Influence of Harvest Gaps and Coarse Woody Material on Click Beetles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faune De Belgique: Insectes Coléoptères Lamellicornes
Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 151 (2015): 107-114 Can Flower chafers be monitored for conservation purpose with odour traps? (Coleoptera: Cetoniidae) Arno THOMAES Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels (email: [email protected]) Abstract Monitoring is becoming an increasingly important for nature conservation. We tested odour traps for the monitoring of Flower chafers (Cetoniidae). These traps have been designed for eradication or monitoring the beetles in Mediterranean orchards where these beetles can be present in large numbers. Therefore, it is unclear whether these traps can be used to monitor these species in Northern Europe at sites where these species have relatively low population sizes. Odour traps for Cetonia aurata Linnaeus, 1761 and Protaetia cuprea Fabricius, 1775 were tested in five sites in Belgium and odour traps for Oxythyrea funesta Poda, 1761 and Tropinota hirta (Poda, 1761) at one site. In total 5 C. aurata , 17 Protaetia metallica (Herbst, 1782) and 2 O. funesta were captured. Furthermore, some more common Cetoniidae were found besides 909 non-Cetoniidae invertebrates. I conclude that the traps are not interesting to monitor C. aurata when the species is relatively rare. However, the traps seem to be useful to monitor P. metallica and to detect O. funesta even if it is present in low numbers. However, it is important to lower the high mortality rate of predominantly honeybee and bumblebees by adapting the trap design. Keywords: Cetoniidae, monitoring, odour traps, Cetonia aurata, Protaetia metallica, Oxythyrea funesta. Samenvatting Monitoring wordt in toenemende mate belangrijk binnen het natuurbehoud. -
Updated Distribution of Osmoderma Eremita in Abruzzo (Italy) and Agro-Pastoral Practices Affecting Its Conservation (Coleoptera: Scarabaeidae)
Fragmenta entomologica, 47 (2): 139-146 (2015) eISSN: 2284-4880 (online version) pISSN: 0429-288X (print version) Research article Submitted: July 18th, 2015 - Accepted: November 16th, 2015 - Published: December 31st, 2015 Updated distribution of Osmoderma eremita in Abruzzo (Italy) and agro-pastoral practices affecting its conservation (Coleoptera: Scarabaeidae) Patrizia GIANGREGORIO 1, Paolo AUDISIO 2, Giuseppe Maria CARPANETO 3, Giuseppe MARCANTONIO 1, Emanuela MAURIZI 3,4, Fabio MOSCONI 2,4, Alessandro CAMPANARO 4,5,* 1 Parco Nazionale della Majella, Ufficio Agronomico e indennizzi danni fauna - Via Badia 28, I-67039 Sulmona (L’Aquila), Italy [email protected]; [email protected] 2 Università degli Studi di Roma “La Sapienza”, Dipartimento di Biologia e Biotecnologie “Charles Darwin” - Via A. Borelli 50, I-00161 Roma, Italy - [email protected] 3 Università Roma Tre, Dipartimento di Scienze - Viale G. Marconi 446, I-00146, Roma, Italy - [email protected] 4 CREA-ABP Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per l’Agrobiologia e la Pedologia - Via di Lanciola 12/a, I-50125 Cascine del Riccio (Firenze), Italy - [email protected]; fabio.mosconi@ gmail.com; [email protected] 5 MiPAAF - National Forest Service, CNBF National Centre for Forestry Biodiversity “Bosco Fontana” - Strada Mantova 2, I-46045 Marmirolo (Mantova), Italy * Corresponding author Abstract New records of Osmoderma eremita (Scopoli, 1763) (Coleoptera: Scarabaeidae: Cetoniinae) are reported for Abruzzo (Italy), together with a review of its distribution in this region. O. eremita is a saproxylic beetle dependent on the presence of hollow deciduous trees with abundant wood mould in their cavities. -
Using Odour Traps for Population Monitoring and Dispersal Analysis of the Threatened Saproxylic Beetles Osmoderma Eremita and Elater Ferrugineus in Central Italy
J Insect Conserv (2014) 18:801–813 DOI 10.1007/s10841-014-9687-8 ORIGINAL PAPER Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy Agnese Zauli • Stefano Chiari • Erik Hedenstro¨m • Glenn P. Svensson • Giuseppe M. Carpaneto Received: 7 March 2014 / Accepted: 8 August 2014 / Published online: 17 August 2014 Ó Springer International Publishing Switzerland 2014 Abstract Pheromone-based monitoring could be a very lure compared to racemic c-decalactone in detecting its efficient method to assess the conservation status of rare presence. The population size at the two sites were esti- and elusive insect species, but there are still few studies for mated to 520 and 1,369 individuals, respectively. Our which pheromone traps have been used to obtain infor- model suggests a sampling effort of ten traps checked for mation on presence, abundance, phenology and movements 3 days being sufficient to detect the presence of E. ferru- of such insects. We performed a mark-recapture study of gineus at a given site. The distribution of dispersal dis- two threatened saproxylic beetles, Osmoderma eremita tances for the predator was best described by the negative (Scarabaeidae) and its predator Elater ferrugineus (Ela- exponential function with 1 % of the individuals dispersing teridae), in two beech forests of central Italy using phero- farther than 1,600 m from their natal site. In contrast to mone baited window traps and unbaited pitfall traps. Two studies on these beetles in Northern Europe, the activity lures were used: (1) the male-produced sex pheromone of pattern of the two beetle species was not influenced by O. -
Natural Occurrence of the Nuc1eopolyhedrosis Virus of The
ENTOMOPHAGA 25 ( 3 ). 1980, 261-267 NATURAL OCCURRENCE OF THE NUCLEOPOLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR [LEP. : LYMANTRIIDAE] IN WILD BIRDS AND MAMMALS (I) R. A. LAUTENSCHLAGER (2), J. D. PODGWAITE (3) & D. E. WATSON (3) (2) Northeastern Forest Experiment Station Forest Service, U. S. Dep. Agriculture, 370 Reed Road, Broomall, Pa. 19008 (4). (3) U.S_D.A., Forest Service, Northeastern Forest Experiment Station, Forest Insect & Disease Labo ratory, Hamden, Connecticut 06514, U.S.A_ Three species of birds and 5 species of mammals were captured in the wild from 2 plots in which mortality from naturally occurring nucleopolyhedrosis virus (NPV) among gypsy moth, Lymantria dispar (L.), larvae was 15 %and 70 %. Bioassays of intestinal contents showed that blue jays, Cyanocitta cristata (L.), towhees, Pipilo erythrophthalmus (L.), white-footed mice, Peromyscus leucopus (RAFINESQUE), redback voles, Clethrionomys gapperi (VIGERS), raccoons, Procyon lotor (L.), and a chipmunk, Tamias striatus (L.), contained infectious NPV (poly hedra) in their alimentary tracts, whereas robins, Turdus migratorius (L.), and masked shrews, Sorex cinereus (KERR), did not. Comparisons among mice and voles indicated that those collected from the plot in which the NPV mortality was greatest (70 %) contained the most virus. We concluded that birds and mammals can passively transport infectious gypsy moth NPV in the wild. Nucleopolyhedrosis viruses (NPVs) are among the primary natural regulators in dense populations of many insect species, and some appear promising as applied control agents in pest management programs. Understanding the epidemiology of these viruses is critical to predicting population trends and implementing appropriate pest management strategies. Recent studies have emphasized the mechanisms of NPV transmission within and between insect generations. -
Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species
JChemEcol DOI 10.1007/s10886-016-0753-4 Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species Mattias C. Larsson1 Received: 27 June 2016 /Revised: 10 August 2016 /Accepted: 19 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract As global biodiversity declines, biodiversity and Introduction conservation have become ever more important research topics. Research in chemical ecology for conservation pur- Global agricultural and forestry practices frequently are in direct poses has not adapted to address this need. During the last conflict with biodiversity and associated ecosystem services, 10–15 years, only a few insect pheromones have been devel- and thus conservation issues are an increasingly important fo- oped for biodiversity and conservation studies, including the cus of research (Grove 2002; Kleijn et al. 2009; Ricketts et al. identification and application of pheromones specifically for 2008). Measures to halt the decline of biodiversity often have population monitoring. These investigations, supplemented proven ineffective (Batary et al. 2015; Butchart et al. 2010), with our knowledge from decades of studying pest insects, which increases the need for evidence-based conservation strat- demonstrate that monitoring with pheromones and other se- egies. Insects represent the most diverse group of animals, and miochemicals can be applied widely for conservation of rare include high numbers and proportions of threatened species and threatened insects. Here, I summarize ongoing conserva- (Brooks et al. 2012;Conradetal.2006). They also constitute tion research, and outline potential applications of chemical essential components of food webs in terrestrial and aquatic ecology and pheromone-based monitoring to studies of insect ecosystems, and provide important ecosystem services such biodiversity and conservation research. -
Invasive Alien Species: the Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts
CBD Distr. GENERAL CBD/COP/14/INF/9 12 November 2018 ENGLISH ONLY CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL DIVERSITY Fourteenth meeting Item 26 of the provisional agenda* Sharm El-Sheikh, Egypt, 17-29 November 2018 INVASIVE ALIEN SPECIES: THE APPLICATION OF CLASSICAL BIOLOGICAL CONTROL FOR THE MANAGEMENT OF ESTABLISHED INVASIVE ALIEN SPECIES CAUSING ENVIRONMENTAL IMPACTS Note by the Executive Secretary BACKGROUND 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Conference of the Parties, a document on the application of classical biological control for the management of established invasive alien species causing environmental impacts. 2. The document is relevant to the work of the Convention on Biological Diversity, in particular with regard to addressing (a) tools for conducting analysis for the management of invasive alien species, (b) the risks associated with trade in live alien organisms, and (c) achieving Aichi Biodiversity Target 9. 3. The document is being circulated in the form and language in which it was received by the Secretariat. * CBD/COP/14/1. The application of classical biological control for the management of established invasive alien species causing environmental impacts Summary for Policy Makers Prepared by: International Union for Conservation of Nature (IUCN), Species Survival Commission Invasive Species Specialist Group (ISSG) *Note that the full report follows on from this Summary for Policy Makers document. Summary for policy makers Convention on Biological Diversity (CBD) COP13 Decision XIII on Invasive Alien Species (IAS) recognized ‘that classical biological control can be an effective measure to manage already established invasive alien species’, and encouraged ‘Parties, other Governments and relevant organizations, when using classical biological control to manage already established invasive alien species, … [to take] into account the summary of technical considerations1’ that was annexed to the decision. -
Sampling a Rare Beetle with High Accuracy with Pheromones: the Case of Elater Ferrugineus (Coleoptera, Elaterida) As an Indicato
High-accuracy sampling of saproxylic diversity indicators at regionalscales with pheromones: The case of Elater ferrugineus (Coleoptera, Elateridae) Klas Andersson, Karl-Olof Bergman, Fredrik Andersson, Erik Hedenström, Nicklas Jansson, Joseph Burman, Inis Winde, Mattias C. Larsson and Per Milberg Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Klas Andersson, Karl-Olof Bergman, Fredrik Andersson, Erik Hedenström, Nicklas Jansson, Joseph Burman, Inis Winde, Mattias C. Larsson and Per Milberg, High-accuracy sampling of saproxylic diversity indicators at regionalscales with pheromones: The case of Elater ferrugineus (Coleoptera, Elateridae), 2014, Biological Conservation, (171), 156-166. http://dx.doi.org/10.1016/j.biocon.2014.01.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-104593 High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: the case of Elater ferrugineus (Coleoptera, Elateridae) Klas Anderssona, Karl-Olof Bergmanb, Fredrik Anderssonc, Erik Hedenströmc, Nicklas Janssonb, Joseph Burmana,d, Inis Windea, Mattias C. Larssona, Per Milbergb1 a Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53 Alnarp, Sweden Alnarp, Sweden b IFM Biology, Conservation Ecology Group, Linköping University, SE-581 83 Linköping, Sweden c Eco-Chemistry, Division of Chemical Engineering, Mid Sweden University, SE- 851 70 Sundsvall, Sweden d Ecology Research Group, Canterbury Christ Church University, Canterbury, Kent, England, CT1 1QU Corresponding author: Per Milberg, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden; [email protected]; +46 70 51 73 100 1 MCL, PM & KOB conceived and designed the study. -
Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7
Impacts of Invasive Species in Terrestrial and Aquatic Systems 2 in the United States Albert E. Mayfeld III, Steven J. Seybold, Wendell R. Haag, M. Tracy Johnson, Becky K. Kerns, John C. Kilgo, Daniel J. Larkin, Rima D. Lucardi, Bruce D. Moltzan, Dean E. Pearson, John D. Rothlisberger, Jefrey D. Schardt, Michael K. Schwartz, and Michael K. Young 2.1 Introduction have been estimated at $120 billion annually (Crowl et al. 2008; Pimentel et al. 2000, 2005). These costs include lost The introduction, establishment, and spread of invasive production and revenue from agricultural and forest prod- species in terrestrial and aquatic environments is widely ucts, compromised use of waterways and terrestrial habi- recognized as one of the most serious threats to the health, tats, harm to human and animal health, reduced property sustainability, and productivity of native ecosystems values and recreational opportunities, and diverse costs (Holmes et al. 2009; Mack et al. 2000; Pyšek et al. 2012; associated with managing (e.g., monitoring, preventing, USDA Forest Service 2013). In the United States, invasive controlling, and regulating) invasive species (Aukema species are the second leading cause of native species et al. 2011; Pimentel et al. 2005). The national signifcance endangerment and extinction, and their costs to society of these economic, ecological, and social impacts in the A. E. Mayfeld III (*) R. D. Lucardi U.S. Department of Agriculture, Forest Service, Southern Research U.S. Department of Agriculture, Forest Service, Southern Research Station, Insects, Diseases and Invasive Plants of Southern Forests, Station, Athens, GA, USA Asheville, NC, USA e-mail: [email protected] B. -
Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S. -
Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State
JHR 49: 129–159 (2016)Sawflies( Hymenoptera, Symphyta) newly recorded from Washington State 129 doi: 10.3897/JHR.49.7104 RESEARCH ARTICLE http://jhr.pensoft.net Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State Chris Looney1, David R. Smith2, Sharon J. Collman3, David W. Langor4, Merrill A. Peterson5 1 Washington State Dept. of Agriculture, 1111 Washington St. SE, Olympia, Washington, 98504, USA 2 Systematic Entomology Laboratory, Agricultural Research Service, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560, USA 3 Washington State University Extension, 600 128th St. SE, Everett, Washington, 98208, USA 4 Natural Resources Canada, Canadian Forest Service, 5320 122 Street NW, Edmonton, Alberta, T6H 3S5, Canada 5 Biology Department, Western Washington University, 516 High St., Bellingham, Washington, 98225, USA Corresponding author: Chris Looney ([email protected]) Academic editor: H. Baur | Received 5 November 2015 | Accepted 27 January 2016 | Published 28 April 2016 http://zoobank.org/319E4CAA-6B1F-408D-8A84-E202E14B26FC Citation: Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104 Abstract Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects. -
Sex Pheromones As a Tool to Overcome the Wallacean Shortfall in Conservation Biology: a Case of Elater Ferrugineus Linnaeus, 1758 (Coleoptera: Elateridae)
J Insect Conserv DOI 10.1007/s10841-014-9735-4 ORIGINAL PAPER Sex pheromones as a tool to overcome the Wallacean shortfall in conservation biology: a case of Elater ferrugineus Linnaeus, 1758 (Coleoptera: Elateridae) Marcin Kadej • Krzysztof Zaja˛c • Rafał Ruta • Jerzy M. Gutowski • Dariusz Tarnawski • Adrian Smolis • Tomasz Olbrycht • Adam Malkiewicz • Ewelina Mys´ko´w • Mattias C. Larsson • Fredrik Andersson • Erik Hedenstro¨m Received: 4 October 2014 / Accepted: 20 November 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The ‘‘Wallacean shortfall’’—lack of distribu- Keywords Pheromone Á Kairomone Á Saproxylic insects Á tional information—is one of the main problems when New records Á Central Europe Á Poland trying to assess the threats to and planning conservation strategies for many invertebrate species. Based on pub- lished and unpublished records since 1840, as well as on Introduction our own field survey, we attempted to estimate if and to what extent the use of pheromone traps increased the One of the most important problems faced by conservation detectability of a rare, saproxylic click beetle Elater biologists is insufficient knowledge of distribution of spe- ferrugineus. The significant increase in the number of cies, not only at the global, but also regional or even local records in 2011–2013 shows that the pheromone method level. The problem, termed the Wallacean shortfall made it much easier to detect the occurrence of the species. (Lomolino 2004), is especially grave in the case of inver- Advantages of the pheromone method are that it does not tebrates which, in spite of their vast diversity and disturb the habitat, can be used by non-specialists, is less unquestionably great significance in ecosystems, are to a costly and less time-consuming, and thus providing a large extent ignored in conservation studies (Cardoso et al. -
The Identity of the Finnish Osmoderma (Coleoptera: Scarabaeidae, Cetoniinae) Population Established by COI Sequencing
© Entomologica Fennica. 8 October 2013 The identity of the Finnish Osmoderma (Coleoptera: Scarabaeidae, Cetoniinae) population established by COI sequencing Matti Landvik, Niklas Wahlberg & Tomas Roslin Landvik, M., Wahlberg, N. & Roslin, T. 2013: The identity of the Finnish Osmo- derma (Coleoptera: Scarabaeidae, Cetoniinae) population established by COI se- quencing. — Entomol. Fennica 24: 147–155. The hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) is a flagship species for invertebrate conservation efforts by the European Union. This taxon has recently been revealed as a species complex likely encompassing five cryptic species. The northernmost population of Osmoderma is found on the island of Ruissalo in Turku, Finland. This population has been protected as species O. eremita, but its true species affinity has never been established. To resolve its identity, we sequenced the mitochondrial COI gene from seven specimens samp- led in Ruissalo. Based on a phylogenetic hypothesis generated from the se- quences combined with previously published data, the Finnish hermit beetle was identified as Osmoderma barnabita. Information regarding the ecology and life cycle of O. eremita should then not uncritically be assumed to apply to the Finn- ish population. Rather, the Finnish population should be treated as a separate en- tity in conservation and management of European Osmoderma. M. Landvik, Department of Biology, Section of Biodiversity and Environmental Science, University of Turku, FI-20014 Turku, Finland; E-mail: matti.landvik @edusaimaa.fi N. Wahlberg, Department of Biology, Laboratory of Genetics, University of Tur- ku, FI-20014 Turku, Finland T. Roslin, Spatial Foodweb Ecology Group, Department of Agricultural Science, University of Helsinki, FI-00014 Helsinki, Finland Received 18 January 2013, accepted 7 March 2013 1.