth, Bakk.techn. 1 2 Erklärung Ich erkläre, dass die vorliegende Masterarbeit von mit selbst verfasst wurde und ich keine anderen als die angeführten Behelfe verwendet bzw. mich auch sonst keiner unerlaubter Hilfe bedient habe. Ich versichere, dass diese Arbeit bisher weder im In- noch Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt wurde. Ich habe mich bemüht, sämtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zustimmung zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung bekannt werden, ersuche ich um Meldung bei mir. Danksagung Ich danke Dr. Benedikt Warth nicht nur für die Möglichkeit diese interessante Masterarbeit verfassen zu dürfen, sondern auch für die gewonnenen Erfahrungen die der Einblick in seine Arbeitsgruppe und das Institut für Lebensmittelchemie erlaubt hat. Besonderer Dank gilt meiner direkten Betreuerin Dipl.-Ing. Mira Flasch, welche stets hilfsbereite Unterweisung in die Praxis als auch Theorie der verwendeten Arbeitsmethoden gab, immer für ausgiebige Diskussionen bereit stand und sich viel Zeit für diverse Korrekturen dieser Arbeit nahm.
    [Show full text]