Guidance Manual for the Implementation of Low-Noise Road Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Guidance Manual for the Implementation of Low-Noise Road Surfaces arsenal Research, Austria TKTI, Lithuania www.arsenal.ac.at www.tkti.lt BRRC, Belgium INRR, Luxembourg www.brrc.be RWS DWW, Netherlands CRBL, Bulgaria www.minvenw.nl/rws/dww IGH, Croatia NPRA, Norway www.igh.hr www.vegvesen.no VIENNAV I E N N A CDV, Czech Republic IBDiM, Poland www.cdv.cz www.ibdim.edu.pl DRI, Denmark LNEC, Portugal www.roadinstitute.dk www-ext.lnec.pt Sustainable road TECER, Estonia CESTRIN, Romania surfaces for traffic www.teed.ee www.cestrin.ro CESTRIN ITALGRIP s.r.l. noise control ROADS SAFETY BY SURFACE TREATMENT LCPC, France IP,Serbia-Montenegro www.lcpc.fr www.highway.co.yu BASt, Germany VUD,Slovakia www.bast.de www.vud.sk ZAG,Slovenia KEDE, Greece www.zag.si KTI, Hungary CEDEX, Spain www.kti.hu www.cedex.es GUIDANCE MANUAL FOR THE IMPEMENTATION OF LOW-NOISE ROAD SURFACES ROAD OF LOW-NOISE THE IMPEMENTATION FOR GUIDANCE MANUAL PRA, Iceland VTI, Sweden www.vegagerdin.is www.vti.se NRA, Ireland LAVOC, Switzerland www.nra.ie lavoc.epfl.ch Guidance Manual for the FEHRL REPORT 2006/02 - ANAS, Italy TRL, United Kingdom Implementation of Low-Noise www.enteanas.it www.trl.co.uk Road Surfaces S VALST IJA S C V E T L A I L LAD, Latvia L A www.fehrl.org S T D V www.lad.lv A I J O A R S E S T T A FEHRL OVERVIEW FEHRL is a registered International Association with a permanent Secretariat based in Brussels. Formed in 1989 as the Forum of European National Highway Research Laboratories, FEHRL is governed by the Directors of each of the national institutes. At present, FEHRL comprises twenty-nine national laboratories from the member states in the European Union, the EFTA countries and the rest of Europe. Under the day-to-day management of the Executive Committee,FEHRL is engaged in research topics including road safety, materials, environmental issues, telematics and economic evaluation. Research capacity is provided by the national institutes and makes use of the wide range of test facilities available. AIMS AND OBJECTIVES The mission of FEHRL is to promote and facilitate collaboration between its insti- tutes and provide high quality information and advice to governments, the European Commission, the road industry and road users on technologies and poli- cies related to roads. The objectives of collaborative research are: - to provide input to EU and national government policy on highway infras- tructure - to create and maintain an efficient and safe road network in Europe - to increase the competitiveness of European road construction and road- using industries - to improve the energy efficiency of highway construction and maintenance - to protect the environment and improve quality of life FEHRL Report 2006/02 Guidance manual for the implementation of low-noise road surfaces FEHRL Report 2006/02 Guidance manual for the implementation of low-noise road surfaces i This Guidance Manual has been prepared as part of the EU Fifth Framework Project “SILVIA – Sustainable Road Surfaces for Traffic Noise Control”. SILVIA was initiated by FEHRL, with the leadership designated to the Belgian Road Research Centre (Mr Guy Descornet). This document is dedicated to Mr Rod Addis, the former Secretary-General of FEHRL, whose untimely death in 2004 prevented him from seeing the successful conclusion of the project which he so ably supported. The project consortium brings together 15 partners from both FEHRL and other organisations. Bundesanstalt für Strassenwesen (Federal Highway Research Institute), Germany (BASt) Belgian Road Research Centre, Belgium (BRRC) Dutch Information and Technology Platform for Infrastructure, Traffic, Transport and Public Space, The Netherlands (CROW) Danish Road Institute, Denmark (Subcontractor for Danmarks Transport Forskning [DTF, Danish Transport Research Institute]) (DRI) Dienst Weg- en Waterbouwkunde (Road and Hydraulic Engineering Institute), The Netherlands (DWW) Institut National de Recherche sur les Transports et leur Sécurité (National Institute For Transport And Safety Research), France (INRETS) ItalGrip, Italy (ITALGRIP) Laboratoire Central des Ponts et Chaussées (Public Works Research Laboratory), France (LCPC) M + P Raadgevende Ingenieurs bv, The Netherlands (M+P) Skanska, Sweden (SKANSKA) Transportøkonomisk Institutt (Institute of Transport Economics), Norway (TØI) Transport Research Laboratory, United Kingdom (TRL) Gdansk University of Technology, Poland (TUG) Technische Universität Wien (Vienna University of Technology), Austria (TUW) Swedish National Road and Transport Research Institute, Sweden (VTI) FEHRL FEHRL Report 2006/02 Guidance manual for the implementation of low-noise road surfaces iii FEHRL REPORT 2006/02 Title : Guidance manual for the implementation of low-noise road surfaces Editor: Phil Morgan (TRL) Main Contributors: Phil Abbott (TRL) Bent Andersen (DRI) Fabienne Anfosso-Ledee (LCPC) Wolfram Bartolomaeus (BASt) Hans Bendtsen (DRI) Gijsjan van Blokland (M+P) Guy Descornet (BRRC) Marc Eijbersen (CROW) Jerzy Ejsmont (TUG) Jürgen Haberl (TUW) Jean-Francois Hamet (INRETS) Piotr Mioduszewski (TUG) Roger Nilsson (SKANSKA) Cristo Padmos (DWW) Ernst Pucher (TUW) Chiel Roovers (M+P) Ulf Sandberg (VTI) Nina Sliwa (BASt) Knut Veisten (TOI) WillemJan van Vliet (DWW) Greg Watts (TRL) Keywords: Noise, Road, Pavement, Guidance, Classification Although FEHRL has done its best to ensure that any information given is accurate, no liability or responsibility of any kind (including liability of negligence) is accepted in this respect by FEHRL, its members of its agents. © FEHRL 2006 ISSN 1362-6019 ISBN 90-9020404-0 / 978-90-9020404-8 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of FEHRL. FEHRL Secretariat: S. Phillips Boulevard de la Woluwe, 42 Bte 3, B-1200 Brussels Belgium Tel: +32 2 775 82 38 Fax: +32 2 775 82 29 E-mail: [email protected] Web site: www.fehrl.org FEHRL FEHRL Report 2006/02 Guidance manual for the implementation of low-noise road surfaces v Contents 1 Introduction................................................................................................................... 1 1.1 Overview of the chapters in the Guidance Manual 5 PART 1: BACKGROUND INFORMATION .......................................................................... 9 2 The evaluation of noise ............................................................................................. 11 2.1 Physical measures 11 2.2 Perception 12 2.3 Annoyance 14 3 Overview of vehicle and tyre/road noise ................................................................. 17 3.1 The sources of vehicle noise 17 3.2 The generation and propagation of tyre/road noise 18 3.3 The characterisation of road surfaces 23 PART 2: OVERVIEW OF EXISTING LOW-NOISE SURFACES....................................... 33 4 Review of existing low-noise surfaces.................................................................... 35 4.1 Open graded and gap-graded asphalt surfaces 35 4.2 Cement concrete surface treatments 52 4.3 Summary of the effects of low-noise road surfaces 63 5 Review of existing construction and maintenance techniques............................ 69 5.1 Existing production/construction techniques 69 5.2 Maintenance on porous asphalt 76 5.3 Maintenance of concrete pavements 79 5.4 Rejuvenators 82 5.5 Cleaning methods 83 5.6 Winter maintenance operations 85 5.7 Recycling of surface courses 89 6 Prospects for the further development of low-noise surfaces............................. 93 6.1 Experimental surfaces and surfaces currently under development 93 6.2 Optimising the acoustic performance of low-noise surfaces 100 6.3 Optimising the structural and serviceability performance of low-noise surfaces 103 6.4 Development work on low-noise surfaces carried out within SILVIA 109 FEHRL FEHRL Report 2006/02 vi Guidance manual for the implementation of low-noise road surfaces PART 3: SPECIFYING THE PERFORMANCE OF LOW-NOISE SURFACES..............125 7 Overview of measurement methods for acoustic labelling and COP ................127 7.1 Direct measurements of acoustic performance 127 7.2 Measurements of indirect acoustic performance and other parameters 128 8 Overview of additional methods used in the SILVIA project...............................129 8.1 Mechanical impedance measurements 129 8.2 Rolling resistance measurements 129 8.3 Airflow resistance measurements 130 9 Proposals for a noise classification procedure ....................................................131 9.1 Reasons behind the need for a classification system 131 9.2 Requirements for the classification system 132 9.3 Labelling procedures in the classification system 133 9.4 Examples of existing national road surface classification and/or procurement systems 135 PAR T 4: QUANTIFYING THE BENEFITS OF LOW-NOISE SURFACES ......................137 10 Safety and sustainability benefits of low-noise surfaces....................................139 10.1 Safety aspects of low noise road surfaces 139 10.2 Impacts on sustainability 144 11 Cost benefit analysis ................................................................................................149 11.1 Introduction 149 11.2 Description of the calculation method 149 11.3 Example of CBA using the spreadsheet 151 11.4 Summary 162 PART 5: THE PERFORMANCE OF LOW-NOISE SURFACES......................................163 12 Factors affecting the performance of low-noise surfaces...................................165 12.1 Roadside
Recommended publications
  • Road Texture and Tire Noise
    Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.3 ROAD TEXTURE AND TIRE NOISE J.-F. Hamet, P. Klein INRETS, 25 av. F. Mitterrand, F69675, Bron, France Tel.: +33(0)472142402 / Fax: +33(0)472376837 / Email: [email protected] Keywords: TIRE, ROAD, NOISE, TEXTURE ABSTRACT The research project presented here addresses the influence of road texture profile on tire noise. It is deemed more appropriate, when seeking for correlation between road profile and tire noise spectra, to ’envelope’ the road profile before evaluating its spectrum. Two approaches are taken to tackle the problem. A static approach based on evaluating the contact between two plane surfaces. A dynamic approach based on a rolling tire model. Since the latter enables the evaluation of tire noise from any given road texture profile, it is also used to get a better grasp of the phenomena. Only the fundamentals of the processes are presented: experiments will be performed in the coming years. The static approach is worked in the PREDIT project ”Relation between road texture and the tire noise” [1]. The partners are: INRETS, LCPC, ENPC, MICROdB, Gerland Routes, Colas S.A. The dynamic approach is developed in the frame of the European project SI.R.U.US. The partners are Autostrade (it), CRR (be), Pavimental (it), INRETS (fr), SACER (fr), Argex (be), LNEC (pt). 1 - INTRODUCTION Although some 20 years elapsed since the basics of the road texture influence on tire noise were given [2] the principles for designing low noise surfaces remain mostly qualitative [3].
    [Show full text]
  • Dynamic Stiffness of Bituminous Mixtures for the Wearing Course of the Road Pavement—A Proposed Method of Measurement
    materials Article Dynamic Stiffness of Bituminous Mixtures for the Wearing Course of the Road Pavement—A Proposed Method of Measurement Krzysztof Robert Czech 1,* and Wladyslaw Gardziejczyk 2 1 Department of Geotechnics and Structural Mechanics, Bialystok University of Technology, 15-351 Bialystok, Poland 2 Department of Construction and Road Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland; [email protected] * Correspondence: [email protected] Received: 26 March 2020; Accepted: 20 April 2020; Published: 23 April 2020 Abstract: Stiffness is an important mechanical characteristic of asphalt mixtures used in the wearing course. It is one of the determining factors in the generation of tyre/road noise. The dynamic stiffness of the upper layer of the road surface depends on the physical and mechanical properties of the materials it is composed of, and traffic load. Determination of dynamic stiffness, both in laboratory conditions and in situ, requires consideration of many other factors. Tests of dynamic properties of road surfaces in field conditions are most often conducted with the help of modal hammers. Impulse excitation results are usually less accurate than those in the application of modal exciters. The test stand was constructed, comprising a tripod, 32-channel and 24-bit data acquisition system, exciter, signal amplifier, impedance head, single-axis piezoelectric accelerometers and a stinger. The test stand and the proposed method of measuring dynamic stiffness do not require the determination of the resonance frequency of the tested specimen and can be used both on various types of bituminous mixtures of varying shape and dimensions, as well as directly on the upper surface of the wearing course of bituminous pavements.
    [Show full text]
  • Texture-Based Vanishing Point Voting for Road Shape Estimation
    Texture-Based Vanishing Point Voting for Road Shape Estimation Christopher Rasmussen Dept. Computer & Information Sciences University of Delaware [email protected] Abstract Many rural roads lack sharp, smoothly curving edges and a homogeneous surface appearance, hampering traditional vision-based road-following methods. However, they often have strong texture cues parallel to the road direction in the form of ruts and tracks left by other vehicles. This paper describes an unsupervised al- gorithm for following ill-structured roads in which dominant texture orientations computed with Gabor wavelet filters vote for a consensus road vanishing point lo- cation. The technique is first described for estimating the direction of straight-road segments, then extended to curved and undulating roads by tracking the vanishing point indicated by a differential “strip” of voters moving up toward the nominal vanishing line. Finally, the vanishing point is used to constrain a search for the road boundaries by maximizing texture- and color-based region discriminant func- tions. Results are shown for a variety of road scenes including gravel roads, dirt trails, and highways. 1. Introduction Many complementary strategies for visual road following have been developed based on certain assumptions about the characteristics of the road scene. For ex- ample, edge-based methods such as those described in [17, 16, 1] are often used to identify lane lines or road borders, which are fit to a model of the road curvature, width, and so on. These algorithms typically work best on well-engineered roads such as highways which are paved and/or painted, resulting in a wealth of high- contrast contours suited for edge detection.
    [Show full text]
  • A Proposal for Asphalt Wearing Course Specification in Palestine
    Islamic University of Gaza ﺍﻟﺠﺎﻤﻌﺔ ﺍﻹﺴﻼﻤﻴﺔ – ﻏﺯﺓ High Studies Deanery ﻋﻤﺎﺩﺓ ﺍﻟﺩﺭﺍﺴﺔ ﺍﻟﻌﻠﻴﺎ Faculty of Engineering ﻜﻠﻴﺔ ﺍﻟﻬﻨﺩﺴﺔ ﻗﺴﻡ ﺍﻟﻬﻨﺩﺴﺔ ﺍﻟﻤﺩﻨﻴﺔ Civil Engineering Department ﻫﻨﺩﺴﺔ ﺍﻟﺒﻨﻰ ﺍﻟﺘﺤﺘﻴﺔ Infrastructure Engineering A proposal for Asphalt Wearing Course Specification in Palestine Nasser AL-Shrafi Supervised by Dr. Shafik Jendia In partial fulfillment of the requirement for degree of Master of Science in Infrastructure Engineering Gaza – Palestine May, 2005 ﺑﹺﺴﻢﹺ ﺍﻟﻠﱠﻪ ﭐﻟﺮﺣﻤـٰﻦﹺ ﭐﻟﺮﺣﻴﻢﹺ " ﻭﺟﻌﻠﹾﻨﺎ ﺑﻴﻨﻬﻢ ﻭﺑﻴﻦ ﭐﻟﹾﻘﹸﺮﻯ ﭐﻟﱠﺘﻲ ﺑﺎﺭﻛﹾﻨﺎ ﻓﻴﻬﺎ ﻗﹸﺮﻯ ﻇﹶﺎﻫﺮﺓﹰ ﻭﻗﹶﺪﺭﻧﺎ ﻓﻴﻬﺎ ﭐﻟﺴﻴﺮ ﺳﻴﺮﻭﺍﹾ ﻓﻴﻬﺎ ﻟﹶﻴﺎﻟﻲ ﻭﺃﹶﻳﺎﻣﺎﹰ ﺁﻣﻨﹺﻴﻦ" (ﺳﺒﺄ 18 ) ﺻﺪﻕ ﺍﷲُ ﺍﻟﻌﻈﻴﻢ To My Parents, Wife, Sons, Brothers and Sisters i Acknowledgments I would like to send my sincere appreciation to people who made this thesis possible. Special thanks are to my supervisor Dr. Shafik Jendia, for his guidance, patience and encouragement. I would like to thank all lecturers in The Islamic University who have helped me during my study of Infrastructure Civil Engineering Master Program. Those are Dr. Yahya El Sarraj, Dr. Mohammed Awad, Dr. Mohamed Ziara, Dr. Khairy Al Jamal, Dr. Majed El Bayaa, Dr. Mohammed Sager, Dr. Hassan Shaban, Dr. Ahmed Shwedeh and Dr. Mohamed El Reefi. Finally, I wish to acknowledge the cooperation and support of the entire staff members of the material and soil laboratory of The Islamic University of Gaza and Material Testing Laboratory of the Engineering Association, for their consistent help during conducting the laboratory experiments. ii Abstract: The undertaken research work includes the development of a proposal for wearing asphalt layer specifications that is suitable for local aggregate and bitumen in Palestine. The proposed specifications has been developed after collecting and reviewing eleven specifications for asphalt wearing layer and dividing them into three groups.
    [Show full text]
  • A Review of Current Research on Road Surface Noise Reduction Techniques
    Published Project Report PPR443 A review of current research on road surface noise reduction techniques P G Abbott, P A Morgan (TRL) and B McKell (AECOM) Transport Research Laboratory PUBLISHED PROJECT REPORT PPR443 A review of current research on road surface noise reduction techniques by P. G. Abbott, P. A. Morgan (TRL) and B. McKell (AECOM) Prepared for: Project Record: TRL/001/08 A REVIEW OF CURRENT RESEARCH ON ROAD SURFACE NOISE REDUCTION TECHNIQUES Client: Rural and Environment Research and Analysis Directorate, Research and Science Division (Linda Story) Copyright Transport Research Laboratory January 2010 This Published Report has been prepared for the Rural and Environment Research and Analysis Directorate. Published Project Reports are written primarily for the Client rather than for a general audience and are published with the Client’s approval. The views expressed are those of the author(s) and not necessarily those of the Rural and Environment Research and Analysis Directorate. Date Name Approved Project Mike Ainge 29/01/2010 Manager Technical Phil Morgan 29/01/2010 Referee Published Project Report When purchased in hard copy, this publication is printed on paper that is FSC (Forestry Stewardship Council) and TCF (Totally Chlorine Free) registered. TRL PPR443 Published Project Report Contents Glossary of symbols and acronyms v Glossary of terms ix Executive summary 1 1 Introduction 7 PART 1: ADVICE ON LOW-NOISE SURFACES FOR USE IN SCOTLAND 9 2 The impact of low-noise surfaces in Scotland 11 2.1 Current experience 11 2.2 The
    [Show full text]
  • A Classification of Asphalt Surfacing Textures Based on 3D Imagery
    ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA FACOLTA’ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE M DICAM – Dipartimento di Ingegneria Civile, Ambientale e dei Materiali TESI DI LAUREA in CONTEXT SENSITIVE DESIGN IN TRANSPORTATION INFRASTRUCTURES A CLASSIFICATION OF ASPHALT SURFACING TEXTURES BASED ON 3D IMAGERY ELABORATO FINALE DI: RELATORE: Alessandro Labbate Dott Ing. Cesare Sangiorgi CORRELATORI: Prof. Ing. David Woodward Dott. Ing. Claudio Lantieri Anno Accademico 2001/12 KEY WORDS: SMA Skid Resistance Texture Contact area RTM INDEX INTRODUCTION ....................................................................................................... 1 CHAPTER 1 – Tyre/Road interaction: Skid Resistance and Road Texture ............. 5 1.1 – INTRODUCTION .................................................................................................................. 5 1.2 – FRICTION AND SKID RESISTANCE ................................................................................ 7 1.3 – PRINCIPLES OF FRICTION GENERATION ..................................................................... 7 1.3.1 –Longitudinal Friction Principle .................................................................................... 9 1.3.2 – Transverse Friction Principle .................................................................................. 11 1.4 – IMPORTANT PARAMETERS FOR ROAD SURFACE .................................................... 13 1.4.1 – Influence of texture on Skid Resistance ....................................................................
    [Show full text]
  • Gravel Roads Construction and Maintenance Guide Table of Contents Subject Page
    Errata ­ Replaces page 137 Reconstruction Using a Detour When the reconstruction and resulting berm are significant, the work space takes all or most of the road surface, leaving no room for traffic to negotiate past the work activities. An agency may need to reconstruct the unpaved roadway by correcting the drainage and/or adding surface materials. With this type of work, additional equipment may be used and a large amount of material may create a large berm (12 inches or more across). This will present significant hazards for the traveling public. To improve safety for mo­ torists and workers, a detour may be the best TTC. Not all road users will be familiar with the local road system and some may be confused by the road closure, so signing should be used to assist users negotiating the detour. Reconstruction work space. (Source: Greg Vavra, SDLTAP). Notes: 1. Not all local agencies use route makers for their system. MUTCD Section 6F.59 states “A Street Name sign should be placed above, or the street name should be incorporated into, a DETOUR (M4­9) sign to indicate the name of the street being detoured.” 2. With an increase in traffic at the intersections where the detour begins and ends, a review of the usage of the STOP and YIELD signs should be completed. 3. Flashing warning lights and/or flags may be used to call attention to advance warning signs. 4. Flashing warning lights may be used on the Type 3 Barricades, which should be installed at the point where the road is closed.
    [Show full text]
  • Road Surface Textures Classification Using Opening-Based Image
    Stephane Paquis ROAD SURFACE TEXTURES CLASSIFICATION USING OPENING-BASED IMAGE PROCESSING 1 2 Stephane´ PAQUIS1 , Vincent LEGEAY and Hubert KONIK 1 Lab. Central des Ponts et Chaussees´ - Nantes BP 4129 44341 Bouguenais cedex, France [email protected] 2 Lab. Ingenierie´ de la Vision Universite´ Jean Monnet BP 505 42007 Saint-Etienne´ cedex 01, France KEY WORDS: texture analysis, road surface inspection, hierarchical process, multiresolution cooccurrence matrix, mor- phological pyramid ABSTRACT This paper deals with an innovative approach for achieving an automatic vision system for road surface texture classifi- cation. A road surface is composed by aggregates with a particular grain size distribution and the mortar matrix. From a vision point of view, road surface images can be described as a set of objects of high intensities puts on a low intensity uniform background. In image processing, mathematical morphology provides a set of tools used to compare parts of an image with structuring elements of various sizes and shapes. Information about objects can be obtained by applying successives openings with structuring elements of increasing sizes. Our aim is to characterize 4 road surface textures with different size and shape distributions. In order to avoid the choice of a set of structuring elements, we define an opening 2 transformation based on quadtree approach. At each step, each non overlapping 2 blocks take one new grey level, corresponding to its lowest one. Variations of texture observed at each step are studied through an original cooccurrence matrix. Such a matrix is computed between two consecutive pyramid levels. Classification is carried out by extracting textural features from the set of matrices.
    [Show full text]
  • Optimization of Thin Asphalt Layers – State-Of-The-Art Review
    Optimization of Thin Asphalt Layers – State-of-the-Art Review By Ulf Sandberg* (ed.), Jørgen Kragh**, Luc Goubert***, Hans Bendtsen**, Anneleen Bergiers***, Krishna P. Biligiri*, Robert Karlsson*, Erik Nielsen**, Erik Olesen**, Stefan Vansteenkiste*** *Swedish National Road and Transport Research Institute (VTI) ** Danish Road Institute (DRI) *** Belgian Road Research Centre (BRRC) Photo by Hans Bendtsen Deliverable No. 1 – Final version – 30 April 2011 ERA-NET ROAD Project "Optimization of thin asphalt layers" II PREFACE ERA-NET ROAD is a consortium comprising national European road administrations. Its purpose is to strengthen European road research by coordinating national and regional research programmes and policies. In 2009 ERA-NET ROAD issued a call for tenders on a transnational research project titled “Optimization of thin asphalt layers”. The project is coordinated by a Project Executive Board with representatives of six European road administrations: Mats Wendel (chair), Swedish Transport Administration, Sweden Thomas Asp (secretary), Swedish Transport Administration, Sweden Tony K. Andersen, Ministry of Transport, Danish Road Directorate, Denmark Jostein Aksnes, Norwegian Public Roads Administration, Norway David Lee, Department for Transport, Highways Agency, United Kingdom Christian Pecharda, FSV; Austrian Association for Research on Road - Rail – Transport, Federal Ministry of Transport, Innovation and Technology, Austria Christiane Raab, Empa, Swiss Federal Laboratories for Materials Testing and Research, Swiss Federal Roads Authority, Switzerland The Project Consortium consisting of the Danish Road Institute, the Belgian Road Research Centre and the Swedish National Road and Transport Research Institute won the tender and the project was initiated 1 July 2009. The researchers carrying out the project are the authors of the present report with support from colleagues with special expertise.
    [Show full text]
  • Road Marking IS Road Safety
    Potters Asia Pacific ‘World Leaders in Glass Bead Technology’ Road Marking IS Road Safety Bob Carnaby Technical Services Manager Potters Asia Pacific [email protected] Abstract The majority of traffic fatalities in Australia occur at night. The death rate is estimated to be between three to four times higher at night than during the day. In recent a survey across Australia (AITPM, March 2004), it has been noted that the standards for road-marking, in the area of night time visibility, are either set at very low performance levels or are non existent. There have been many studies and experiments that demonstrate that accident rates can be significantly further reduced if the road markings were to be maintained to safer standards. This paper presents some of the results from this and other recent global research, and looks at how road-markings can figure in reducing crashes. It suggests that the measure of road-marking performance for both day and night, and in both wet and dry conditions, should be used as a tool in future accident investigations. The statistics would then become more meaningful, the fatalities and serious injuries could be reduced, and the cost benefit of safer performing road-markings may then be realised. Road Marking IS Road Safety. Call For Action There has been more than sufficient research to prove the worth of the humble painted pavement markings, in the role of reducing road trauma. Many new pavement marking systems have been developed, that are capable of delivering safer outcomes, for the benefit of all road users.
    [Show full text]
  • Construction of a High Quality Asphalt Wearing Course with More Than 90
    O5EE-187 UNLOCKING THE FULL POTENTIAL OF RECLAIMED ASPHALT PAVEMENT (RAP) – HIGH QUALITY ASPHALT COURSES INCORPORATING MORE THAN 90% RAP; A CASE STUDY Jens Christian Arnold1, Matthias Nölting1, Gerhard Riebesehl2, Christian Denck3 1Sasol Wax Gmbh, Business Unit Asphalt Additives, Hamburg, Germany 2Storimpex Asphaltec Gmbh, Glinde, Germany 3Behörde für Stadtentwicklung und Umwelt, Amt für Verkehr und Straßenwesen, Hamburg, Germany ABSTRACT It is widely accepted that reuse of RAP in the construction of hot mix asphalt is environmentally friendly and also economically beneficial. Addition rates vary from country to country and depending on mix design and existing hard ware but very rarely exceed 50wt% in the final mix. This paper describes a case study about a mix design incorporating more than 90% RAP. This mix meets German standards for a wearing course subjected to high traffic loads. An area of 3850 m2 aged asphalt concrete wearing course is milled off. Binder content and mineral composition of the RAP coming from a selected road surface is analyzed. The grading curve of the minerals inside the RAP is inspected. Adjustments with virgin aggregate are calculated to generate a final grading curve that meets specification and to accommodate for slightly higher binder content due to rejuvenator addition. Based on the properties of the extracted bitumen proper rejuvenator dosage is calculated as well. The RAP is heated in a newly designed heating drum and then transferred into a 3t batch mixer. In the mixing process the calculated mineral adjustment is added and homogeneously mixed in together with a hydrocarbon reactivator compound. This compound rejuvenates the aged binder and also adjusts modulus to a desired target level.
    [Show full text]
  • Addendum No. 1
    ADDENDUM NO. 1 TO: Interested Parties FROM: Blair Reynolds, Chief Project Manager, Division of Engineering DATE: Thursday, January 7, 2021 RE: Pavement Maintenance & Rehabilitation Program – FY-‘21 Hot Mix Asphalt (HMA) Applications Contract No. MS-PMP-285-28 _____________________________________________________________________________________ Acknowledge receipt of this Addendum No. 1 by signing in the space provided below and returning with your Bid. Failure to sign and return with your Bid may subject the Bidder to disqualification. This Addendum No. 1 forms a part of the Bid Documents, it supplements and modifies them as outlined herein. This Addendum No. 1 consists of 68 pages, including this page and attachments. I hereby acknowledge receipt of Addendum No. 1: By: ________________________________ Date__________________________ Signed Name ________________________________ Typed Name ________________________________ Title For: ________________________________ Firm To: All prime Contractors and all others to whom specifications have been issued. Item 1.01 PRE-BID CONFERENCE, held Wednesday, January 6, 2021 at 10:00 a.m.: Pre-Bid Conference Minutes (consisting of 4 pages). Item 1.02 Special Provisions, Pages SP-1 thru SP-46 DELETE in its entirety. REPLACE with Revised SP-1R thru SP-50R, as attached. Special Provisions revised to include Pay Item 509 Ultra-Thin Bonded Wearing Course. Item 1.02 Road List - Summary of Quantities DELETE in its entirety. REPLACE with Revised RL-1, as attached. Item 1.03 Bid Forms, Page BF-12 thru BF-21 DELETE in its entirety REPLACE with Revised BF-12R thru BF-21R, as attached. Attachments: Pre-Bid Conference Minutes with attachments (4 pages) Revised Special Provisions, Pages SP-1R thru SP-50R (50 pages) Revised Road List - Summary of Quantities, Page RL-1 (1 page) Revised Bid Forms, Pages BF12R thru BF-21R (10 Pages) END ADDENDUM No.
    [Show full text]