Chapter 8 Natural and Step Responses of RLC Circuits

8.1-2 The Natural Response of a Parallel RLC Circuit 8.3 The Step Response of a Parallel RLC Circuit 8.4 The Natural and Step Response of a Series RLC Circuit

1 Key points

 What do the response curves of over-, under-, and critically-damped circuits look like? How to choose R, L, C values to achieve fast switching or to prevent overshooting damage?

 What are the initial conditions in an RLC circuit? How to use them to determine the expansion coefficients of the complete solution?

 Comparisons between: (1) natural & step responses, (2) parallel, series, or general RLC.

2 Section 8.1, 8.2 The Natural Response of a Parallel RLC Circuit

1. ODE, ICs, general solution of parallel voltage 2. Over-damped response 3. Under-damped response 4. Critically-damped response

3 The governing ordinary differential equation (ODE)

V0, I0, v(t) must satisfy the passive sign convention.

dv  1 t  v  By KCL: C I0  )( tdtv   .0  0  dt  L  R

 Perform time derivative, we got a linear 2nd- order ODE of v(t) with constant coefficients:

2vd 1 dv v  .0 2 RCdt dt LC 4 The two initial conditions (ICs)

 The voltage cannot change abruptly,   Vv 0  )1()0(  The current cannot change abruptly,     L  0,)0( C L R )0()0()0(  00 RVIiiiIi ,

 dvC   I V00  C )0(  Ci ,  C  vv  )0()0(   )2( dt t0 C RC 5 General solution

 Assume the solution is )(  Aetv st , where A, s are unknown constants to be solved.  Substitute into the ODE, we got an algebraic (characteristic) equation of s determined by the circuit parameters: s 1 s2  .0 LCRC  Since the ODE is linear,  linear combination of solutions remains a solution to the equation. The general solution of v(t) must be of the form: 1 2tsts )( 1  2eAeAtv ,

where the expansion constants A1, A2 will be determined by the two initial conditions. 6 and frequencies

 In general, s has two roots, which can be (1) distinct real, (2) degenerate real, or (3) complex conjugate pair. 2 1  1  1 2 2 s 2,1     0 , 2RC  2  LCRC where 1   , …neper frequency 2RC

1   …resonance (natural) frequency 0 LC

7 Three types of natural response

 How the circuit reaches its steady state depends

on the relative magnitudes of  and 0:

The Circuit is When Solutions real, distinct Over-damped   roots s1, s2 complex roots Under-damped   * s1 = (s2) real, equal roots Critically-damped  s1 = s2

8 Over-damped response ( >0)

 The complete solution and its derivative are of the form: 1 2tsts  )( 1  2eAeAtv ,  1ts 2ts   )( 11  22 esAesAtv .

2 2 where s 2,1   0 are distinct real.

 Substitute the two ICs:

  )0(  VAAv )1(  021   solve   I V00 A1, A2.   )0( AsAsv 2211   )2(  C RC

9 Example 8.2: Discharging a parallel RLC circuit (1)

 Q: v(t), iC( t), iL( t), iR( t)=?

12 V 30 mA

 1 1    5.12 ,kHz  > ,  2RC  7 )102)(200(2 0  over-  1 1    10 kHz. damped 0 2 7  LC  )102)(105( 10 Example 8.2: Solving the parameters (2)

 The 2 distinct real roots of s are:

 2 2 s1 0  5 ,kHz …|s1|<(slow)  2 2 …|s |>(fast) s2 0  20 .kHz 2

 The 2 expansion coefficients are:

  VAA 021   AA 21  12   I V00  AsAs 2211   1 205 AA 2  450  C RC

A1  14 A2  26,V V. 11 Example 8.2: The parallel voltage evolution (3)

1 2tsts 5000t 20000t )( 1 2  14  26eeeAeAtv  V.

|s2|>(fast) Converge dominates to zero

“Over” |s |<(slow) damp 1 dominates

12 Example 8.2: The branch currents evolution (4)

 The branch current through R is: tv )( ti )(   70e5000t  130e20000t  mA. R 200 

 The branch current through L is:

t 1 5000t 20000t L ti 30)( mA    56)(  26eetdtv mA. mH 05 mH 0

 The branch current through C is: dv ti  2.0()( μF) 14e5000t  104e20000t  mA. C dt

13 Example 8.2: The branch currents evolution (5)

Converge to zero

14 General solution to under-damped response ( <0)

 The two roots of s are complex conjugate pair:

2 2 s 2,1 0  jd ,

22 where d 0   is the damped frequency.

 The general solution is reformulated as:

 d )( tj  d )( tj )(  1eAtv  2eA t  1cos d  sind  2 cos d  sind tjtAtjtAe t  21 cosd  21 sind tAAjtAAe t  1 cosd  2 d tBtBe .sin

15 Solving the expansion coefficients B1, B2 by ICs

 The derivative of v(t) is: t t  )( 1 cos  dd sind teteBtv  t t 2  sin  dd cosd teteB t 1  d 2 cos d 2  d 1 d tBBtBBe .sin

 Substitute the two ICs:

  )0(  VBv )1(  01   solve  I V  00 B , B . v )0( 1 d BB 2   )2( 1 2  C RC

16 Example 8.4: Discharging a parallel RLC circuit (1)

 Q: v(t), iC( t), iL( t), iR( t)=?

0 V -12.25 mA

 1 1    2.0 ,kHz  4 7  < ,  2RC   )1025.1)(102(2 0  1 1 under-    1 kHz. 0 7 damped  LC  )1025.1)(8( 17 Example 8.4: Solving the parameters (2)

 The damped frequency is:

2222 d 0   98.02.01 .kHz

 The 2 expansion coefficients are:

 VB 01   )1(0  B1  ,0   I V00  1 d BB 2   )2( B2  100 V  C RC

18 Example 8.4: The parallel voltage evolution (3)

t t 200t )(  1 cosd  2 sind   eteBteBtv 980sin100 t .V

 The voltage

oscillates (~d ) and approaches the final value (~), different from the over- damped case (no oscillation, 2 decay constants).

19 Example 8.4: The branch currents evolutions (4)

 The three branch currents are:

20 Rules for circuit designers

 If one desires the circuit reaches the final value as fast as possible while the minor oscillation is of less concern, choosing R, L, C values to satisfy under-damped condition.  If one concerns that the response not exceed its final value to prevent potential damage, designing the system to be over-damped at the cost of slower response.

21 General solution to critically-damped response (=0)

 Two identical real roots of s make st st st st )( 1 2 21  0eAeAAeAeAtv ,)(

not possible to satisfy 2 independent ICs (V0, I0)

with a single expansion constant A0.

 The general solution is reformulated as:

t )(   DtDetv 21 .

 You can prove the validity of this form by substituting it into the ODE:   1   1 tvLCtvRCtv  .0)()()()()( 22 Solving the expansion coefficients D1, D2 by ICs

 The derivative of v(t) is:

t t t t  )( 1  2  21  1 etDDDeDteeDtv .

 Substitute the two ICs:

  )0(  VDv )1(  02   solve D , D .   I V00 1 2   )0( DDv 21   )2(  C RC

23 Example 8.5: Discharging a parallel RLC circuit (1)

 Q: What is R such that the circuit is critically- damped? Plot the corresponding v(t).

R 0 V -12.25 mA

1 1 1 L 1 8  ,  , R  4  .k 0 2RC LC 2 C 2 1025.1 7

 Increasing R tends to bring the circuit from over- to critically- and even under-damped. 24 Example 8.5: Solving the parameters (2)

 The neper frequency is: 1 1    1 ,kHz 2RC 3  7 )1025.1)(104(2 1   1 ms. 

 The 2 expansion coefficients are:

 VD 02   )1(0  -12.25 mA D1  98 skV   I V00  DD 21   )2( D2  0  C RC 0.125 F 25 Example 8.5: The parallel voltage evolution (3)

t t 1000t )( 1 2eDteDtv   000,98 te  .V 98 V/ms

26 Procedures of solving nature response of parallel RLC

1  Calculate parameters   RC )2( and 0  1 LC .

 Write the form of v(t) by comparing  and :

 1  2tsts , seAeA - 2 2 , if  ,  1 2,12 0 0  t 22 tv )(   1 cosd  2 tBtBe ,sin dd 0 , if  0 ,  t DtDe , if  .  21 0

 Find the expansion constants (A1, A2), (B1, B2), or  (D1, D2) by two ICs:   Vv ),1()0(  0 

  I V00 v )0(   )2(  C RC 27 Section 8.3 The Step Response of a Parallel RLC Circuit

1. Inhomogeneous ODE, ICs, and general solution

28 The homogeneous ODE

+ Is V0 I0 

dv  1 t  v  By KCL: C I0  )( tdtv   Is.  0  dt  L  R  Perform time derivative, we got a homogeneous

ODE of v(t) independent of the source current Is: 2 vd 1 dv v  .0 2 RCdt dt LC 29 The inhomogeneous ODE

i Is L V0 I0

 Change the unknown to the inductor current iL( t):

 dv v C i  I ,  dt L R s 2id 1 di i I  L  sLL di 2 RCdt dt LC LC   Lv L ,  dt

30 The two initial conditions (ICs)

i Is L V0 I0

 The inductor current cannot change abruptly,  L  Ii 0  )1()0(  The capacitor voltage cannot change abruptly,   C 0  vVv L ),0()0(

 diL  V0  L  Lv  iL   )2()0(,)0( dt t0 L 31 General solution

 The solution is the sum of final current If =Is and

the nature response iL,nature (t):

L )(   ,natureLf tiIti ),( where the three types of nature responses were elucidated in Section 8.2:

1 2tsts  f  1  2eAeAI , if  0,   t L ti )(   f  1cosd  2 d tBtBeI ,sin if  0,  t    f   DtDeI 21 , if  0.

32 Example 8.7: Charging a parallel RLC circuit (1)

 Q: iL( t)= ?

I =0 I = 0 s 24 mA V0 =0 625 

 1 1    32 ,kHz  8  < ,  2RC  )105.2)(625(2 0  1 1 under-    40 kHz. 0 2 8 damped  LC  )105.2)(105.2( 33 Example 8.7: Solving the parameters (2)

 The complete solution is of the form: t L )( s   1cosd  2 d tBtBeIti ,sin

22 22 where d 0   243240 .kHz

 The 2 expansion coefficients are:

 s   IBI 01   )1(0  B1  24 ,mA   V0   1  d BB 2  )2(0 B2  32 mA  L 

34 Example 8.7: Inductor current evolution (3)

 000,32 t  000,32 t L ti   2424)( e  32)000,24cos( et t)000,24sin(  .mA

35 Example 8.9: Charging of parallel RLC circuits (1)

 Q: Compare iL( t) when the resistance R = 625  (under-damp), 500  (critical damp), 400  (over-damp), respectively.

I0=0 Is= 24 mA V0 =0

+ +  Initial & final conditions remain: iL(0 )=0, i'L(0 )=0,

If =24 mA. Different R’s give different functional forms and expansion constants. 36 Example 8.9: Comparison of rise times (2)

 The current of an under-damped circuit rises faster than that of its over-damped counterpart.

37 Section 8.4 The Natural and Step Response of a Series RLC Circuit

1. Modifications of time constant, neper frequency

38 ODE of nature response

V0, I0, i(t) must satisfy the passive sign convention.

di  1 t   By KVL: LRi V0  tdti   .0)(  0  dt  C  2id R di i  By derivative: 2  .0 dt L dt LC 1 in parallel RLC RC 39 The two initial conditions (ICs)

 The inductor cannot change abruptly,   Ii 0  )1()0(  The capacitor voltage cannot change abruptly,     C  0,)0( L C R )0()0()0(  00 RIVvvvVv ,

 diL    00 RIV  L  Lv ,)0(  L  ii  )0()0(   )2(  dt t0 L 40 General solution

st  Substitute )(  Aeti into the ODE, we got a different characteristic equation of s: R 1 s2 s  .0 s 2  2 . L LC 2,1 0

 The form of s1,2 determines the form of general

solution: 1 2tsts  1  2eAeA , if  0  t ti )(   1 cosd  2 d tBtBe ,sin if  0  t    DtDe 21 , if  0

R 1 22 where , 0  , d 0  . 2L LC 1 RC)2( in parallel RLC 41 Example 8.11: Discharging a series RLC circuit (1)

 Q: i(t), vC( t)=?

I0 =0 - + vC(0 )=100 V,  V =-100 V 0  100 V

 R 560   8.2 ,kHz  <  2L )1.0(2 0,  1 1 under-    10 kHz. 0 7 damped  LC  )101)(1.0( 42 Example 8.11: Solving the parameters (2)

 The damped frequency is:

22 22 d 0   6.98.210 .kHz

 The 2 expansion coefficients are:

 IB 01   )1(0  -100 V B1  ,0   RIV   00 B  2.104 mA  1 d BB 2   )2(  2  9.6 L kHz 100 mH

43 Example 8.11: Loop current evolution (3)

t  800,2 t )(  1 cosd  2 sind   etBtBeti 600,9sin2.104 t .mA

44 Example 8.11: Capacitor voltage evolution (4)

c    tiLtRitv )()()(  e 800,2 t t  600,9sin17.29600,9cos100 t .V

 When the capacitor energy starts to decrease, the inductor energy starts to increase.  Inductor energy starts to decrease before capacitor energy decays to 0. 45 ODEs of step response

I 0 + Vs V 0 

di  1 t   By KVL: LRi V0    Vtdti s.)(  0  dt  C   The homogeneous and inhomogeneous ODEs

of i(t) and vC (t) are: 2id R di i 2vd R dv v V  ,0 and C  sCC . dt2 L dt LC dt2 L dt LC LC 46 The two initial conditions (ICs)

I 0 + Vs vC (t) V0 

 The capacitor voltage cannot change abruptly,  C  Vv 0  )1()0(  The inductor current cannot change abruptly,   L 0  iIi C ),0()0(

 dvC  I0  C )0(  Ci  vC   )2()0(, dt t0 C 47 General solution

 The solution is the sum of final voltage Vf =Vs

and the nature response vC,nature (t):

C )(   ,natureCf tvVtv ),( where the three types of nature responses were elucidated in Section 8.4.

1 2tsts  f  1  2eAeAV , if  0 ,   t C tv )(   f  1cosd  2 d tBtBeV ,sin if  0,  t    f   DtDeV 21 , if  0.

48 Key points

 What do the response curves of over-, under-, and critically-damped circuits look like? How to choose R, L, C values to achieve fast switching or to prevent overshooting damage?

 What are the initial conditions in an RLC circuit? How to use them to determine the expansion coefficients of the complete solution?

 Comparisons between: (1) natural & step responses, (2) parallel, series, or general RLC.

49