ThePorphyrinHandbook

Editors

KarlM.Kadish DepartmentofChemistry UniversityofHouston Houston,Texas

KevinM.Smith DepartmentofChemistry LouisianaStateUniversity BatonRouge,Louisiana

RogerGuilard Faculte´desSciencesGabriel Universite´deBourgogne Dijon,France

AmsterdamÁBostonÁLondonÁNewYorkÁOxfordÁParis SanDiegoÁSanFranciscoÁSingaporeÁSydneyÁTokyo Preface (vol 1-10)

The broadly de®ned research area is one of the this is a data-intensive ®eld, and we believe that compilation most exciting, stimulating and rewarding for scientists in the of relevant data should be useful to investigators. We have ®elds of chemistry, physics, biology and medicine. The attempted to ensure that every chapter was written by the beautifully constructed porphyrinoid ligand, perfected over currently acknowledged expert in the ®eld, and very early on the course of evolution, provides the chromophore for a we had in our hands no less than sixty-nine signed contracts multitude of iron, magnesium, cobalt and nickel complexes for chapters. With the fullness of time, and as deadlines for which are primary metabolites and without which life itself Handbook chapter submission and other essential activities could not be maintained. (e.g., research proposal renewals) converged, some of our Falk's book, and Metalloporphyrins, pub- authors had to withdraw. On occasion we were able to lished in 1962, was a fairly thin volume which represented recruit new authors who, with only a month or less of lead the ®rst attempt to apply the principles of modern chemistry time, were able to ®ll these gaps and come up with and physics to the structure and function of porphyrin authoritative and high-quality chapters. Whereas we wish to systems. By 1975, the time when a single author could write thank all of our authors for their wonderful contributions authoritatively on this ®eld was past; one of us (K.M.S.) and for the way that they honored their contractual managed to shoehorn the ®eld into one volume, but the new agreements to contribute, we do particularly want to thank version of Porphyrins and Metalloporphyrins (1975) needed those who stepped up to bat at crisis time and came through to be a multiauthored volume. The ®eld was spreading for usÐyou know who you are! In the end, we have rapidly in every direction across the whole spectrum of assembled sixty-one chapters divided to provide ten science Ðfar beyond the ability of one person to describe it. separate volumes. We regretted the loss of the absent The present Handbook follows an unavoidable trend chapters, but coverage is so thorough that we believe that (e.g., Dolphin's The Porphyrins, 1978±79) in that it is a only the editors really know what is missing! multivolume edited set. But no longer is it possible for only The manuscript deadline for the Handbook was October one editor to coordinate such an endeavor. The three of us 1998. Readers can expect critical or comprehensive cover- have contributed individually to the expansion of our age only up to that date. Nevertheless, numerous authors ®eld Ðat the time of writing, we have in our careers continued to add new material to their submitted chapters as published among us more than 1,220 papers. Our areas of time went by (even up to the page-proof stage), and others expertise are complementary, being in physical chemistry, (including two of us who were otherwise engaged with organic chemistry and organometallic /coordination chem- editing) were granted extensions to the deadline which istry. The formative days of this project were spent in Dijon, stretched into 1999. As a result, many chapters contain France, where two of us have been honored by the third by literature citations from 1999, but the end of 1998 is most being annually appointed, over more than a decade, as likely a better benchmark for coverage. For a project as visiting professors at the Universite de Bourgogne. There, large as this, we considered that publication within twelve one summer, we put together the pathway for this endeavor months of the ®rm manuscript deadline would be a and began testing the waters by inviting some of the world's creditable target; this has been accomplished and we wish best porphyrin scientists to contribute to a putative new to thank the publisher, production editors and typesetters for series of books on porphyrins which we told them we were enabling us to achieve our aim. But above all, of course, we planning to compile. Had we been unsuccessful in obtaining must thank our army of contributors for their cooperation support from those we initially contacted, the project would and attention. Toward the end, the e-mail instructions, probably have ended there and then. But such was not the reminders, pleas, demands and occasional threats ¯ew fast case, and we received encouragement and informal agree- and furious, but everyoneÐ to a personÐ cooperated. As ments to contribute from the ®rst twenty or so experts that editors, we asked each of the authors to write a manuscript we contacted from Dijon in just the ®rst few days. which would be de®nitive in this ®eld for ®fteen years to The resulting Handbook is divided into ten volumes. It come, and we believe that most of them, if not all, rose to progresses through synthesis and organic chemistry of por- this challenge. Time will tell. phyrins, heteroporphyrins and expanded porphyrins, to Enjoy! inorganic and coordination chemistry, and then through biochemistry and spectroscopy, to applications and theore- Karl M. Kadish, Houston tical, physical and electrochemical characterization. It is Kevin M. Smith, Davis important to note that the last two volumes contain collec- Roger Guilard, Dijon tions of structural, electrochemical and equilibrium data; September, 1999

xi Preface (vol 11-20)

Volumes 1–10 of The Porphyrin Handbook were first solidations were taking place in the publishing sector, published in late 1999 and met with resounding and the new set of volumes would be published by international acclaim. After only two months on the Elsevier. shelves, our publisher, Academic Press, was awarded the Our sequel, in ten more volumes (11–20), builds upon 1999 Chemistry award by the Professional and Scholarly the first published set of works by extending its Publishing Division of the American Association of authoritative treatise of the tetrapyrroles. We have Publishers, Inc.; this honor recognized The Porphyrin moved on from synthesis, chemistry, spectroscopy and Handbook as the ‘‘best chemistry book of the year.’’ At applications of porphyrins to address, in depth, many that time we, the three editors, began receiving calls and of the sub-fields not covered in the first treatise requests from our colleagues and our Academic Press (Volumes 1–10). To be sure, there were still some publisher to ‘‘expand the work and fill in the gaps’’ so as loose ends, but we believe that our plan was fairly to assemble the best ever up-to-date compendium of comprehensive. New topics this time include biology every possible aspect of the field of porphyrins, other and medical implications of porphyrin systems, the tetrapyrroles, and related macrocycles. biosynthesis of porphyrins, chlorophylls and vitamin

Shortly after publication of the first ten volumes of B12. Other areas covered include clinical and biochem- The Porphyrin Handbook, the First International ical aspects of genetically transmitted or drug induced Conference on Porphyrins and Phthalocyanines diseases associated with errors in metabolism, as (ICPP-1) took place in Dijon, France (June 2000), well as the transformation of into bile pigments, hosted by one of the three editors of the Handbook. At the organic synthesis of bilins, recent work on phyto- that major international event, the Society of Porphyrins chrome and the pathways of degradation of chlorophyll and Phthalocyanines (SPP) was created, and in early in senescent plants. In addition, Volumes 11–20 address 2002 our fledgling SPP took over publication of the every aspect of the synthesis, chemistry, structure and Journal of Porphyrins and Phthalocyanines (JPP) from spectroscopy of phthalocyanines. John Wiley & Sons, with one of the three Handbook Our 61 chapters (coincidentally the same number of editors serving as Editor-in-Chief. At ICPP-2 in Kyoto, chapters as in the 1–10 set of volumes) are once again Japan (July 2002), it became abundantly clear that The written by internationally recognized experts and we Porphyrin Handbook, Volumes 1–10, was serving well were particularly gratified by two organizational our community of research scientists. This applied aspects; firstly, we received almost no rejections of our equally to our society (SPP) and journal (JPP), which requests for chapters, and secondly, almost all of our are incrementally enhancing the international visibility contracted authors provided us with chapters in a timely of our field. Our new series of Handbook volumes (11– manner which, we believe, are as good in quality, or 20) and the continuation of our popular international even better, than those in the first ten volumes. Indeed, conference series (ICPP-3, to be held in New Orleans, once again we believe that our contributors have USA, in 2004) each in their own way will contribute produced research articles that will be dominant in further to the scientific enrichment of the porphyrin and their specific areas for another fifteen years. phthalocyanine research areas. We sincerely hope that our readers will appreciate this However, even before publication of Volumes 1–10, new treatise as much as they liked our first venture. The we were becoming aware of the great interest and tetrapyrrole field continues to expand into new areas and excitement about the treatise from our real audience, to gather new recruits and converts. We think that having the scientists, clinicians, and engineers working in our the research field available at ones’ fingertips (even if it field – ‘‘you won’t be covering biology or biosynthesis, comprises twenty volumes) is a wonderful thing, and this let’s have Volume 11 soon’’ – ‘‘what about phthalocya- can only serve to facilitate future expansion while at the nines? They’re (tetraazatetrabenzo)porphyrins too!’’ same time recording our field’s rich history. So, in very short order the three of us met, put together a plan for continuation, and obtained the publisher’s Karl M. Kadish, Houston approval and blessings for ten more volumes; this Kevin M. Smith, Baton Rouge last action was no mean accomplishment since con- Roger Guilard, Dijon ix VolumesinSet

Volume1/SynthesisandOrganicChemistry

Volume2/Heteroporphyrins,ExpandedPorphyrinsandRelatedMacrocycles

Volume3/Inorganic,OrganometallicandCoordinationChemistry

Volume4/BiochemistryandBinding:ActivationofSmallMolecules

Volume5/NMRandEPR

Volume6/Applications:Past,PresentandFuture

Volume7/TheoreticalandPhysicalCharacterization

Volume8/ElectronTransfer

Volume9/DatabaseofRedoxPotentialsandBindingConstants

Volume10/DatabaseofTetrapyrroleCrystalStructureDetermination

Volume11/BioinorganicandBioorganicChemistry

Volume12/TheIronandCobaltPigments:Biosynthesis,Structure,andDegradation

Volume13/ChlorophyllsandBilins:Biosynthesis,Synthesis,andDegradation

Volume14/MedicalAspectsofPorphyrins

Volume15/Phthalocyanines:Synthesis

Volume16/Phthalocyanines:SpectroscopicandElectrochemicalCharacterization

Volume17/Phthalocyanines:PropertiesandMaterials

Volume18/Multiporphyrins,Multiphthalocyanines,andArrays

Volume19/ApplicationsofPhthalocyanines

Volume20/Phthalocyanines:StructuralCharacterization Contents of Volumes 1–20

Volume 1 / Synthesis and Organic Chemistry 1. Strategies for the Synthesis of Octaalkylporphyrin Systems Kevin M. Smith 2. Synthesis of meso-Substituted Porphyrins Jonathan S. Lindsey 3. Cyclizations of a,c-Biladiene Salts to Give Porphyrins and Their Derivatives Kevin M. Smith 4. Reactivity and Functionalization of -Substituted Porphyrins and Chlorins Maria da Grac¸a H. Vicente 5. Functionalization of 5,10,15,20-Tetra-Substituted Porphyrins Laurent Jaquinod 6. Highly Substituted Porphyrins Mathias O. Senge 7. Geochemistry of Porphyrins Henry J. Callot Rube´n Ocampo

Volume 2 / Heteroporphyrins, Expanded Porphyrins and Related Macrocycles 8. Porphyrin Isomers Jonathan L. Sessler Andreas Gebauer Emanuel Vogel 9. Expanded Porphyrins Jonathan L. Sessler Andreas Gebauer Steven J. Weghorn 10. Syntheses of Novel Porphyrinoid Chromophores Timothy D. Lash 11. Syntheses of Corroles Roberto Paolesse

xxvii xxviii Contents of Volumes 1–20

12. Metallocorroles: Molecular Structure, Spectroscopy and Electronic States Christoph Erben Stefan Will Karl M. Kadish 13. meso-Azaporphyrins and Their Analogues Nagao Kobayashi 14. Core-Modified Heteroanalogues of Porphyrins and Metalloporphyrins Lechosław Latos-Grazzyn_ ´ski

Volume 3 / Inorganic, Organometallic and Coordination Chemistry 15. Axial Coordination Chemistry of Metalloporphyrins Jeremy K. M. Sanders Nick Bampos Zo¨e Clyde-Watson Scott L. Darling Joanne C. Hawley Hee-Joon Kim Chi Ching Mak Simon J. Webb 16. Systematics of the Stereochemistry of Porphyrins and Metalloporphyrins W. Robert Scheidt 17. Alkali Metal Porphyrins John Arnold 18. Chemistry of Water Soluble Porphyrins Peter Hambright 19. Synthesis, Spectroscopic and Structural Studies of Metal–Metal-Bonded Metalloporphyrins Jean-Michel Barbe Roger Guilard 20. Metal Tetrapyrrole Double- and Triple-Deckers with Special Emphasis on Porphyrin Systems Johann W. Buchler Dennis K.P. Ng 21. Synthesis, Spectroscopy and Electrochemical Properties of Porphyrins with Metal–Carbon Bonds Roger Guilard Eric Van Caemelbecke Alain Tabard Karl M. Kadish 22. Coordination Chemistry of Oligoporphyrins Jeremy K. M. Sanders 23. Dendrimer Porphyrins and Metalloporphyrins: Syntheses, Structures and Functions Takuzo Aida Dong-Lin Jiang 24. Metalation and Metal-Assisted Modifications of the Porphyrinogen Skeleton Using meso-Octaalkylporphyrinogen Carlo Floriani Rita Floriani-Moro Contents of Volumes 1–20 xxix

25. Redox Chemistry of the Porphyrinogen Skeleton: Pathways to Artificial Porphyrins and Porphodimethenes Carlo Floriani Rita Floriani-Moro

Volume 4 / Biochemistry and Binding: Activation of Small Molecules 26. Diversity of Reactions Catalyzed by Heme-Thiolate Proteins Daniel Mansuy Pierrette Battioni 27. Oxometalloporphyrins in Oxidative Catalysis John T. Groves Kirill Shalyaev Jinbo Lee 28. Shape-Selective Oxidation by Metalloporphyrins Kenneth S. Suslick 29. High-Valent Iron and Manganese Complexes of Porphyrins and Related Macrocycles Raymond Weiss Avram Gold Alfred X. Trautwein James Terner 30. High-Valent Intermediates Yoshihito Watanabe 31. Metalloporphyrins in Catalytic Oxidations and Oxidative DNA Cleavage Bernard Meunier Anne Robert Genevie`ve Pratviel Jean Bernadou 32. Peroxidase and Cytochrome P450 Structures Thomas L. Poulos 33. Binding and Activation of Nitric Oxide by Metalloporphyrins and Heme Lin Cheng George B. Richter-Addo 34. Structural Themes Determining Function in Nitric Oxide Synthases C. S. Raman Pavel Marta´sek Bettie Sue S. Masters

Volume 5 / NMR and EPR 35. NMR Spectroscopy of Diamagnetic Porphyrins Craig J. Medforth 36. Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins F. Ann Walker 37. Nuclear Magnetic Resonance of Hemoproteins Gerd N. La Mar James D. Satterlee Jeffery S. De Ropp xxx Contents of Volumes 1–20

38. Isocyanides and Phosphines as Axial Ligands in Heme Proteins and Iron Porphyrin Models Ge´rard Simonneaux Arnaud Bondon 39. Solution Structures of Hemoproteins Lucia Banci Ivano Bertini Claudio Luchinat Paola Turano

Volume 6 / Applications: Past, Present and Future 40. Noncovalent Multiporphyrin Assemblies Jean-Claude Chambron Vale´rie Heitz Jean-Pierre Sauvage 41. Applications of Porphyrins and Metalloporphyrins to Materials Chemistry Jun-Hong Chou Hari Singh Nalwa Margaret E. Kosal Neal A. Rakow Kenneth S. Suslick 42. Metalloporphyrins as Catalysts for Precision Macromolecular Synthesis Takuzo Aida Shohei Inoue 43. Porphyrins as Photosensitizers in Photodynamic Therapy Ravindra K. Pandey Gang Zheng 44. Porphyrin-Based Electrochemical Sensors Tadeusz Malinski 45. Calixpyrroles: Novel Anion and Neutral Substrate Receptors Jonathan L. Sessler Philip A. Gale 46. Porphyrins and Metalloporphyrins as Receptor Models in Molecular Recognition Hisanobu Ogoshi Tadashi Mizutani Takashi Hayashi Yasuhisa Kuroda

Volume 7 / Theoretical and Physical Characterization 47. Quantum Chemical Studies of Molecular Structures and Potential Energy Surfaces of Porphyrins and Hemes Abhik Ghosh 48. Models for the Electronic Structure of Metalloporphyrins from High-Resolution X-ray Diffraction and Ab Initio Calculations Claude Lecomte Marie-Madeleine Rohmer Marc Be´nard Contents of Volumes 1–20 xxxi

49. X-ray Absorption Spectroscopy Applied to Porphyrin Chemistry Jose´ Goulon Chantal Goulon-Ginet Vincent Gotte 50. Molecular Simulations and Normal-Coordinate Structural Analysis of Porphyrins and Heme Proteins John A. Shelnutt 51. Resonance Raman Spectra of Heme Proteins and Model Compounds James R. Kincaid 52. Resonance Raman Spectroscopy of Petroporphyrins Roman S. Czernuszewicz Estelle M. Maes J. Graham Rankin 53. Magnetic Circular Dichroism Spectroscopy of Heme Proteins and Model Systems Jennifer Cheek John Dawson 54. Mass Spectrometry of Porphyrins and Metalloporphyrins J. Martin E. Quirke

Volume 8 / Electron Transfer 55. Electrochemistry of Metalloporphyrins in Nonaqueous Media Karl M. Kadish Eric Van Caemelbecke Guy Royal 56. Electron Transfer Chemistry of Porphyrins and Metalloporphyrins Shunichi Fukuzumi 57. Intramolecular Photoinduced Electron-Transfer Reactions of Porphyrins Devens Gust Thomas A. Moore 58. Electrochemistry of Heme Proteins Fred M. Hawkridge Isao Taniguchi

Volume 9 / Database of Redox Potentials and Binding Constants 59. Metalloporphyrins in Nonaqueous Media: Database of Redox Potentials Karl M. Kadish Guy Royal Eric Van Caemelbecke Lena Gueletti 60. Equilibrium Data of Porphyrins and Metalloporphyrins Masaaki Tabata Jun Nishimoto

Volume 10 / Database of Tetrapyrrole Crystal Structure Determination 61. Database of Tetrapyrrole Crystal Structure Determinations Mathias O. Senge Cumulative Index xxxii Contents of Volumes 1–20

Volume 11 / Bioinorganic and Bioorganic Chemistry 62. Functional and Structural Analogs of the Dioxygen Reduction Site in Terminal Oxidases James P. Collman Roman Boulatov Christopher J. Sunderland 63. Heme Protein Dynamics: Electron Tunneling and Redox Triggered Folding Harry B. Gray Jay R. Winkler 64. Chiral Metalloporphyrins and Their Use in Enantiocontrol Jean-Claude Marchon Rene´ Ramasseul 65. Carbene Complexes of Metalloporphyrins and Heme Proteins Ge´rard Simonneaux Paul Le Maux 66. Metalloporphyrins in the Biomimetic Oxidation of Lignin and Lignin Model Compounds: Development of Alternative Delignification Strategies Claudia Crestini Pietro Tagliatesta

67. Biochemistry of Methyl-CoM Reductase and Coenzyme F430 Stephen W. Ragsdale

68. Structure, Reactions, and Functions of B12 and B12-Proteins Bernhard Kra¨utler Sigrid Ostermann

Volume 12 / The Iron and Cobalt Pigments: Biosynthesis, Structure, and Degradation 69. Regulatory Mechanisms of Eukaryotic Tetrapyrrole Biosynthesis Bernhard Grimm 70. The Biosynthesis of Coproporphyrinogen III Peter M. Shoolingin-Jordan 71. Coproporphyrinogen III and Protoporphyrinogen IX Oxidases Muhammad Akhtar 72. Ferrochelatase Harry A. Dailey Tamara A. Dailey 73. The Family of d-Type Hemes: Tetrapyrroles with Unusual Substituents Russell Timkovich 74. Biosynthesis and Role of Heme O and Heme A Tatsushi Mogi 75. Heme Oxygenase Structure and Mechanism Paul R. Ortiz de Montellano Karine Auclair Contents of Volumes 1–20 xxxiii

76. Genetic and Mechanistic Exploration of the Two Pathways of Vitamin B12 Biosynthesis A. Ian Scott Charles A. Roessner Patricio J. Santander

Volume 13 / Chlorophylls and Bilins: Biosynthesis, Synthesis, and Degradation 77. Mechanism, Structure, and Regulation of Magnesium Chelatase Robert D. Willows Mats Hansson 78. Intermediate Steps in Chlorophyll Biosynthesis: Methylation and Cyclization David W. Bollivar 79. The Last Steps of Chlorophyll Synthesis W. Ru¨diger 80. The Light-Independent Protochlorophyllide Reductase: A Nitrogenase-Like Enzyme Catalyzing a Key Reaction for Greening in the Dark Yuichi Fujita Carl E. Bauer 81. Chlorosome Chlorophylls (Bacteriochlorophylls c, d,ande): Structures, Partial Syntheses, and Biosynthetic Proposals Kevin M. Smith 82. Chlorophyll Breakdown and Chlorophyll Catabolites Bernhard Kra¨utler 83. Biosynthesis and Biological Functions of Bilins Nicole Frankenberg J. Clark Lagarias 84. Synthesis of Bilins Albert Gossauer

Volume 14 / Medical Aspects of Porphyrins 85. Erythropoietic Disorders Involving Heme Biosynthesis Sylvia S. Bottomley 86. Acute Intermittent : From Clinical to Molecular Aspects Jean-Charles Deybach Herve´ Puy

87. Congenital Hubert de Verneuil Ce´cile Ged Franc¸ois Moreau-Gaudry 88. and Related Disorders G. H. Elder 89. Peter Meissner Richard Hift Anne Corrigall xxxiv Contents of Volumes 1–20

90. Protoporphyria Timothy M. Cox 91. Miscellaneous Abnormalities in Porphyrin Production and Disposal Richard Hift Peter Meissner 92. Porphyria Caused by Chlorinated AH Receptor Ligands and Associated Mechanisms of Injury and Cancer Andrew G. Smith 93. Porphyria: A Diagnostic Approach Felix W. M. de Rooij Annie Edixhoven J. H. Paul Wilson 94. Approaches to Treatment and Prevention of Human Karl E. Anderson 95. Management and Treatment of the Porphyrias J. H. P. Wilson F. W. M. de Rooij 96. Porphyria: A Toxicogenetic Disease Richard J. Hift Peter N. Meissner Michael R. Moore

Volume 15 / Phthalocyanines: Synthesis 97. Synthesis of Phthalocyanine Precursors Wesley M. Sharman Johan E. van Lier 98. The Synthesis of Symmetrical Phthalocyanines Neil B. McKeown 99. Design and Synthesis of Low-Symmetry Phthalocyanines and Related Systems M. Salome´ Rodrı´guez-Morgade Gema de la Torre Toma´s Torres 100. Synthesis and Spectroscopic Properties of Phthalocyanine Analogs Nagao Kobayashi 101. Porphyrazines with Annulated Heterocycles Pavel A. Stuzhin Claudio Ercolani

Volume 16 / Phthalocyanines: Spectroscopic and Electrochemical Characterization 102. The Photophysical Properties of Phthalocyanines and Related Compounds Kazuyuki Ishii Nagao Kobayashi Contents of Volumes 1–20 xxxv

103. Electronic Structures of Metal Phthalocyanine and Porphyrin Complexes from Analysis of the UV–Visible Absorption and Magnetic Circular Dichroism Spectra and Molecular Orbital Calculations John Mack Martin J. Stillman 104. Electrochemistry of Phthalocyanines Maurice L’Her Annig Pondaven 105. Lanthanide Phthalocyanine Complexes Raymond Weiss Jean Fischer 106. Photoelectrochemical Reactions at Phthalocyanine Electrodes D. Schlettwein N. I. Jaeger T. Oekermann

Volume 17 / Phthalocyanines: Properties and Materials 107. Physical Properties of Phthalocyanine-based Materials Danilo Dini Michael Hanack 108. Phthalocyanine Thin Films: Deposition and Structural Studies Michael J. Cook Isabelle Chambrier 109. Phthalocyanine Aggregation Arthur W. Snow 110. Porphyrins and Phthalocyanines in Macromolecules Dieter Wo¨hrle Gu¨nter Schnurpfeil 111. Porphyrins and Phthalocyanines Encapsulated in Inorganic Host Materials Michael Wark

Volume 18 / Multiporphyrins, Multiphthalocyanines, and Arrays 112. Single-Atom Bridged Dinuclear Metal Complexes with Emphasis on Phthalocyanine Systems Barbara Floris Maria Pia Donzello Claudio Ercolani 113. Recent Advances in Free and Metalated Multiporphyrin Assemblies and Arrays; A Photophysical Behavior and Energy Transfer Perspective Pierre D. Harvey 114. Stacked Polymeric Phthalocyanines: Synthesis and Structure-Related Properties Michael Hanack Danilo Dini xxxvi Contents of Volumes 1–20

115. Self-Assembly of Chiral Phthalocyanines and Chiral Crown Ether Phthalocyanines Pall Thordarson Roeland J. M. Nolte Alan E. Rowan 116. New Developments in Corrole Chemistry: Special Emphasis on Face-to-Face Bismacrocycles Roger Guilard Jean-Michel Barbe Christine Stern Karl M. Kadish

Volume 19 / Applications of Phthalocyanines 117. Phthalocyanines in Photobiology and Their Medical Applications Ehud Ben-Hur Wai-Shun Chan 118. Radical Phthalocyanines and Intrinsic Semiconduction Marcel Bouvet 119. Phthalocyanine Dyes and Pigments Peter Erk Heidi Hengelsberg 120. Enzyme-Like Catalytic Reactions of Metallophthalocyanines and Polymeric Metallophthalocyanines Mutsumi Kimura Hirofusa Shirai 121. Nonlinear Optical Properties of Phthalocyanines Steven R. Flom

Volume 20 / Phthalocyanines: Structural Characterization 122. Single-Crystal Structures of Phthalocyanine Complexes and Related Macrocycles Michael Klaus Engel

Cumulative Index Contributors to Volumes 1–20

Takuzo Aida Karine Auclair Department of Chemistry and Biotechnology Department of Chemistry Graduate School of Engineering McGill University The University of Tokyo 801 Sherbrooke Street West Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Montre´al, Que´bec, Canada H3A 2K6 [email protected] [email protected] Chapters 23, 42 Chapter 75

Muhammad Akhtar Nick Bampos School of Biological Sciences University Chemical Laboratory University of Southampton Cambridge University Bassett Crescent East Cambridge, CB2 1EW, UK Southampton SO16 7PX, UK Chapter 15 [email protected] Lucia Banci Chapter 71 CERM and Department of Chemistry Karl E. Anderson University of Florence Departments of Preventive Medicine and 50019 Sesto Fiorentino (Florence), Italy Community Health Internal Medicine, [email protected] and Pharmacology and Toxicology Chapter 39 The University of Texas Medical Branch at Galveston Jean-Michel Barbe Texas 77555-1109, USA Laboratoire d’Inge´nierie Mole´culaire [email protected] pour la Se´paration et les Applications des Gaz Chapter 94 LIMSAG (UMR 5633) Universite´ de Bourgogne John Arnold Faculte´ des Sciences "Gabriel" Department of Chemistry 6, Bd Gabriel 21000 Dijon, France University of California, Berkeley [email protected] Berkeley, California 94720-1460, USA Chapters 19, 116 [email protected] Chapter 17 Pierrette Battioni Universite´ Rene´ Descartes Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8061 75270 Paris, France [email protected] Chapter 26

xi xii Contributors to Volumes 1–20

Carl E. Bauer Sylvia S. Bottomley Department of Biology Department of Medicine Indiana University University of Oklahoma College of Medicine and Bloomington, Indiana 47405, USA Department of Veterans Affairs Medical Center [email protected] Hematology-Oncology Section (111J) Chapter 80 921 N.E. 13th Street Marc Be´nard Oklahoma City Laboratoire de Chimie Quantique UMR 7551 Oklahoma 73104-5007, USA Universite´ Louis Pasteur [email protected] 67000 Strasbourg, France Chapter 85 [email protected] Roman Boulatov Chapter 48 Department of Chemistry Ehud Ben-Hur Stanford University Consultant in Photomedicine Stanford, California 94305-5080, USA 160 West End Avenue # 24P, New York, NY 10023, USA [email protected] [email protected] Chapter 62 Chapter 117 Marcel Bouvet Jean Bernadou Laboratoire de Chimie Inorganique et Mate´riaux Mole´culaires Laboratoire de Chimie de Coordination du CNRS CNRS – UMR7071 31077 Toulouse, France Universite´ Pierre et Marie Curie [email protected] 4, place Jussieu, Case Courrier 42 Chapter 31 75252 Paris cedex 05, France [email protected] Ivano Bertini Chapter 118 CERM and Department of Chemistry University of Florence Johann W. Buchler 50019 Sesto Fiorentino (Florence), Italy Institut fu¨r Anorganische Chemie [email protected] Darmstadt University of Technology Chapter 39 D-64287 Darmstadt, Germany [email protected] David W. Bollivar [email protected] Department of Biology Chapter 20 Illinois Wesleyan University P.O. Box 2900, Bloomington, Illinois 61702-2900, USA Henry J. Callot [email protected] Faculte´ de Chimie Chapter 78 Universite´ Louis Pasteur F-67000 Strasbourg, France Arnaud Bondon [email protected] UMR 6509, Organome´tallique et Catalyse, Chapter 7 Chimie et E´lectrochimie Mole´culaires Universite´ de Rennes I Isabelle Chambrier 35042 Rennes, France Wolfson Materials & Catalysis Centre [email protected] School of Chemical Sciences and Pharmacy Chapter 38 University of East Anglia Norwich NR4 7TJ, UK [email protected] Chapter 108 Contributors to Volumes 1–20 xiii

Jean-Claude Chambron Anne Corrigall Laboratoire de Chimie Organo-Mine´rale Lennox Eales Porphyria Laboratories Universite´ Louis Pasteur Department of Medicine Institut Le Bel University of Cape Town Medical School 67070 Strasbourg, France Observatory, South Africa 7925 [email protected] [email protected] Chapter 40 Chapter 89 Wai-Shun Chan Timothy M. Cox Progenitor Cell Therapy, L.L.C. Department of Medicine Park 80 West, Plaza II, Suite 200 University of Cambridge, Box 157 Saddle Brook, New Jersey 07663, USA Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK [email protected] [email protected] Chapter 117 Chapter 90 Jennifer Cheek Claudia Crestini School of Medicine Dipartimento di Scienze e Tecnologie Chimiche University of South Carolina Tor Vergata University Columbia, South Carolina 29208, USA Via Della Ricerca scientifica Chapter 53 00133, Rome, Italy Lin Cheng [email protected] Department of Chemistry and Biochemistry Chapter 66 University of Oklahoma Roman S. Czernuszewicz Norman, Oklahoma 73019, USA Department of Chemistry Chapter 33 University of Houston Jun-Hong Chou Houston, Texas 77204-5003, USA School of Chemical Sciences [email protected] University of Illinois at Urbana-Champaign Chapter 52 Urbana, Illinois 61801, USA Harry A. Dailey Chapter 41 Biomedical and Health Sciences Institute Zo¨e Clyde-Watson Department of Microbiology, and University Chemical Laboratory Department of Biochemistry & Molecular Biology Cambridge University A220 Life Sciences Building Cambridge, CB2 1EW, UK University of Georgia Chapter 15 Athens, Georgia 30602-7229, USA James P. Collman [email protected] Department of Chemistry Chapter 72 Stanford University Tamara A. Dailey Stanford, California 94305-5080, USA Biomedical and Health Sciences Institute [email protected] Department of Microbiology, and Chapter 62 Department of Biochemistry & Molecular Biology Michael J. Cook A220 Life Sciences Building Wolfson Materials & Catalysis Centre University of Georgia School of Chemical Sciences and Pharmacy Athens, Georgia 30602-7229, USA University of East Anglia [email protected] Norwich NR4 7TJ, UK Chapter 72 [email protected] Chapter 108 xiv Contributors to Volumes 1–20

Scott L. Darling Jean-Charles Deybach University Chemical Laboratory Centre Franc¸ais des Porphyries, INSERM U409 Cambridge University 178 rue des Renouillers Cambridge, CB2 1EW, UK 92701 Colombes Cedex, France; Chapter 15 and Faculte´ de Me´decine Xavier Bichat John Dawson Universite´ Paris VII Department of Chemistry and Biochemistry 16 rue Henri Huchard University of South Carolina BP416, 75870 Paris Cedex 18, France Columbia, South Carolina 29208, USA [email protected] [email protected] Chapter 86 Chapter 53 Danilo Dini Gema de la Torre Institut fu¨r Organische Chemie Departamento de Quı´mica Orga´nica Universita¨tTu¨bingen Universidad Auto´noma de Madrid 72076 Tu¨bingen, Germany 28049 Cantoblanco, Madrid, Spain [email protected] [email protected] Chapters 107, 114 Chapter 99 Maria Pia Donzello Felix W. M. de Rooij Dipartimento di Chimica Department of Internal Medicine, Erasmus MC Universita` degli Studi di Roma ‘‘La Sapienza’’ University Medical Center Rotterdam P. le Aldo Moro 5, I-00185 Roma, Italy P.B. 2040, 3000 CA Rotterdam [email protected] The Netherlands Chapter 112 [email protected] Annie Edixhoven Chapters 93, 95 Department of Internal Medicine, Erasmus MC Jeffery S. de Ropp University Medical Center Rotterdam NMR Facility P.B. 2040, 3000 CA Rotterdam University of California, Davis The Netherlands Davis, California 95616, USA [email protected] [email protected] Chapter 93 Chapter 37 G. H. Elder Hubert de Verneuil Department of Medical Biochemistry Laboratoire de Pathologie University of Wales College of Medicine Mole´culaire et The´rapie Ge´nique, INSERM E0217 Heath Park, Cardiff CF14 4XN, UK Universite´ V Segalen Bordeaux 2 [email protected] 146 rue Le´o Saignat Chapter 88 33076 Bordeaux ce´dex, France Michael Klaus Engel [email protected] Dainippon Ink and Chemicals, Inc. Chapter 87 Central Research Laboratories 631 Sakado, Sakura-shi Chiba-ken 285-8668, Japan [email protected] Chapter 122 Contributors to Volumes 1–20 xv

Christoph Erben Barbara Floris Lucent Technologies—Bell Laboratories Dipartimento di Scienze e Tecnologie Chimiche Murray Hill, New Jersey 07974, USA Universita` di Roma ‘‘Tor Vergata’’ [email protected] Via della Ricerca Scientifica Chapter 12 I-00133, Roma, Italy [email protected] Claudio Ercolani Chapter 112 Dipartimento di Chimica Universita` degli Studi di Roma ‘‘La Sapienza’’ Nicole Frankenberg P. le Aldo Moro 5, I-00185 Roma, Italy Section of Molecular and Cellular Biology [email protected] University of California, Davis Chapters 101, 112 One Shields Avenue Davis, California 95616, USA Peter Erk [email protected] Performance Chemicals Research Chapter 83 GVP/C – J 550, BASF AG 67056 Ludwigshafen/Rh, Germany Yuichi Fujita [email protected] Graduate School of Bioagricultural Sciences Chapter 119 Nagoya University Nagoya 464-8601, Japan Jean Fischer [email protected] Laboratoire de Chimie Organome´tallique et de Catalyse Chapter 80 Institut le Bel Universite´ Louis Pasteur de Strasbourg Shunichi Fukuzumi 4, rue Blaise Pascal, 67070 Strasbourg, France Department of Material and Life Sciences [email protected] Graduate School of Engineering Chapter 105 Osaka University Suita, Osaka 565-0871, Japan Steven R. Flom [email protected] Code 5613, Naval Research Laboratory Chapter 56 Washington, DC 20375-5338, USA [email protected] Philip A. Gale Chapter 121 Department of Chemistry University of Southampton Carlo Floriani Southampton, S017 1BJ, UK Institut de Chimie Mine´rale et Analytique, BCH [email protected] Universite´ de Lausanne Chapter 45 Lausanne CH-1015, Switzerland Chapters 24, 25 Andreas Gebauer Department of Chemistry Rita Floriani-Moro University of California at Berkeley Institut de Chimie Mine´rale et Analytique, BCH Berkeley, California 94720, USA Universite´ de Lausanne [email protected] Lausanne CH-1015, Switzerland Chapters 8, 9 Chapters 24, 25 xvi Contributors to Volumes 1–20

Ce´cile Ged Chantal Goulon-Ginet Laboratoire de Pathologie European Synchrotron Radiation Facility Mole´culaire et The´rapie Ge´nique F-38043 Grenoble, France; and INSERM E0217 Faculte´ de Pharmacie, Universite´ de Grenoble I Universite´ V Segalen Bordeaux 2 F-38700 La Tronche, France 146 rue Le´o Saignat [email protected] 33076 Bordeaux ce´dex, France Chapter 49 [email protected] Harry B. Gray Chapter 87 Beckman Institute, MC 139-74 Abhik Ghosh California Institute of Technology Institute of Chemistry, Faculty of Science Pasadena, California 91125, USA University of Trømsø [email protected] Trømsø, Norway; Chapter 63 and San Diego Supercomputer Center Bernhard Grimm University of California at San Diego Institute of Biology/Plant Physiology La Jolla, California 92093-0505, USA Humboldt University [email protected] Unter den Linden 6 Chapter 47 D 10099 Berlin, Germany Avram Gold [email protected] Department of Environmental Science and Engineering Chapter 69 The University of North Carolina at Chapel Hill John T. Groves Chapel Hill, North Carolina 27599-7400, USA Department of Chemistry [email protected] Princeton University Chapter 29 Princeton, New Jersey 08544-1009, USA Albert Gossauer [email protected] Department of Chemistry Chapter 27 University of Fribourg Lena Gueletti Route du Muse´e9 Department of Chemistry CH-1700 Fribourg, Switzerland University of Houston [email protected] Houston, Texas 77204-5003, USA Chapter 84 Chapter 59 Vincent Gotte Roger Guilard European Synchrotron Radiation Facility Laboratoire d’Inge´nierie Mole´culaire F-38043 Grenoble, France pour la Se´paration et les Applications des Gaz Chapter 49 LIMSAG (UMR 5633) Jose´ Goulon Universite´ de Bourgogne European Synchrotron Radiation Facility Faculte´ des Sciences "Gabriel" F-38043 Grenoble, France 6, Bd Gabriel 21000 Dijon, France [email protected] [email protected] Chapter 49 Chapters 19, 21, 116 Contributors to Volumes 1–20 xvii

Devens Gust Takashi Hayashi Department of Chemistry and Biochemistry Department of Chemistry and Biochemistry Arizona State University Graduate School of Engineering Tempe, Arizona 85287-1604, USA Kyushu University [email protected] Higashi-ku Fukuoka 812-8581, Japan Chapter 57 [email protected] Peter Hambright Chapter 46 Department of Chemistry Vale´rie Heitz Howard University Laboratoire de Chimie Organo-Mine´rale Washington, D.C. 20059, USA Universite´ Louis Pasteur [email protected] lnstitut Le Bel Chapter 18 67070 Strasbourg, France Michael Hanack [email protected] Institut fu¨r Organische Chemie Chapter 40 Universita¨tTu¨bingen Heidi Hengelsberg 72076 Tu¨bingen, Germany Marketing Pigments [email protected] EVP/M – J 550, BASF AG Chapters 107, 114 67056 Ludwigshafen/Rh, Germany Mats Hansson [email protected] Department of Biochemistry Chapter 119 Lund University Richard J. Hift S-22100 Lund, Sweden Lennox Eales Porphyria Laboratories [email protected] Department of Medicine Chapter 77 University of Cape Town Medical School Pierre D. Harvey Observatory, South Africa 7925 De´partement de Chimie [email protected] Universite´ de Sherbrooke Chapters 89, 91, 96 Sherbrooke, P.Q., Canada, J1K 2R1 Shohei Inoue [email protected] Department of Industrial Chemistry Chapter 113 Faculty of Engineering Fred M. Hawkridge Science University of Tokyo Department of Chemistry Kagurazaka, Shinjuku-ku Virginia Commonwealth University Tokyo 162-8601, Japan Richmond, Virginia 23284, USA Chapter 42 [email protected] Kazuyuki Ishii Chapter 58 Department of Chemistry Joanne C. Hawley Graduate School of Science University Chemical Laboratory Tohoku University Cambridge University Sendai 980-8578, Japan Cambridge, CB2 1EW, UK [email protected] Chapter 15 Chapter 102 xviii Contributors to Volumes 1–20

N. I. Jaeger Nagao Kobayashi Institut fu¨r Angewandte und Physikalische Chemie Department of Chemistry, Graduate School of Science Fachbereich 2 (Biologie/Chemie) Tohoku University Universita¨t Bremen Sendai 980-8578, Japan Postfach 33 04 40 [email protected] D-28334 Bremen, Germany Chapters 13, 100, 102 [email protected] Margaret E. Kosal Chapter 106 School of Chemical Sciences Laurent Jaquinod University of Illinois at Urbana-Champaign Department of Chemistry Urbana, Illinois 61801, USA University of California, Davis Chapter 41 Davis, California 95616, USA Bernhard Kra¨utler [email protected] Institute of Organic Chemistry Chapter 5 University of Innsbruck Dong-Lin Jiang Innrain 52a, A-6020 Innsbruck, Austria Department of Chemistry and Biotechnology [email protected] Graduate School of Engineering Chapters 68, 82 The University of Tokyo Yasuhisa Kuroda Hongo, Bunk-yo, Tokyo 113-8656, Japan Department of Polymer Science [email protected] Kyoto Institute of Technology Chapter 23 Matsugasaki, Kyoto 606 0962, Japan Karl M. Kadish [email protected] Department of Chemistry Chapter 46 University of Houston J. Clark Lagarias Houston, Texas 77204-5003, USA Section of Molecular and Cellular Biology [email protected] University of California, Davis Chapters 12, 21, 55, 59, 116 One Shields Avenue Hee-Joon Kim Davis, California 95616, USA University Chemical Laboratory [email protected] Cambridge University Chapter 83 Cambridge, CB2 1EW, UK Gerd N. La Mar Chapter 15 Department of Chemistry Mutsumi Kimura University of California, Davis Department of Functional Polymer Science Davis, California 95616, USA Faculty of Textile Science and Technology [email protected] Shinshu University Chapter 37 Ueda 386-8567, Japan Timothy D. Lash [email protected] Department of Chemistry Chapter 120 Illinois State University James R. Kincaid Normal, Illinois 61794-4160, USA Chemistry Department [email protected] Marquette University Chapter 10 Milwaukee, Wisconsin 53233, USA [email protected] Chapter 51 Contributors to Volumes 1–20 xix

Lechosław Latos-Grazzyn_ ´ski John Mack Department of Chemistry Department of Chemistry University of Wrocław University of Western Ontario, London Wrocław 50 383, Poland Ontario, Canada, N6A 5B7 [email protected] [email protected] Chapter 14 Chapter 103 Claude Lecomte Estelle M. Maes Laboratoire de Cristallographie et Mode´lisation des Department of Chemistry Mate´riaux Mine´raux et Biologiques URA CNRS 809 University of Houston Universite´ Henri Poincare´-Nancy 1 Houston, Texas 77204-5003, USA 54506 Vandoeuvre-le´s-Nancy, France [email protected] [email protected] Chapter 52 Chapter 48 Chi Ching Mak Jinbo Lee University Chemical Laboratory Department of Chemistry Cambridge University Princeton University Cambridge, CB2 1EW, UK Princeton, New Jersey 08544-1009, USA Chapter 15 Chapter 27 Tadeusz Malinski Paul Le Maux Department of Chemistry and Biochemistry Laboratoire de Chimie Organome´tallique et Biologique Ohio University UMR CNRS 6509, Institut de Chimie Athens, Ohio 45701, USA Universite´ de Rennes 1 [email protected] 35042 Rennes cedex, France Chapter 44 [email protected] Daniel Mansuy Chapter 65 Universite´ Rene´ Descartes Maurice L’Her Laboratoire de Chimie et Biochimie Universite´ de Bretagne Occidentale Pharmacologiques et Toxicologiques 6521/Faculte´ des Sciences UMR 8061, 75270 Paris, France B.P. 809, 29285 Brest Cedex, France [email protected] [email protected] Chapter 26 Chapter 104 Jean-Claude Marchon Jonathan S. Lindsey Laboratoire de Chimie Inorganique et Biologique Department of Chemistry De´partement de Recherche Fondamentale sur la Matie`re North Carolina State University Condense´e Raleigh, North Carolina 27695-8204, USA CEA-Grenoble, 38054 Grenoble, France [email protected] [email protected] Chapter 2 Chapter 64 Claudio Luchinat Pavel Marta´sek CERM and Department of Soil Science and Plant Nutrition Department of Pediatrics, First Faculty of Medicine University of Florence Charles University 50019 Sesto Fiorentino (Florence), Italy 12109 Prague, Czech Republic [email protected] [email protected] Chapter 39 Chapter 34 xx Contributors to Volumes 1–20

Bettie Sue S. Masters Tatsushi Mogi Department of Biochemistry Yoshida ATP System Project, ERATO The University of Texas Health Science Japan Science and Technology Corporation Center at San Antonio Green Hills Suzukakedai 1F, 5800-3 Nagatsuta, Midori-ku San Antonio, Texas 78284-7760, USA Yokohama 226-0026; [email protected] and Department of Biological Sciences Chapter 34 Graduate School of Science Neil B. McKeown University of Tokyo Department of Chemistry 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan University of Manchester [email protected] Manchester M13 9PL, UK Chapter 74 [email protected] Michael R. Moore Chapter 98 National Research Centre for Environmental Toxicology Craig J. Medforth (EnTox), The University of Queensland and Department of Chemistry Queensland Health Scientific Services University of California, Davis 39 Kessels Road, Coopers Plains, Brisbane 4108 Davis, California 95616, USA Queensland, Australia [email protected] [email protected] Chapter 35 Chapter 96 Peter N. Meissner Thomas A. Moore Lennox Eales Porphyria Laboratories Department of Chemistry and Biochemistry Department of Medicine Arizona State University University of Cape Town Medical School Tempe, Arizona 85287-1604, USA Observatory, South Africa 7925 [email protected] [email protected] Chapter 57 Chapters 89, 91, 96 Franc¸ois Moreau-Gaudry Bernard Meunier Laboratoire de Pathologie Mole´culaire Laboratoire de Chimie de Coordination du CNRS et The´rapie Ge´nique 31077 Toulouse, France INSERM E0217 [email protected] Universite´ V Segalen Bordeaux 2 Chapter 31 146 rue Le´o Saignat, 33076 Bordeaux ce´dex France Tadashi Mizutani [email protected] Department of Synthetic Chemistry Chapter 87 and Biological Chemistry Graduate School of Engineering Hari Singh Nalwa Kyoto University Hitachi Research Laboratory Yoshida, Sakyo-ku, Kyoto 606 8501, Japan Hitachi Ltd. [email protected] Hitachi City, Ibaraki 319 1292, Japan Chapter 46 Chapter 41 Dennis K.P. Ng Department of Chemistry The Chinese University of Hong Kong Shatin, N.T., Hong Kong [email protected] Chapter 20 Contributors to Volumes 1–20 xxi

Jun Nishimoto Ravindra K. Pandey Analytical Research Center for Experimental Sciences Photodynamic Therapy Center and Saga University Department of Nuclear Medicine Saga 840-8502, Japan Roswell Park Cancer Institute [email protected] Buffalo, New York 14263-0001, USA Chapter 60 [email protected] Roeland J. M. Nolte Chapter 43 Department of Organic Chemistry, NSR Center Roberto Paolesse The University of Nijmegen Dipartimento di Scienze e Tecnologie Chimiche Toernooiveld 1 Universita` di Roma ‘‘Tor Vergata’’ NL-6525 ED Nijmegen, The Netherlands 00133 Roma, Italy [email protected] [email protected] Chapter 115 Chapter 11 Rube´n Ocampo Annig Pondaven Faculte´ de Chimie Universite´ de Bretagne Occidentale Universite´ Louis Pasteur 6521/Faculte´ des Sciences 67008 Strasbourg, France B.P. 809, 29285 Brest Cedex, France [email protected] [email protected] Chapter 7 Chapter 104 T. Oekermann Thomas L. Poulos Graduate School of Engineering Department of Molecular Biology and Biochemistry Environmental and Renewable Energy Systems (ERES) Division University of California, Irvine Gifu University Irvine, California 92697-3900, USA Yanagido 1-1, Gifu 501-1193, Japan [email protected] [email protected] Chapter 32 Chapter 106 Genevie`ve Pratviel Hisanobu Ogoshi Laboratoire de Chimie de Coordination du CNRS Fukui National College of Technology 31077 Toulouse, France Geshi, Sabae [email protected] Fukui 916 8507, Japan Chapter 31 [email protected] Herve´ Puy Chapter 46 Centre Franc¸ais des Porphyries, INSERM U409 Paul R. Ortiz de Montellano 178 rue des Renouillers Department of Pharmaceutical Chemistry 92701 Colombes Cedex, France; School of Pharmacy and Faculte´ de Me´decine University of California Paris Ile de France Ouest San Francisco, California 94143-0446, USA 104 boulevard Raymond Poincare´, 92380 Garches, France [email protected] [email protected] Chapter 75 Chapter 86 Sigrid Ostermann J. Martin E. Quirke Institute of Organic Chemistry Department of Chemistry University of Innsbruck, Innrain 52a Florida International University A-6020 Innsbruck, Austria Miami, Florida 33199, USA [email protected] [email protected] Chapter 68 Chapter 54 xxii Contributors to Volumes 1–20

Stephen W. Ragsdale M. Salome´ Rodrı´guez-Morgade Department of Biochemistry Departamento de Quı´mica Orga´nica Beadle Center, 19th and Vine Streets Universidad Auto´noma de Madrid University of Nebraska 28049 Cantoblanco, Madrid, Spain Lincoln, Nebraska 68588-0664, USA [email protected] [email protected] Chapter 99 Chapter 67 Charles A. Roessner Neal A. Rakow Center for Biological NMR, Department of Chemistry School of Chemical Sciences Texas A&M University University of Illinois at Urbana-Champaign College Station, Texas 77843, USA Urbana, Illinois 61801, USA [email protected] Chapter 41 Chapter 76 C. S. Raman Marie-Madeleine Rohmer Department of Molecular Biology and Biochemistry Laboratoire de Chimie Quantique UMR 7551 University of California, Irvine 92697-3900 Universite´ Louis Pasteur Irvine, California, USA 67000 Strasbourg, France [email protected] [email protected] Chapter 34 Chapter 48 Rene´ Ramasseul Alan E. Rowan Laboratoire de Chimie Inorganique et Biologique Department of Organic Chemistry, NSR Center De´partement de Recherche Fondamentale sur la Matie`re The University of Nijmegen Condense´e Toernooiveld 1 CEA-Grenoble NL-6525 ED Nijmegen, The Netherlands 38054 Grenoble, France [email protected] [email protected] Chapter 115 Chapter 64 Guy Royal J. Graham Rankin Department of Chemistry Department of Chemistry University of Houston Marshal University Houston, Texas 77204-5003, USA Huntington, West Virginia 25701, USA [email protected] [email protected] Chapter 55, 59 Chapter 52 W. Ru¨diger George B. Richter-Addo Department Biologie I, Botanik Department of Chemistry and Biochemistry Universita¨tMu¨nchen University of Oklahoma Menzingerstrasse 67 Norman, Oklahoma 73019, USA D-80638, Mu¨nchen, Germany [email protected] [email protected] Chapter 33 Chapter 79 Anne Robert Jeremy K. M. Sanders Laboratoire de Chimie de Coordination du CNRS University Chemical Laboratory 31077 Toulouse, France Cambridge University [email protected] Cambridge, CB2 1EW, UK Chapter 31 Chapters 15, 22 Contributors to Volumes 1–20 xxiii

Patricio J. Santander Mathias O. Senge Center for Biological NMR, Department of Chemistry Institut fu¨r Chemie, Organische Chemie Texas A&M University Freie Universita¨t Berlin College Station, Texas 77843, USA D-14195 Berlin, Germany [email protected] [email protected] Chapter 76 Chapters 6, 61 James D. Satterlee Jonathan L. Sessler Department of Chemistry Department of Chemistry and Biochemistry Washington State University Institute for Cellular and Molecular Biology Pullman, Washington 99164, USA The University of Texas at Austin [email protected] Austin, Texas 78712-0165, USA Chapter 37 [email protected] Jean-Pierre Sauvage Chapters 8, 9, 45 Laboratoire de Chimie Organo-Mine´rale Kirill Shalyaev Universite´ Louis Pasteur Department of Chemistry Institut Le Bel Princeton University 67070 Strasbourg, France Princeton, New Jersey 08544-1009, USA [email protected] Chapter 27 Chapter 40 Wesley M. Sharman W. Robert Scheidt CIHR Group in the Radiation Sciences Department of Chemistry and Biochemistry Faculty of Medicine University of Notre Dame Universite´ de Sherbrooke Notre Dame, Indiana 46556-5670, USA Sherbrooke, Que´bec, Canada, J1H 5N4 [email protected] [email protected] Chapter 16 Chapter 97 D. Schlettwein John A. Shelnutt Physikalische Chemie 1, Fachbereich 9 (Chemie) Biomolecular Materials and Interfaces Department Universita¨t Oldenburg Sandia National Laboratories Postfach 2503 1001 University Boulevard SE, Albuquerque D-26111 Oldenburg, Germany New Mexico 87106, USA; and [email protected] Department of Chemistry Chapter 106 University of Georgia Gu¨nter Schnurpfeil Athens, Georgia 30602-2556, USA Universita¨t Bremen [email protected] Institut fu¨r Organische und Makromolekulare Chemie Chapter 50 P.O. Box 33 04 40 Hirofusa Shirai 28334 Bremen, Germany Department of Functional Polymer Science [email protected] Faculty of Textile Science and Technology Chapter 110 Shinshu University A. Ian Scott Ueda 386-8567, Japan Center for Biological NMR, Department of Chemistry [email protected] Texas A&M University Chapter 120 College Station, Texas 77843, USA [email protected] Chapter 76 xxiv Contributors to Volumes 1–20

Peter M. Shoolingin-Jordan Martin J. Stillman School of Biological Sciences Department of Chemistry University of Southampton University of Western Ontario, London Bassett Crescent East Ontario, Canada, N6A 5B7 Southampton, SO16 7PX, UK [email protected] [email protected] Chapter 103 Chapter 70 Pavel A. Stuzhin Ge´rard Simonneaux Department of Organic Chemistry Organome´tallique et Catalyse, Chimie et Ivanovo State University of Chemistry and Technology E´lectrochimie Mole´culaires 153460 Ivanovo, Russian Federation Universite´ de Rennes I [email protected] 35042 Rennes, France Chapter 101 [email protected] Christopher J. Sunderland Chapters 38, 65 Department of Chemistry Andrew G. Smith Stanford University MRC Toxicology Unit, Hodgkin Building Stanford, California 94305-5080, USA University of Leicester [email protected] Lancaster Road, Leicester LE1 9HN, UK Chapter 62 [email protected] Kenneth S. Suslick Chapter 92 School of Chemical Sciences Kevin M. Smith University of Illinois at Urbana-Champaign Department of Chemistry Urbana, Illinois 61801, USA Louisiana State University [email protected] 130 David Boyd Hall Chapters 28, 41 Baton Rouge, Louisiana 70803-2755, USA Alain Tabard [email protected] Laboratoire d’Inge´nierie Mole´culaire Chapters 1, 3, 81 pour la Se´paration et les Applications des Gaz Arthur W. Snow LIMSAG (UMR 5633) Chemistry Division, Code 6123 Universite´ de Bourgogne Naval Research Laboratory Faculte´ des Sciences "Gabriel" 4555 Overlook Avenue, SW 6, Bd Gabriel 21000 Dijon, France Washington, DC 20375, USA [email protected] [email protected] Chapter 21 Chapter 109 Masaaki Tabata Christine Stern Department of Chemistry Laboratoire d’Inge´nierie Mole´culaire Faculty of Science and Engineering pour la Se´paration et les Applications des Gaz Saga University LIMSAG (UMR 5633) Saga 890-8502, Japan Universite´ de Bourgogne [email protected] Faculte´ des Sciences "Gabriel" Chapter 60 6, Bd Gabriel 21000 Dijon, France [email protected] Chapter 116 Contributors to Volumes 1–20 xxv

Pietro Tagliatesta Paola Turano Dipartimento di Scienze e Tecnologie Chimiche CERM and Department of Chemistry Tor Vergata University University of Florence Via Della Ricerca scientifica 50019 Sesto Florentino (Florence), Italy 00133, Rome, Italy [email protected] [email protected] Chapter 39 Chapter 66 Eric Van Caemelbecke Isao Taniguchi Department of Chemistry Department of Applied Chemistry University of Houston Kumamoto University Houston, Texas 77204-5003, USA Kumamoto 860, Japan Chapters 21, 55, 59 [email protected] Johan E. van Lier Chapter 58 CIHR Group in the Radiation Sciences James Terner Faculty of Medicine Department of Chemistry Universite´ de Sherbrooke Virginia Commonwealth University Sherbrooke, Que´bec, Canada, J1H 5N4 Richmond, Virginia 23284-2006, USA [email protected] [email protected] Chapter 97 Chapter 29 Maria da Grac¸a H. Vicente Pall Thordarson Department of Chemistry Department of Organic Chemistry, NSR Center Louisiana State University The University of Nijmegen Baton Rouge, Louisiana 70803-2755, USA Toernooiveld 1 [email protected] NL-6525 ED Nijmegen, The Netherlands Chapter 4 [email protected] Emanuel Vogel Chapter 115 Institut fu¨r Organische Chemie Russell Timkovich Universita¨tzuKo¨ln Department of Chemistry 50939 Ko¨ln, Germany University of Alabama Chapter 8 Tuscaloosa, Alabama 35487-0336, USA F. Ann Walker [email protected] Department of Chemistry Chapter 73 University of Arizona Toma´s Torres Tucson, Arizona 85721-0041, USA Departamento de Quı´mica Orga´nica [email protected] Universidad Auto´noma de Madrid Chapter 36 28049 Cantoblanco, Madrid, Spain Michael Wark [email protected] Institute for Physical Chemistry and Electrochemistry Chapter 99 University Hanover Alfred X. Trautwein Callin Str. 3-3A Institut fu¨r Physik D-30167 Hanover, Germany Universita¨tzuLu¨beck [email protected] D-23538 Lu¨beck, Germany Chapter 111 [email protected] Chapter 29 xxvi Contributors to Volumes 1–20

Yoshihito Watanabe Robert D. Willows Institute for Molecular Science Department of Biological Sciences Myodaiji, Okazaki 444-8585, Japan Macquarie University [email protected] North Ryde, 2109 Australia Chapter 30 [email protected] Simon J. Webb Chapter 77 University Chemical Laboratory J. H. P. Wilson Cambridge University Department of Internal Medicine Cambridge, CB2 1EW, UK Erasmus MC Chapter 15 University Medical Center Rotterdam Steven J. Weghorn P.B. 2040, 3000 CA Rotterdam Tonah Products, Inc. The Netherlands Milton, Wisconsin 53563, USA [email protected] [email protected] Chapters 93, 95 Chapter 9 Jay R. Winkler Raymond Weiss Beckman Institute, MC 139-74 Laboratoire de Cristallochimie et de Chimie Structurale California Institute of Technology UMR 7513 Pasadena, California 91125, USA Institut Le Bel [email protected] Universite´ Louis Pasteur Chapter 63 67070 Strasbourg, France Dieter Wo¨hrle [email protected] Universita¨t Bremen Chapter 29 Institut fu¨r Organische und Makromolekulare Chemie and P.O. Box 33 04 40 Laboratoire de Chimie Supramole´culaire 28334 Bremen, Germany Institut de Science et d’Inge´nierie Supramole´culaires [email protected] Universite´ Louis Pasteur de Strasbourg Chapter 110 8, rue Gaspard Monge, F-67000 Strasbourg, France Gang Zheng [email protected] Department of Nuclear Medicine Chapter 105 Roswell Park Cancer Insitute Stefan Will Buffalo, New York 14263-001, USA Institut fu¨r Organische Chemie [email protected] Universita¨tzuKo¨ln Chapter 43 50939 Ko¨ln, Germany Chapter 12 The Porphyrin Handbook

Volume 1 / Synthesis and Organic Chemistry

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... xi Contributing Authors...... xiii Contents of Volumes in this Set ...... xxi

1 / Strategies for the Synthesis of Octaalkylporphyrin Systems ...... 1 KEVIN M. SMITH I. Introduction ...... 2 II. Syntheses of Synthetic Precursors of Porphyrins...... 2 A. Syntheses of Dipyrrolic Intermediates ...... 2 III. Syntheses of Porphyrins ...... 6 A. From Monopyrrole Tetramerization ...... 6 B. From Dipyrrolic Intermediates: The [2 ‡ 2] Route ...... 11 C. From Tripyrrolic Intermediates: The [3 ‡ 1] Route ...... 16 D. From Open-Chain Tetrapyrrolic Intermediates...... 19 E. Miscellaneous ...... 29 F. Total Synthesis: In Conclusion ...... 31 IV. Preparation of Porphyrins by Degradation of Natural Pigments ...... 32 A. From Hemoglobin ...... 32 B. From the Plant and Algal Chlorophylls ...... 37 References ...... 40

2 / Synthesis of meso-Substituted Porphyrins ...... 45 JONATHAN S. LINDSEY I. Introduction ...... 46 II. Rothemund Method ...... 47 A. Development ...... 47 B. Extensions, Applications and Limitations...... 47 C. More Recent Rothemund-Type Methods ...... 49 III. Adler Method ...... 49 A. Development and Mechanistic Studies ...... 49 B. Applications ...... 51 C. Modi®cations of the Adler Method...... 55 IV. A Two-Step One-Flask Room-Temperature Synthesis of Porphyrins (Lindsey Method) ...... 60 A. Background...... 60 B. Development ...... 62 C. Applications ...... 65 D. Mechanistic Issues ...... 65 E. Extensions of the Two-Step One-Flask Room-Temperature Synthesis ...... 76 V. Assorted Methods for Preparing meso-Substituted Porphyrins ...... 80 A. Exploring Diverse Methods of Oxidation ...... 80 B. Use of Oxidative Acid Catalysts ...... 80 C. Exploring Diverse Reaction Conditions ...... 80 VI. Comparison of Various Synthetic Methods ...... 80 VII. Routes to Speci®c Classes of meso-Substituted Porphyrins ...... 81 A. Alkyl-Substituted Porphyrins...... 81 B. Porphyrins with a,b-Unsaturated meso-Substituents...... 82

v vi Contents

C. meso-, b-Substituted Porphyrins ...... 82 D. Strapped Porphyrins and Capped Porphyrins ...... 86 E. trans-Substituted Porphyrins ...... 87 VIII. Synthetic Approaches to Porphyrins Bearing from One to Four meso-Substituents ...... 100 A. Routes to meso-Substituted, b-Unsubstituted Dipyrromethanes ...... 100 B. Via Dipyrromethanes to Porphyrins Bearing up to Four Different meso-Substituents ...... 102 IX. Distinctions Among the Syntheses of Porphyrins, Tetrabenzoporphyrins, Phthalocyanines and Porphyrazines . . . . . 109 References ...... 112

3 / Cyclizations of a,c-Biladiene Salts to Give Porphyrins and Their Derivatives...... 119 KEVIN M. SMITH I. Introduction ...... 119 II. Syntheses of a,c-Biladiene Salts...... 120 A. 1,19-Dimethyl-a,c-Biladiene Salts ...... 120 B. a,c-Biladienes with 1,19-Substituents Other Than Methyl ...... 123 C. The Russian Advance ...... 124 III. Methods for Oxidative Cyclization of a,c-Biladienes...... 124 A. Using Copper(II) Salts ...... 124 B. Using Other Metal Oxidants ...... 125 C. Using Chromium...... 126 D. Using Anodic Oxidation...... 126 IV. Mechanism ...... 128 A. Origin of the New meso-Carbon Atom ...... 128 B. Purpose of the Metal ...... 129 C. Mechanistic Similarities Between the Cu and Electrochemical Cyclizations ...... 132 D. Mechanistic Proposal ...... 133 V. Cyclization of a,c-Biladiene Salts with 1,19-Substituents Other Than Methyl...... 137 A. Copper Cyclizations...... 138 B. Chromium Cyclizations ...... 142 References ...... 147

4 / Reactivity and Functionalization of b-Substituted Porphyrins and Chlorins ...... 149 MARIA DA GRACË A H. VICENTE I. Introduction ...... 150 A. General Reactivity Considerations...... 150 B. Substituent Effects ...... 152 C. Reactivity of Metal Complexes ...... 153 D. Scope of the Chapter...... 154 II. Reactions at the Inner Nitrogen Atoms ...... 155 A. Acid-base Reactivity ...... 155 B. Metal Insertion ...... 155 C. N-Alkylation, N-Vinylation and N-Arylation...... 155 D. N-Amination ...... 158 E. N-Oxide ...... 158 III. Electrophilic Reactions ...... 158 A. Electrophilic Substitutions ...... 158 B. Electrophilic Additions (Excluding Oxidations and Reductions) ...... 175 IV. Nucleophilic Reactions ...... 176 A. Reactions of p-Cation Radicals ...... 177 B. Reactions with Organolithiums and with Grignard Reagents ...... 178 C. Other Nucleophilic Reactions ...... 179 Contents vii

V. Oxidation Reactions ...... 179 A. Ring-opened Products ...... 179 B. Oxidized Macrocycles ...... 181 VI. Reduction Reactions...... 183 A. Ring-opened Products ...... 183 B. Reduced Macrocycles ...... 184 VII. Reactions at Peripheral Substituent Groups ...... 186 A. Vinyl Groups ...... 187 B. 1-Hydroxyalkyl Groups ...... 190 C. Alkoxycarbonyl Groups ...... 191 D. Propionic Acid Groups ...... 192 References ...... 193

5 / Functionalization of 5,10,15,20-Tetra-Substituted Porphyrins ...... 201 LAURENT JAQUINOD I. Introduction ...... 202 II. Peripheral Functionalization of Tetra-meso-arylporphyrins ...... 202 A. Electrophilic Reactions ...... 203 B. Chemistry of p-Cation Radicals...... 206 C. Reactions Affording Tetra-meso-arylchlorin Analogues ...... 208 III. b-Functionalized Tetra-meso-arylporphyrins ...... 212 A. Regioselective Electrophilic Functionalizations...... 212 B. Aromatic Nucleophilic Substitutions ...... 213 C. Cyclization Reactions ...... 215 D. 2-Nitro-tetra-arylporphyrins ...... 215 E. b-b 0-Modular Building Blocks ...... 218 IV. meso-Aryl Functionalizations ...... 222 A. Electrophilic Substitutions ...... 222 B. Oxidation Reactions of meso-(Hydroxyaryl)porphyrins...... 223 C. Functional Group Modi®cations ...... 224 D. Atropisomerism ...... 226 V. Other b-Unsubstituted Tetrapyrrolic Macrocycles...... 229 A. Functionalizations of Tetra-meso-alkylporphyrins ...... 229 B. Syntheses and Functionalizations of 5,15-Di-substituted Porphyrins...... 230 References ...... 232

6 / Highly Substituted Porphyrins ...... 239 MATHIAS O. SENGE I. Introduction ...... 240 A.Scope...... 240 B. Nomenclature ...... 241 C. Biological Relevance of Nonplanar Porphyrins...... 242 II. Historical Development and Classic Cases of Porphyrin Nonplanarity ...... 252 III. Dodecasubstituted Porphyrins ...... 257 A. Synthetic Strategies ...... 257 B. 2,3,7,8,12,13,17,18-Octaalkyl-5,10,15,20-tetraarylporphyrins ...... 257 C. Dodecaarylporphyrins ...... 264 D. 2,3,5,7,8,10,12,13,15,17,18,20-Dodecaalkylporphyrins ...... 268 E. Properties and Reactivity of Dodecaalkyl/arylporphyrins ...... 270 F. 2,3,7,8,12,13,17,18-Octahalogeno-5,10,15,20-tetraarylporphyrins ...... 273 viii Contents

G. 2,3,7,8,12,13,17,18-Octaalkyl-5,10,15,20-tetrahalogenoporphyrins ...... 280 H. 2,3,7,8,12,13,17,18-Octaethyl-meso-nitroporphyrins ...... 281 I. 5,10,15,20-Tetraphenyl-tetrabenzoporphyrins ...... 284 IV. 5,10,15,20-Tetrasubstituted Porphyrins and Related Compounds ...... 287 A. 5,10,15,20-Tetraalkylporphyrins...... 287 B. Photophysical Studies on Highly Substituted Porphyrins ...... 295 C. Nonplanar Porphyrins Involving Sterically Unhindered Porphyrins ...... 296 V. Structural Data for Porphyrins with Intermediate Degrees of Substitution...... 301 A. Nonasubstituted Porphyrins...... 302 B. Decasubstituted Porphyrins ...... 304 C. Undecasubstituted Porphyrins ...... 311 D. Incremental Nonplanarity ...... 311 E. Other Porphyrins with Potential b-meso Interactions ...... 313 F. b-Strapped and meso-Strapped Porphyrins ...... 316 VI. Porphyrins with Core and Peripheral Steric Strain ...... 319 A. Simple N-Substituted Porphyrins ...... 319 B. Core and Peripherally Substituted Porphyrins ...... 320 VII. Nonplanar Chlorins ...... 323 A. Benzochlorins ...... 323 B. Nona- and Decasubstituted Chlorins ...... 325 C. Speci®cally Designed Nonplanar Chlorins ...... 326 VIII. Applications of Nonplanar Porphyrins ...... 327 A. Water-soluble Dodecaalkyl / arylporphyrins ...... 327 B. Catalysis ...... 329 C. Optical and Technical Applications ...... 329 D. Medicinal Applications...... 330 List of Abbreviations...... 331 Appendix...... 332 References ...... 335

7 / Geochemistry of Porphyrins...... 349 HENRY J. CALLOT and RUBEÂN OCAMPO I. Introduction ...... 350 II. Natural Occurrence, Isolation and Structural Determination of Geoporphyrins ...... 352 A. Natural Occurrence ...... 352 B. Extraction of Porphyrins from Geological Samples ...... 353 C. Preparative Separation of Geoporphyrin Series and Individual Compounds ...... 354 D. Analytical and Spectroscopic Methods ...... 355 III. Inventory of Geoporphyrin Structures ...... 358 A. Pigments Closely Related to Chlorophylls or Pheophorbides ...... 358 B. Deoxophylloerythrin, DPEP and Related Compounds ...... 359 C. Geoporphyrins Possessing a Fused Seven-membered Ring ...... 361 D. Geoporphyrins Showing a Five- or a Six-membered Ring Between Positions 15 and 17 ...... 363 E. Geoporphyrins Showing Additional Rings Fused to Pyrrole B: Benzo- and Tetrahydrobenzoporphyrins ...... 364 F. Porphyrins Lacking an Additional Carbon Ring ...... 364 IV. Interpretation of Structural Data of Geoporphyrins: Precursors and Diagenesis ...... 366 A. General Patterns ...... 367 B. Pheo Pigments ...... 367 C. Geoporphyrins Related to DPEP ...... 367 Contents ix

D. Geoporphyrins with a Fused Seven-membered Ring ...... 370 E. Geoporphyrins with a Fused Five- or Six-membered Ring Between Positions 15 and 17 ...... 372 F. Geoporphyrins Derived from Chlorophylls but Lacking an Additional Carbon Ring...... 373 G. Geoporphyrins Likely to Result from Heme Modi®cations ...... 374 H. Benzo- and Tetrahydrobenzoporphyrins ...... 375 I. Fossils of Tetrapyrroles Different from Chlorophylls or Hemes and of Porphyrin Non-aromatic Catabolites . . . . . 375 J. Geoporphyrins Bound to Organic or Mineral Matrices ...... 376 V. Isotope Composition of Geoporphyrins...... 377 VI. Metals in Geoporphyrins ...... 378 VII. Geoporphyrins as Biological Markers for Geological Studies and Oil Exploration ...... 379 A. Studies Involving Porphyrin Fractions and Series ...... 379 B. Studies Involving Individual Porphyrins...... 380 VIII. Laboratory Models for the Geoporphyrin Formation ...... 381 IX. An Updated View on Treibs' Scheme...... 382 X. Hemisyntheses and Total Syntheses of Geoporphyrins ...... 385 A. Hemisyntheses of Geoporphyrins ...... 385 B. Total Syntheses of Geoporphyrins...... 387 XI. Conclusion ...... 392 References ...... 392

Index ...... 399 The Porphyrin Handbook

Volume 2 / Heteroporphyrins, Expanded Porphyrins and Related Macrocycles

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... xi Contributing Authors...... xiii Contents of Volumes in this Set ...... xxi

8 / Porphyrin Isomers ...... 1 JONATHAN L. SESSLER, ANDREAS GEBAUER and EMANUEL VOGEL I. Introduction...... 1 II. Porphycenes and Heteroporphycenes, [18]Porphyrin-(2.0.2.0) ...... 3 A. Synthesis and Characterization...... 3 B. Properties and Applications ...... 14 III. Corrphycenes, [18]Porphyrin-(2.1.0.1) ...... 33 A. Synthesis and Physical Properties ...... 33 B. Metallocorrphycenes ...... 34 C. Physical Properties of Corrphycenes and Metallocorrphycenes ...... 40 IV. Hemiporphycenes, [18]Porphyrin-(2.1.1.0) ...... 46 A. Synthesis and Properties ...... 46 B. Photophysical Properties of Hemiporphycenes and Corrphycenes ...... 48 C. Metal Complexes of Hemiporphycenes ...... 48 V. Isoporphycenes, [18]Porphyrin-(3.0.1.0) ...... 49 A. Synthesis and Properties ...... 49 VI. Conclusion and Future Outlook ...... 51 References ...... 52

9 / Expanded Porphyrins ...... 55 JONATHAN L. SESSLER, ANDREAS GEBAUER and STEVEN. J. WEGHORN I. Introduction...... 56 II. Tetrapyrrolic Systems ...... 57 A. Aromatic Systems ...... 57 B. Conjugated Nonaromatic Systems ...... 68 III. Pentapyrrolic Systems...... 71 A. Aromatic Systems ...... 71 B. Conjugated Nonaromatic Systems ...... 86 IV. Hexapyrrolic Systems ...... 90 A. Aromatic Systems ...... 90 B. Conjugated Nonaromatic Systems ...... 95 V. Octapyrrolic and Decapyrrolic Systems ...... 98 A. Octaphyrin ...... 98 B. Turcasarin and Dioxaturcasarin...... 102 C. Pyrrole-Thiophene Decamers ...... 103 VI. Nitrogen-Bridged Systems ...... 104 A. Texaphyrin and other Three Pyrrole±Containing Systems ...... 105 B. Accordion Porphyrin ...... 107 C. Miscellaneous Nitrogen-Bridged Systems ...... 108 D. Porphocyanine ...... 110 E. Superphthalocyanine...... 111 F. Hexapyrrolic Nitrogen-Bridged Systems ...... 112

v vi Contents

G. Sulfur-Bridged Expanded Porphyrins ...... 115 VII. Miscellaneous Systems ...... 117 VIII. Conclusion ...... 121 References ...... 121

10 / Syntheses of Novel Porphyrinoid Chromophores ...... 125 TIMOTHY D. LASH I. Introduction...... 125 II. Modi®cation of the Porphyrin Chromophore by the Addition of Fused Aromatic Ring Systems ...... 126 A. Monobenzoporphyrins and Dibenzoporphyrins ...... 126 B. Mononaphthoporphyrins and Dinaphthoporphyrins ...... 131 C. Phenanthroporphyrins and Phenanthrolinoporphyrins ...... 132 D. Acenaphthoporphyrins and Other b-Annelated Porphyrin Systems ...... 138 E. Synthesis of Annelated Systems by Modi®cation of Preformed Porphyrins ...... 148 F. Tetraannelated Porphyrins ...... 155 III. Porphyrin Analogues with Carbocyclic or Expanded Rings in Place of One or More Pyrrole Subunits ...... 165 A. Aromaticity in Porphyrinoid Systems ...... 165 B. Six-Membered Ring Analogues of Porphyrins: Benziporphyrins, Oxybenziporphyrins and Oxypyriporphyrins . . 167 C. Carbaporphyrinoids: True Carbaporphyrins, Tropiporphyrin, Azuliporphyrin, Carbachlorins and Related Systems ...... 176 D. Expanding on the Theme: Modi®ed Sapphyrins ...... 190 IV. Conclusions and Future Directions ...... 193 References ...... 196

11 / Syntheses of Corroles...... 201 ROBERTO PAOLESSE I. Introduction...... 201 A. General Properties of Corroles ...... 202 II. Syntheses of Corroles ...... 203 A. Syntheses from Pyrroles ...... 203 B. Syntheses from Bipyrrolic Units ...... 206 C. Syntheses from a,c-Biladienes ...... 206 D. Syntheses by Macrocycle Ring Contraction...... 211 III. Syntheses of Corrole Analogues ...... 212 A. Heterocorroles...... 213 B. Isocorroles...... 215 IV. Syntheses of Corrole Dyads ...... 215 A. Corrole-Corrole Dyads ...... 216 B. Porphyrin-Corrole Dyads ...... 217 C. Oxophlorin-Corrole Derivatives ...... 220 D. Photophysical Properties of Corrole Dyads ...... 221 V. Peripheral Reactions of Corroles ...... 221 A. Alkylation and Acetylation Reactions ...... 221 B. Formylation Reactions ...... 223 VI. Syntheses of Metallocorroles...... 224 A. Titanium, Vanadium and Niobium Corroles ...... 225 B. Chromium and Molybdenum Corroles...... 225 C. Manganese and Rhenium Corroles...... 226 D. Iron Corroles ...... 226 E. Cobalt and Rhodium Corroles ...... 227 Contents vii

F. Nickel and Copper Corroles ...... 229 G. Palladium and Zinc Corroles ...... 230 H. Indium, Germanium, Tin and Phosphorus Corroles...... 230 VII. Note Added in Proof ...... 230 References ...... 231

12 / Metallocorroles: Molecular Structure, Spectroscopy and Electronic States ...... 233 CHRISTOPH ERBEN, STEFAN WILL and KARL M. KADISH I. Introduction...... 235 II. Synthesis of Corroles ...... 235 III. Spectroscopy of Free Base Corroles ...... 237 A. NMR Spectroscopy and Electrochemistry ...... 237 B. NH-Tautomerism...... 238 C. UV-Vis Spectroscopy ...... 238 D. X-ray Analysis ...... 239 IV. Metallocorroles ...... 239 A. Synthesis of Metallocorroles...... 239 B. Bonding Geometries of Metallocorroles ...... 240 V. Titanium, Vanadium and Niobium Corroles...... 242 A. Titanium and Vanadium Corroles ...... 242 B. Niobium Corroles ...... 242 VI. Chromium and Molybdenum Corroles ...... 243 A. Chromium Corroles...... 243 B. Molybdenum Corroles...... 244 VII. Manganese Corroles...... 244 A. Synthesis...... 244 B. Physical Characterization ...... 245 VIII. Rhenium Corroles ...... 251 IX. Iron Corroles ...... 252 A. Introduction ...... 252 B. m-Oxo-Bis[(octaethylcorrolato)iron(IV)]...... 252 C. Mononuclear Iron Corroles ...... 255 D. Nitrosyl (octaethylcorrolato)iron ...... 261 X. Cobalt Corroles ...... 265 A. Introduction and Overview ...... 265 B. Four-Coordinate Cobalt(III) Corroles...... 266 C. Triphenylphosphine Cobalt(III) Corroles ...... 268 D. High-Valent Cobalt Corroles...... 270 XI. Rhodium Corroles ...... 274 XII. Nickel Corroles ...... 276 A. Introduction ...... 276 B. X-ray Analysis ...... 277 C. Magnetic Measurements and UV-Vis Spectroscopy ...... 277 D. Electron Paramagnetic Resonance Spectroscopy and Electrochemistry...... 278 E. Tetraphenylphosphonium (7,8,12,13-Tetraethyl-2,3,17,18-tetramethylcorrolato)nickelate(II) ...... 278 XIII. Palladium Corroles ...... 279 XIV. Copper Corroles...... 280 A. Synthesis...... 280 B. X-ray Analysis ...... 280 C. 1H NMR and Magnetic Measurements ...... 280 viii Contents

D. UV-Vis, Electron Paramagnetic Resonance Spectroscopy and Electrochemistry ...... 281 XV. Zinc Corroles ...... 282 XVI. Indium Corroles ...... 283 XVII. Tin and Germanium Corroles ...... 283 A. Synthesis...... 283 B. Spectroscopy ...... 283 C. X-ray Analysis ...... 283 D. Electrochemistry ...... 284 XVIII. Group 15 Corroles ...... 284 A. Synthesis and X-Ray Analysis ...... 285 B. Spectroscopic Data ...... 286 C. Electrochemistry ...... 288 D. HOMO-LUMO Gap in Main Group Corroles ...... 289 XIX. N-Alkyl and N-Acetyl Corroles...... 289 XX. Heterocorroles ...... 291 XXI. Core-Modi®ed Corrole Isomers: Isocorroles ...... 292 A. Synthesis and Characterization...... 292 B. Metal Complexes ...... 295 References ...... 295

13 / meso-Azaporphyrins and Their Analogues ...... 301 NAGAO KOBAYASHI I. Introduction...... 302 II. Monoazaporphyrins ...... 302 A. Synthesis...... 302 B. X-ray Crystallography ...... 303 C. Absorption and Emission Spectroscopy...... 303 D. Nuclear Magnetic Resonance, Electron Paramagnetic Resonance and Infrared Spectroscopy ...... 307 E. Derivatives of Monoazaporphyrin...... 308 F. Other Reported Properties of Monoazaporphyrins ...... 310 III. Diazaporphyrins...... 310 A. Synthesis...... 310 B. Absorption and Emission Spectroscopy...... 310 C. Derivatives of Diazaporphyrin ...... 316 IV. Tetraazaporphyrins (Porphyrazines)...... 317 A. Synthesis...... 317 B. X-ray Crystallography ...... 321 C. Absorption and Emission Spectroscopy...... 325 D. IR Spectroscopy...... 333 E. NMR and EPR Spectroscopy...... 346 F. Electrochemistry and Spectroelectrochemistry ...... 349 G. Metal Incorporation Reactions ...... 351 H. Other Spectroscopic Properties of TAPs ...... 352 I. Analogues of TAPs ...... 354 References ...... 357

14 / Core-Modi®ed Heteroanalogues of Porphyrins and Metalloporphyrins ...... 361 LECHOSèAW LATOS-GRAZÇ YNÂ SKI I. Introduction...... 362 A. HeteroporphyrinsÐA Special Class of Modi®ed Porphyrins ...... 362 Contents ix

B. Nomenclature and Abbreviations ...... 364 II. Synthesis of Core-Modi®ed Porphyrins ...... 365 A. b-Pyrrole Alkylated Heterosubstituted Porphyrins ...... 365 B. Monoheterotetraarylporphyrins and Diheterotetraarylporphyrins ...... 366 C. Tetrachalcogen Analogues of Porphyrin ...... 373 D. Heteroporphycenes ...... 375 E. Inverted Porphyrins ...... 377 III. MetalloheteroporphyrinsÐSynthesis, Properties and Reactivity ...... 380 A. Synthesis and Properties ...... 380 B. Reactivity of Nickel Heteroporphyrins...... 380 C. Reactivity of Other Metalloheteroporphyrins...... 381 D. Nickel(II) and Nickel(III) Carbaporphyrins ...... 381 IV. Structures of Core-Modi®ed Porphyrins and Metalloporphyrins ...... 383 A. Crystal Structures of Heterosubstituted Porphyrins ...... 383 B. Crystal Structures of Metalloheteroporphyrins ...... 388 C. Crystal and Molecular Structures of Inverted Porphyrins and Related Nickel(II) Complexes ...... 391 D. Structure and Stability of Inverted Porphyrins TautomersÐDensity Functional Theory Studies ...... 393 V. Physicochemical Studies ...... 394 A. Electronic Spectra ...... 394 B. Emission Spectra ...... 396 C. Resonance Raman Spectra ...... 397 D. Electrochemistry ...... 398 E. NMR of Heteroporphyrins ...... 398 F. NMR of Paramagnetic Core-Modi®ed Porphyrin Nickel Complexes ...... 402 G.EPR...... 408 VI. Conclusion ...... 413 References ...... 413

Index ...... 417 The Porphyrin Handbook

Volume 3 / Inorganic, Organometallic and Coordination Chemistry

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface ...... xiii Contributing Authors...... xv Contents of Volumes in this Set ...... xxiii

15 / Axial Coordination Chemistry of Metalloporphyrins ...... 1 JEREMY K. M. SANDERS, NICK BAMPOS, ZOÈ E CLYDE-WATSON, SCOTT L. DARLING, JOANNE C. HAWLEY, HEE-JOON KIM, CHI CHING MAK and SIMON J. WEBB I. Introduction ...... 3 A. Some General Features and Trends...... 4 II. Group2...... 5 A. Magnesium...... 5 B. Calcium, Strontium and Barium ...... 6 III. Groups 3, 4 and 5 ...... 6 A. General Features ...... 6 B. Scandium ...... 6 C.Yttrium...... 7 D.Titanium...... 7 E. Zirconium and Hafnium...... 8 F.Vanadium...... 10 G. Niobium and Tantalum ...... 10 IV. Group6...... 10 A. Chromium ...... 10 B. Molybdenum ...... 11 C.Tungsten...... 12 V. Group7...... 13 A. Manganese ...... 13 B.Rhenium...... 14 C. Technetium...... 15 VI. Group8...... 15 A. General Features ...... 15 B.Iron...... 15 C. Ruthenium ...... 19 D.Osmium...... 21 VII.Group9...... 23 A. General Features ...... 23 B.Cobalt...... 23 C. Rhodium and Iridium...... 24 VIII. Group 10...... 25 A.Nickel...... 25 B. Palladium and Platinum ...... 26 IX. Group11...... 27 A.Copper...... 27 B.SiIver...... 29 C.Gold...... 29 X. Group12...... 30

v vi Contents

A.Zinc...... 30 B.Cadmium...... 33 C.Mercury...... 34 XI. Group13...... 34 A.Boron...... 34 B. Aluminum ...... 34 C.Gallium...... 36 D.Indium...... 36 E. Thallium ...... 36 XII. Group14...... 36 A.Carbon...... 36 B.Silicon...... 36 C. Germanium...... 37 D.Tin...... 37 E.Lead...... 38 XIII. Group 15...... 39 A. Phosphorus ...... 39 B.Arsenic...... 39 C. Antimony ...... 40 D.Bismuth ...... 40 References ...... 40

16 / Systematics of the Stereochemistry of Porphyrins and Metalloporphyrins ...... 49 W. ROBERT SCHEIDT I. Introduction ...... 50 A. General Comments and Scope of Review ...... 50 B. Notation ...... 50 C. Other Reviews ...... 52 II. General Features of Metalloporphyrin Stereochemistry ...... 53 III. Transition Metal Derivatives ...... 56 A. d0 Complexes ...... 56 B. d1 Complexes ...... 58 C. d2 Complexes ...... 58 D. d3 Complexes ...... 59 E. d4 Complexes ...... 59 F. d 5 Complexes ...... 63 G. d6 Complexes ...... 63 H. d7 Complexes ...... 65 I. d8 Complexes ...... 66 J. d9 Complexes ...... 68 K. d10 Complexes ...... 69 L. Iron Derivatives ...... 70 M. Porphyrin Nitrosyls and Related Iron Species with Nitrogen Oxide Ligands ...... 83 IV. Other Metalloporphyrin Derivatives ...... 87 A. Porphyrin p±p Interactions and p-Cation Complexes ...... 87 B. Main Group Derivatives ...... 92 C. Lanthanide and Actinide Derivatives...... 95 V. Summary Appendices ...... 95 VI. Stereochemistry of Metal-Free Porphyrins ...... 95 A. Free Bases ...... 95 Contents vii

B. Porphyrin Acids and Related Species...... 98 References ...... 100 Appendix A ...... 110 Appendix B ...... 111 Appendix C ...... 112

17 / Alkali Metal Porphyrins ...... 113 JOHN ARNOLD I. Introduction and Scope ...... 113 II. Complexes with Alkali Metals Bound to the Porphyrin Core...... 114

A. Complexes of General Formula M2(P)...... 114 B. Complexes of General Formula M(Por)...... 123 0 C. Complexes of General Formula M2(M )(Por)...... 123

D. Complexes of General Formula M2(H2Por) ...... 124 III. Appendix...... 126

A. Preparation of Li2(OEP)(THF)4 ...... 126

B. Preparation of Zr(OEP)(CH2SiMe3)2 ...... 126 Abbreviations...... 126 References ...... 126

18 / Chemistry of Water Soluble Porphyrins ...... 129 PETER HAMBRIGHT I. Introduction ...... 130 II. Applications of Water Soluble Porphyrins ...... 130 III. An Overview of the Molecules ...... 132 A. Positive Porphyrins and Carboxyphenyl Compounds...... 132 B. Sulfonated Porphyrins ...... 136 C. Other Variations ...... 139 IV. Metalloporphyrins ...... 139 A. General Trends ...... 139 B. Indirect and Direct Synthetic Methods ...... 140 V. Acid±Base Properties ...... 141 VI. Homonuclear Aggregation ...... 145 VII. Supramolecular Aggregates ...... 150 A. Homonuclear ...... 150 B. Heteroporphyrin Aggregation ...... 151 C. Molecular Complexes ...... 153 VIII. Metal±Porphyrin Equilibria ...... 154 IX. Metal Incorporation Mechanisms ...... 156 A. Porphyrins in Nonaqueous Media ...... 156 B. N-Alkyl Porphyrins in Nonaqueous Media...... 161 C. Porphyrin Metalation in Aqueous Solutions...... 161 D. Water Soluble N-Alkylated Porphyrins...... 168 X. Metal Ion-Exchange Reactions ...... 170 XI. Removal of Metals from Metalloporphyrins ...... 172 XII. Metalloporphyrin Ligation in Aqueous Solution ...... 178 A. Nickel Porphyrins ...... 178 B. Ruthenium Porphyrins ...... 178 C. Rhodium Porphyrins ...... 179 D. Cobalt Porphyrins ...... 180 E. Chromium Porphyrins ...... 182 viii Contents

F. Manganese Porphyrins ...... 182 G. Iron Porphyrins ...... 184 H. Other Metal Ions ...... 188 XIII. Electron-Transfer Reactions ...... 189 XIV. Absorption Spectra...... 198 References ...... 200

19 / Synthesis, Spectroscopic and Structural Studies of Metal±Metal-Bonded Metalloporphyrins ...... 211 JEAN-MICHEL BARBE and ROGER GUILARD I. Introduction ...... 211 II. Metalloporphyrin Dimers with Single or Multiple Metal±Metal Bonds ...... 212 A. Singly Bonded Homobinuclear Complexes ...... 212 B. Multiply Bonded Binuclear Complexes ...... 216 III. Heteronuclear Metalloporphyrin Complexes ...... 225 A. s Metal±Metal Bonds ...... 225 B. Donor±Acceptor Metal±Metal Bonds ...... 231 IV. Metal±Metal Interactions in Metalloporphyrin Dimers ...... 235 A. Bis-Cobalt Derivatives ...... 237 B. Heterobinuclear Derivatives ...... 237 Abbrevations ...... 241 References ...... 241

20 / Metal Tetrapyrrole Double- and Triple-Deckers with Special Emphasis on Porphyrin Systems ...... 245 JOHANN W. BUCHLER and DENNIS K. P. NG I. Introduction ...... 246 A. De®nitions...... 246 B. Scope of the Chapter...... 249 II. Historical Development of the Field as Seen by Coordination Chemists ...... 249 A. Sandwich-like Phthalocyaninato Complexes ...... 249 B. Sandwich-like Porphyrinato Complexes ...... 250 C. Metal Ions and Their Capability of Tetrapyrrole Sandwich Formation ...... 251 III. Synthesis of Sandwich-like Metal Tetrapyrrole Double- and Triple-Deckers ...... 252 A. Homoleptic Metal Bis(porphyrinates) and Dimetal Tris(porphyrinates) (``Metalloporphyrin Double- and Triple-Deckers'')...... 252 B. Homoleptic Metal Bis(phthalocyaninates) and Dimetal Tris(phthalocyaninates) ...... 255 C. Heteroleptic Double- and Triple-Deckers...... 256 D. Double-Deckers with Porphyrin Rings and Ethylenebis(salicylidenealdimine) Chelates (``Pseudosandwich Complexes'') ...... 259 E. Double-Deckers with Porphyrin Rings and Cyclic Organic Ring Anions ...... 259 F Homoleptic and Heteroleptic Double-Deckers with Porphyrazine Rings ...... 259 IV. Acid±Base Reactions of Metal Bis- and Tris(tetrapyrroles) ...... 259 A. Demetalation of Tetrapyrrole Double- and Triple-Deckers ...... 260 B. Basic Behavior of Metal Bis(porphyrinate) and Bis(phthalocyaninate) Anions ...... 261 V. Oxidation±Reduction Reactions of Double- and Triple-Deckers ...... 262 A. Electrochemical Investigations of Metal Tetrapyrrole Double- and Triple-Deckers ...... 262 B. Chemical Oxidation or Reduction of Metal Tetrapyrrole Double- and Triple-Deckers...... 269 VI. Optical Properties of Sandwich-like Metal Tetrapyrrole Double- and Triple-Decker Systems and Their Various Oxidized and Reduced Derivatives ...... 271 A. Optical Absorption Spectra ...... 271 Contents ix

B. The Dependence of the Near-Infrared Absorption Bands of p-Electron-De®cient Species on the Ionic Radius of the Central Metal and the Nature of Their p-Electron Holes ...... 276 C. Excitation Studies ...... 278 VII. Structures of Tetrapyrrole Double- and Triple-Deckers ...... 279 A. Basic Crystal Structures and Essential Findings ...... 279 B. Structural Information from Nuclear Magnetic Resonance Spectra...... 284 C. Structural Information from Molecular Modeling Procedures...... 286 VIII. Metalloporphyrin Double-Deckers as Parts of Larger Aggregates ...... 287 A. Aggregates Cohering Through Covalent Bonds ...... 287 B. Aggregates Cohering Through Ionic Bonds ...... 288 IX. Outlook: Metal Phthalocyanine and Porphyrin Sandwich Systems in Materials Science ...... 288 A. Color Displays ...... 289 B. Organic Metals ...... 289 References ...... 290

21 / Synthesis, Spectroscopy and Electrochemical Properties of Porphyrins with Metal±Carbon Bonds ...... 295 ROGER GUILARD, ERIC VAN CAEMELBECKE, ALAIN TABARD and KARL M. KADISH I. Introduction ...... 296 A. Types of Macrocycles...... 296 B. Types of Ligands ...... 297 C. Types of Coordination Schemes ...... 297 D. Metal Oxidation States ...... 297 E. Solution and Solid State Characterization ...... 297 F. Precursors and General Scheme of Syntheses ...... 301 G. Stability and Reactivity of the s-Bonded Metalloporphyrin Complexes...... 301 II. Group 3 Metalloporphyrins ...... 302 A. Scandium ...... 302 B. Yttrium ...... 302 C. Lutetium ...... 303 III. Group 4 Metalloporphyrins ...... 303 A. Titanium ...... 303 B. Zirconium ...... 304 C. Hafnium ...... 305 IV. Group 5 Metalloporphyrins ...... 305 A. Tantalum...... 305 V. Group 6 Metalloporphyrins ...... 305 A. Chromium ...... 305 B. Molybdenum and Tungsten...... 306 VI. Group 7 Metalloporphyrins ...... 306 A. Manganese ...... 306 VII. Group 8 Metalloporphyrins ...... 307 A.Iron...... 307 B. Ruthenium ...... 320 C. Osmium ...... 323 VIII. Group 9 Metalloporphyrins ...... 325 A. Cobalt...... 325 B. Rhodium ...... 326 C. Iridium ...... 328 IX. Group 10 Metalloporphyrins ...... 329 A. Nickel ...... 329 x Contents

X. Group 12 Metalloporphyrins ...... 330 A.Zinc...... 330 XI. Group 13 Metalloporphyrins ...... 330 A. Aluminum, Gallium, Indium and Thallium ...... 330 XII. Group 14 Metalloporphyrins ...... 332 A. Silicon, Germanium and Tin...... 332 XIII. Group 15 Metalloporphyrins ...... 334 A. Phosphorus ...... 334 B. Arsenic ...... 335 C. Antimony ...... 336 References ...... 338

22 / Coordination Chemistry of Oligoporphyrins ...... 347 JEREMY K. M. SANDERS I. Introduction ...... 347 II. Dimers ...... 350 A. Monodentate Ligands ...... 350 B. Bidentate Ligands ...... 352 C. Tetradentate Ligands ...... 358 III. Trimers ...... 358 A. Monodentate Ligands ...... 358 B. Bidentate Ligands ...... 359 C. Tridentate Ligands ...... 361 IV. Tetramers ...... 362 V. Reactions Between Bound Ligands ...... 363 A. Diels±Alder Reactions ...... 364 B. Acyl Transfer Reactions...... 365 VI. Noncovalent Oligomers ...... 365 References ...... 367

23 / Dendrimer Porphyrins and Metalloporphyrins: Syntheses, Structures and Functions ...... 369 TAKUZO AIDA and DONG-LIN JIANG I. Introduction ...... 369 II. Synthesis ...... 370 A. The Convergent Approach...... 370 B. The Divergent Approach ...... 370 III. Structural Characteristics and Dynamics ...... 370 IV. Functions...... 377 A. Electrochemical Properties ...... 377 B. Photochemical Properties...... 379

C. Dioxygen (O2) Binding Activities ...... 380 D. Catalyses...... 382 E. Assemblies ...... 382 V. Conclusion ...... 383 References ...... 383

24 / Metalation and Metal-Assisted Modi®cations of the Porphyrinogen Skeleton Using meso-Octaalkylporphyrinogen ...... 385 CARLO FLORIANI and RITA FLORIANI-MORO I. Introduction ...... 385 II. Porphyrinogens ...... 386 Contents xi

A. meso-Octaalkylporphyrinogens...... 386 III. Metal-Derivatization of the meso-Octaalkylporphyrinogen ...... 386 A. Alkali Metal Derivatives ...... 386 B. Main Group Metal Complexes ...... 387 C. Early Transition Metal Complexes...... 387 D. Late Transition Metal Complexes ...... 389 IV. Organometallic Chemistry Based on the Porphyrinogen Skeleton ...... 389 A. Complexation of Polar Organometallics and Alkali Hydrides: Formation of M±H and M±C Bonds ...... 390 B. Migratory Insertion Reaction of Isocyanides and Carbon Monoxide into M±H and M±C Bonds: Homologation of the Porphyrinogen Skeleton ...... 393 C. The Metalation and Functionalization of Aliphatic Chains at the Porphyrinogen Periphery ...... 398 V. Acid±Base Behavior of the Metallo-meso-Octaalkylporphyrinogens: Metal-Assisted Functionalization of the Pyrrole Ring...... 400 References ...... 402

25 / Redox Chemistry of the Porphyrinogen Skeleton: Pathways to Arti®cial Porphyrins and Porphodimethenes ...... 405 CARLO FLORIANI and RITA FLORIANI-MORO I. Introduction ...... 405 II. Oxidations of the meso-Octaalkylporphyrinogen: Discovery of Arti®cial Porphyrins ...... 406 III. Redox Chemistry of meso-Octaethylporphyrinogen Complexes Occurring with the Formation and Cleavage of a Cyclopropane Unit...... 406 IV. Redox Chemistry of meso-Octaethylporphyrinogen Complexes Occurring with the Formation and Cleavage of Two Cyclopropane Units ...... 411 V. Oxidation Pathway of Alkali-Porphyrinogen: Synthesis of the Metal-Free Arti®cial Porphyrins ...... 415 VI. One- vs Two-Electron Oxidation Pathway: Intra- and Intermolecular C±C Bond Formation ...... 415 VII. Oxidative Dealkylation of the meso-Octaalkylporphyrinogen ...... 418 References ...... 419

Index ...... 421 The Porphyrin Handbook

Volume 4 / Biochemistry and Binding: Activation of Small Molecules

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... xi Contributing Authors...... xiii Contents of Volumes in this Set ...... xxi

26 / Diversity of Reactions Catalyzed by Heme-Thiolate Proteins...... 1 DANIEL MANSUY and PIERRETTE BATTIONI I. Introduction ...... 1 II. Reactions Catalyzed by Heme-Thiolate Proteins...... 2 A. Monooxygenations ...... 2

B. Oxidations Without Oxygen Transfer from O2 to Substrates ...... 4 C. Heme-Thiolate Protein-Catalyzed Reactions that Are Different from Oxidations ...... 5 III. Various Reactive States under which Heme-Thiolate Proteins May Exist...... 6 IV. Explanation of the Diversity of Heme-Thiolate Protein-Catalyzed Reactions...... 7 A. Reactions Performed by the Fe(III) State ...... 7 B. Reactions Performed by the Fe(II) State...... 8

C. Reactions of the Fe(II)±O2 State...... 9 D. Reactions of the Fe(III)±O±O State...... 10 E. Reactions of the Fe(V)±OState ...... 11 V. Conclusion ...... 13 References ...... 14

27 / Oxometalloporphyrins in Oxidative Catalysis ...... 17 JOHN T. GROVES, KIRILL SHALYAEV and JINBO LEE I. Ruthenium Porphyrins in Oxidative Catalysis...... 17 A. Introduction ...... 17 B. Oxoruthenium Porphyrin Complexes in Catalytic Aerobic Oxidations of Hydrocarbons ...... 18 C. Nitrous Oxide Activation by Ruthenium Porphyrins...... 23 D. Catalytic Oxidations with Pyridine N-oxides Mediated by Ruthenium Porphyrins ...... 24 E. Asymmetric Oxidations with Ruthenium Porphyrins ...... 28 F. Nonporphyrin Ruthenium Complexes in Oxidative Catalysis ...... 30 II. Manganese Porphyrins ...... 30 A. Manganese Porphyrins in Catalytic Oxidations ...... 30 B. Metalloporphyrins as Detectors and Decomposition Catalysts of Peroxynitrite ...... 32 C. Oxometalloporphyrins in Enzymatic Processes ...... 33 D. Synthetic Oxometalloporphyrins as Models for Cytochrome P450...... 34 E. On the Mechanism of Hydroxylation by Cytochrome P450 and Related Model Systems...... 35 F. Synthetic Metalloporphyrins as Selective Catalysts and Building Blocks of Supramolecular Assemblies...... 35 References ...... 38

28 / Shape-Selective Oxidation by Metalloporphyrins ...... 41 KENNETH S. SUSLICK I. Introduction ...... 41 II. Hydrocarbon Oxidation by Metalloporphyrins...... 42 A. Cytochrome P450 ...... 42 B. Synthetic Metalloporphyrins ...... 46

v vi Contents

III. Shape Selective Oxidation of Hydrocarbons ...... 48 A. Homogeneous Catalysts ...... 48 B. Heterogeneous and Microheterogeneous Catalysts ...... 54 C. Shape Selectivity as a Mechanistic Probe ...... 56 D. Regioselectivity Based on Polarity ...... 57 IV. Enantioselective Oxidations ...... 57 V. Conclusions ...... 60 References ...... 60

29 / High-Valent Iron and Manganese Complexes of Porphyrins and Related Macrocycles ...... 65 RAYMOND WEISS, AVRAM GOLD, ALFRED X. TRAUTWEIN and JAMES TERNER I. General Introduction ...... 66 II. Oxoiron(IV) Porphyrins...... 67 A. Introduction ...... 67 B. Formation ...... 68 C. Spectroscopic and Structural Characterizations ...... 70 III. Oxoiron(IV) Complexes of Chlorins and Other Partially Saturated Hemes ...... 72 A. Introduction ...... 72 B. Formation ...... 72 C. Spectroscopic and Structural Characterization ...... 73 IV. Non-oxoiron(IV) Complexes...... 74 A. Aryliron(IV) Porphyrins species ...... 74 B. Dialkyliron(IV) Porphyrins...... 75 C. Di¯uoroiron(IV) Porphyrins ...... 75 D. m-Nitrido Iron(IV) Porphyrin Dimers ...... 76 E. m-Carbido Iron(IV) Porphyrin Dimers ...... 76 F. m-Nitrido Iron(IV) Phthalocyanine Dimers ...... 76 G. m-Carbido Iron(IV) Phthalocyanine Dimers ...... 76 H. Iron(IV) Porphycenes ...... 76 I. Iron(IV) Corroles ...... 77 J. m-Oxo Iron(IV) Hemiporphyrazine ...... 77 V. Iron(IV) p-Cation Radical Complexes...... 77 A. Oxoiron(IV) Porphyrin p-Cation Radicals...... 77 B. p-Cation Radical Complexes of m-Nitrido Iron(IV) Porphyrin Dimers...... 85 C. Oxoiron(IV) Complexes of p-Cation Radicals of Chlorins and Other Partially Saturated Hemes ...... 86 D. Iron(IV) Corrole p-Cation Radical Complexes ...... 88 VI. Iron(V) Complexes ...... 88 A. Oxoiron(V) Porphyrins ...... 88 VII. High Valent Manganese Complexes ...... 89 A. Introduction ...... 89 B. Oxomanganese(IV) Complexes ...... 89 C. Non-oxomanganese(IV) Complexes ...... 90 VIII. Manganese(IV) Porphyrin p-Cation Radicals ...... 91 A. Oxomanganese(IV) Porphyrin p-Cation Radicals ...... 91 IX. Manganese(V) Complexes ...... 91 A. Nitridomanganese(V) Porphyrin and Porphodimethene Complexes...... 91 B. Nitridomanganese(V) Tetraazaporphyrin ...... 91 C. Nitridomanganese(V) Phthalocyanine...... 91 D. Oxomanganese(V) Porphyrins ...... 91 References ...... 92 Contents vii

30 / High-Valent Intermediates ...... 97 YOSHIHITO WATANABE I. Introduction ...... 97 II. Roles of the Active Site Structures for the Formation of Compound I ...... 97 A. Push-Pull Effect ...... 97 B. Hydrogen Bond Network and Thiolate Ligation in Cytochrome P450 ...... 98 C. Distal Histidines in Cytochrome c Peroxidase and Myoglobin ...... 104 III. Mechanistic Studies for the Formation of Compound I by Models ...... 104 A. Preparation of Compound I by Synthetic Heme Models ...... 104 B. Push-Pull Effect on the Heterolytic O±O Bond Cleavage of Peroxides Bound to Heme ...... 105 C. Push-Pull Effect on the Homolytic O±O Bond Cleavage of Peroxides Bound to Heme ...... 105 D. Possible Roles of Push-Pull Effect on the Heterolytic and Homolytic O±O Bond Cleavage of Peroxides Bound to Heme...... 106 IV. Synthetic Models of Formally Two-Electron Oxidized Iron Porphyrins Other than Compound I ...... 107 A. Oxo-Perferryl (O±FeV) Porphyrins...... 108 B. Ferric Porphyrin N-Oxides ...... 109 C. Ferric Porphyrin Dications ...... 110 D. Ferric Porphyrin Peroxo Complexes ...... 111 E. Acylperoxo-Ferric Porphyrin Complexes ...... 113 V. Conclusion ...... 116 References ...... 116

31 / Metalloporphyrins in Catalytic Oxidations and Oxidative DNA Cleavage ...... 119 BERNARD MEUNIER, ANNE ROBERT, GENEVIEÁVE PRATVIEL and JEAN BERNADOU I. Introduction ...... 121 A. Preliminary Remarks ...... 121 B. Early Work on Oxygenation Reactions Catalyzed by Metalloporphyrins and Evolution of Ligand Design ...... 121 II. Ole®n Epoxidations Catalyzed by Metalloporphyrins ...... 123 A. Epoxidation with PhIO Derivatives ...... 123 B. Epoxidations with NaOCl and Related Hypochlorites Catalyzed by Manganese Porphyrins and Other Metalloporphyrins ...... 126

C. Epoxidations with O2...... 127

D. Epoxidations with H2O2 ...... 129 E. Epoxidations with ROOH ...... 130

F. Epoxidation with KHSO5 and Related Oxidants...... 131 G. Epoxidations with Other Oxygen Atom Donors ...... 132 III. Alkane Hydroxylations Catalyzed by Metalloporphyrins ...... 132 A. Hydroxylations with Iodosylbenzene ...... 133 B. Hydroxylations with NaOCl and Related Hypochlorites ...... 135 C. Hydroxylations with Molecular Oxygen ...... 136 D. Hydroxylation with Hydrogen Peroxide ...... 139 E. Hydroxylation with Alkyl Hydroperoxides ...... 140 F. Hydroxylation with Potassium Monopersulfate ...... 142 G. Hydroxylation with Peracid Derivatives...... 143 H. Hydroxylation with Amine N-Oxides and Periodate...... 144 IV. Oxidations of Other Organic Substrates ...... 144 A. Lignin and Lignin Models...... 144 B. Pollutants ...... 148 C. Drugs (Metabolization Tests) ...... 150 D. Nitrogen-, Sulfur- or Oxygen-Containing Molecules and Miscellaneous Substrates...... 152 V. Oxidations Catalyzed by Supported Metalloporphyrins ...... 153 viii Contents

A. Ion-Exchange Resins ...... 153 B. Polystyrenes and Polyethylene Glycols ...... 154 C. Polypeptides ...... 154 D. Metalloporphyrin-Based Polymers ...... 154 E. Zeolites ...... 155 F.Silica...... 155 G.Clays...... 155 VI. Characterization of High-Valent Metal-Oxo Porphyrins Complexes...... 155 A. Introduction: High-Valent Metal-Oxo Speciers in Heme-Enzymes and Related Chemical Models ...... 155 B. Iron-Oxo Porphyrins ...... 157 C. Manganese-Oxo Porphyrins ...... 159 D. Chromium-Oxo Porphyrins ...... 161 E. Ruthenium-Oxo Porphyrins ...... 161 F. Oxo-Hydroxo Tautomerism in High-Valent Metal-Oxo Porphyrin Complexes in Aqueous Phase ...... 161 G. Metalloporphyrin Peroxo Complexes ...... 163 VII. DNA Cleavage by Metalloporphyrins ...... 164 A. Metalloporphyrins Used for DNA Cleavage and their Interactions with DNA ...... 164

B. DNA Cleavage with O2 ...... 167

C. DNA Cleavage with H2O2 ...... 169

D. DNA Cleavage with KHSO5 and Related Oxidants...... 169 VIII. Conclusions ...... 171 IX. List of Abbreviations...... 172 References ...... 173

32 / Peroxidase and Cytochrome P450 Structures ...... 189 THOMAS L. POULOS I. Introduction to Peroxidases ...... 190 II. Peroxidase Crystal Structures ...... 192 A. Overall View of Structures ...... 192 B. Calcium Binding Sites and Disul®de Bonds ...... 192 C. Active Site ...... 193 III. Peroxidase Enzyme-Substrate Complexes ...... 194 A. Kinetic and Spectral Evidence...... 194 B. Direct Probes of Substrate Binding ...... 194 C. The Manganese Peroxidase-Substrate Complex ...... 195 D. The Cytochrome c Peroxidase-Cytochrome c Complex ...... 195 E. Evidence of Additional Substrate-Binding Sites ...... 196 IV. Peroxidase Mechanism...... 196 A. Compound I Fomation ...... 196 B. The Cytochrome c Peroxidase-Cytochrome c ...... 198 C. Reduction of Compounds I and II in Traditional Peroxidases ...... 199 V. Chloroperoxidase...... 200 A. Introduction ...... 200 B. Chloroperoxidase Structure ...... 200 VI. Myeloperoxidase ...... 202 A. Introduction ...... 202 B. Myeloperoxidase Structure ...... 202 VII. Introduction to Cytochromes P450...... 203 VIII. Summary of Known Cytochromes P450 Structures ...... 203 IX. Oxygen Activation in Cytochromes P450 ...... 205

A. Acid Catalysis in P450CAM ...... 205 Contents ix

B. Substrate-Assisted Acid Catalysis in P450eryF ...... 206

C. P450nor ...... 206 X. Cytochrome P450 Electron Transfer Complexes ...... 207

A. P450cam-Putidaredoxin ...... 207 B. P450 Reductase...... 207

C. P450BM-3...... 208 XI. Cytochrome P450 Substrate Binding ...... 209

A. P450cam ...... 209

B. P450eryF ...... 210

C. P450BM-3...... 210 XII. Nitric Oxide Synthase...... 211 A. Introduction ...... 211 B. Overall Structure of the Dimeric Heme Domain ...... 212 C. The Active Site ...... 212 D. Tetrahydrobiopterin...... 212 E. Zinc Binding Site ...... 215 F. Functional Implications ...... 215 References ...... 215

33 / Binding and Activation of Nitric Oxide by Metalloporphyrins and Heme ...... 219 LIN CHENG and GEORGE B. RICHTER-ADDO I. Introduction ...... 221 A. Nitric Oxide ...... 221 B. Metal±NO binding ...... 221 C. Metal±NO Formalism/Nomenclature ...... 224 D. Denitrosylation of Metal±NO Bonds ...... 227 II. Synthesis of Metal-NO Bonds in Porphyrins and Heme ...... 231 A. Nitric Oxide ...... 231 B. Nitrosonium Salts ...... 232 C. Inorganic Nitrite ...... 233 D. Angeli's Salt and Its Derivatives ...... 233 E. X±N±O Compounds ...... 233 F. Oxidation of N-Containing Compounds...... 235 III. Synthetic Nitrosyl Metalloporphyrins ...... 235 A.Group6...... 235 B.Group7...... 238 C.Group8...... 247 D.Group9...... 251 IV. Nitrosyl-Heme Systems...... 254 A. Nitric Oxide Synthase ...... 254 B. Cytochrome P450 ...... 255 C. Chloroperoxidase ...... 255 D. Myoglobin ...... 255 E. Hemoglobin ...... 261 F. Cytochrome Oxidases ...... 263 G. Soluble Guanylyl Cyclase ...... 267 H. Nitrophorins from Blood-Sucking Insects ...... 269 I. N-Oxide Reduction ...... 271 J. Other Cytochromes ...... 275 x Contents

K. Heme-Hemopexin ...... 277 L. Heme-Heme Oxygenase ...... 277 M. Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase...... 277 N. Prostaglandin H Synthase ...... 277 O. Peroxidases ...... 277 P. Catalase ...... 278 Q. Cobalamin and its Derivatives ...... 278 V. Epilogue ...... 278 References ...... 280

34 / Structural Themes Determining Function in Nitric Oxide Synthases ...... 293 C. S. RAMAN, PAVEL MARTAÂ SEK and BETTIE SUE S. MASTERS I. Introduction ...... 293 II. Structural Aspects of Nitric Oxide Synthase ...... 295 A. Tertiary Topology ...... 295 B. Nonplanar Distortion of the Porphyrin ...... 296 C. Substrate Recognition ...... 297 D. Cofactor Binding ...... 300 E. The Zinc-Sandwiched Subunits ...... 302 F. Dimer Interface and Stability of the Quaternary Structure ...... 309 III. Mechanistic Insights into Nitric Oxide Biosynthesis ...... 311 A. Substrate Speci®city...... 312 B. Cofactor Function ...... 313 C. Heme-Thiolate Chemistry ...... 318 D. Electron Transfer ...... 319 IV. Protein-Protein Interactions ...... 320 V. Design of Isoform-Speci®c Inhibitors and Activators...... 322 VI. Pathophysiological Implications ...... 324 VII. The Evolution of Heme-Based Sensors and Nitric Oxide as a Biological Signal ...... 326 References ...... 327

Index ...... 341 The Porphyrin Handbook

Volume 5 / NMR and EPR

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... ix Contributing Authors...... xi Contents of Volumes in This Set ...... xix

35 / NMR Spectroscopy of Diamagnetic Porphyrins ...... 1 CRAIG J. MEDFORTH I. Introduction ...... 3 A. Historical Perspective and Scope of this Review ...... 3 B. Nomenclature ...... 3 II. 1H NMR Spectroscopy of Diamagnetic Porphyrins...... 4 A. Introduction ...... 4 B. 1H NMR Spectroscopy of Porphyrins ...... 7 C. 1H NMR Spectroscopy of Hydroporphyrins ...... 16 D. 1H NMR Spectroscopy of Heteroporphyrins ...... 21 E. 1H NMR Spectroscopy of Porphyrin Isomers ...... 22 F. 1H NMR Spectroscopy of Porphyrins with Unusual p-Systems...... 25 G. 1H Coupling Constants ...... 28 III. Heteronuclear NMR Spectroscopy of Diamagnetic Porphyrins ...... 28 A. Introduction ...... 28 B. Nuclei of the Porphyrin Core (13C, 15N, 2H, 3H)...... 30 C. NMR Spectroscopy of Other Nuclei...... 38 IV. Studies of Porphyrin Intermolecular and Intramolecular Interactions...... 46 A. Introduction ...... 46 B. Aggregation and p-Stacking Interactions ...... 46 C. Ligand and Anion Binding ...... 50 D. Miscellaneous Intermolecular and Intramolecular Interactions ...... 59 V. Investigations of Porphyrin Dynamic Processes ...... 60 A. Introduction ...... 60 B. NH Tautomerism ...... 61 C. Rotational Processes ...... 65 D. Macrocyclic Inversion ...... 70 E. Miscellaneous Dynamic Processes ...... 73 References ...... 74

36 / Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins ...... 81 F. ANN WALKER I. Introduction and Background...... 82 A. Structures and Electron Con®gurations of Metalloporphyrins ...... 84 II. Principles ...... 88 A. Proton Resonance Shifts ...... 88 B. Nuclear Relaxation and Linewidths ...... 91 C. Spin Density and Bonding: Mechanisms of Spin Delocalization ...... 93 D. Methods of Assignment of the 1H NMR Spectra of Paramagnetic Metalloporphyrins ...... 101 III. Spectral Analysis ...... 105 A. Resolution and Assignment ...... 105 B. Analysis of Shifts ...... 107 IV. NMR and EPR Data for Metalloporphyrins and Related Macrocycles...... 111

v vi Contents

A. Iron Porphyrins...... 111 B. Ruthenium and Osmium Porphyrins ...... 155 C. Chromium Porphyrins...... 156 D. Manganese Porphyrins ...... 157 E. Cobalt Porphyrins...... 160 F. Rhodium Porphyrins ...... 163 G. Nickel Porphyrins ...... 164 H. Copper and Silver Porphyrins ...... 167 I. Lanthanide Porphyrins ...... 168 V. The Use of NMR Spectroscopy to Investigate Chemical Reactions ...... 170 A. Electron Exchange ...... 170 B. Autoreduction ...... 171 C. Aggregation ...... 172 D. Metal±Metal Bond Dissociation ...... 172 E. Other Dynamic Processes: Ligand Addition, Exchange and Rotation ...... 172 F. Bond Formation ...... 175 References ...... 175

37 / Nuclear Magnetic Resonance of Hemoproteins ...... 185 GERD N. LA MAR, JAMES D. SATTERLEE and JEFFREY S. DE ROPP I. Introduction ...... 188 II. Chromophores...... 190 III. NMR Information Content ...... 192 A. Chemical Shifts...... 192 B. Relaxation ...... 197 IV. NMR Methods ...... 197 A. Diamagnetic Hemoproteins ...... 198 B. Paramagnetic Proteins ...... 200 V. Electronic/Magnetic Properties of Heme Iron ...... 211 A. Iron(II) ...... 212 B. Iron(III)...... 213 C. Iron(IV) ...... 215 D. Effect of Orbital Degeneracy for Low-Spin Iron(III) ...... 215 VI. Hemoprotein Assembly and Protein-Heme Recognition ...... 218 A. Equilibrium Heme Orientational Heterogeneity ...... 218 B. Mechanism of Reconstitution and Protein-Heme b Assembly ...... 220 C. Probes of Heme Pocket Polarity...... 223 VII. Globins ...... 224 A. General Properties ...... 224 B. Interpretive Bases of Globin Derivatives ...... 226 C. Axial Ligand Mutations ...... 234 D. Nonallosteric Globins ...... 234 E. Sulfglobins ...... 237 F. Allosteric Monomeric Chironomus Hbs...... 238 G. Human Adult Hb (Hb A) ...... 239 VIII. Cytochromes ...... 244 A. Introduction ...... 244 B. Class I Cytochromes c...... 245

C. Cytochromes b5 ...... 250 D. Cytochromes c 0 ...... 252 E. Multiheme Cytochromes ...... 253 F. Other Monoheme Cytochromes ...... 255 G. Special Topics...... 257 Contents vii

H. Redox Complexes...... 259 IX. Heme Peroxidases ...... 263 A. Common Structural and Mechanistic Features ...... 263 B. Characterization of the Active Site of Class I, II and III Peroxidases ...... 265 C. Class III Plant Peroxidases ...... 268 D. Class I Plant Peroxidases ...... 274 E. Class II Plant Peroxidases...... 275 F. Mammalian Peroxidases ...... 277 G. Other Heme Peroxidases...... 278 X. Miscellaneous Hemoproteins ...... 279 A. Cytochromes P450 ...... 279 B. Sul®te Reductase ...... 281 C. Heme Oxygenase ...... 282 D. Cytochrome c Oxidase ...... 283 E. Hemopexin ...... 284 F. Catalase ...... 284 G. p-Cresol Methylhydroxylase ...... 285 H. FIXL...... 285 I. Nitrophorin ...... 286 References ...... 286

38 / Isocyanides and Phosphines as Axial Ligands in Heme Proteins and Iron Porphyrin Models ...... 299 GEÂRARD SIMONNEAUX and ARNAUD BONDON I. Introduction ...... 300 II. Isocyanides as Ligands to Iron Porphyrin Models ...... 300 A. Ferrous Porphyrins ...... 300 B. Ferric Porphyrins...... 303 III. Isocyanides as Ligands to Heme Proteins...... 306 A. Myoglobin and Hemoglobin ...... 306 B. Cytochromes c, c 0 and Peroxidase...... 308 C. Cytochrome P450 and Chloroperoxidase ...... 309 IV. Phosphines as Ligands to Iron Porphyrin Models ...... 311 A. Ferrous Porphyrins ...... 312 B. Ferric Porphyrins...... 313 V. Phosphines as Ligands to Heme Proteins...... 315 A. Myoglobin ...... 315 B. Hemoglobin ...... 316 C. Cytochrome c...... 317 D. Cytochrome P450 and Chloroperoxidase ...... 318 References ...... 318

39 / Solution Structures of Hemoproteins...... 323 LUCIA BANCI, IVANO BERTINI, CLAUDIO LUCHINAT and PAOLA TURANO I. Foreword...... 323 II. Introduction ...... 324 III. Diamagnetic Hemoproteins ...... 325 IV. Paramagnetic Hemoproteins ...... 328 V. Pseudocontact Shifts as Unconventional Constraints ...... 330 VI. The Paramagnetic Susceptibility Tensor Related to the Structural Properties ...... 332 viii Contents

VII. Exploiting Partial Molecular Alignment in High Magnetic Fields ...... 335 VIII. Further Comments on the Quality of the Structures of Paramagnetic Proteins ...... 337 IX. Structural Differences Between Solid State and Solution ...... 339 X. Structural Differences between Oxidized and Reduced Cytochromes ...... 340 XI. Water±Protein Interactions ...... 342 XII. Protein±Protein Interactions ...... 344 XIII. Structural Aspects of Unfolding...... 344 XIV. Mobility...... 345 XV. Perspectives ...... 347 Notes Added in Proofs ...... 347 References ...... 348

Index ...... 351 The Porphyrin Handbook

Volume 6 / Applications: Past, Present and Future

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... ix Contributing Authors...... xi Contents of Volumes in This Set ...... xix

40 / Noncovalent Multiporphyrin Assemblies ...... 1 JEAN-CLAUDE CHAMBRON, VALEÂRIE HEITZ and JEAN-PIERRE SAUVAGE I. Introduction...... 1 II. Multiporphyrin Edi®ces Built via H Bonds and Other Host±Guest Interactions...... 4 III. Assembly of Porphyrins via Metal±Ligand Bonds ...... 7 A. Metals Inside Porphyrins Involved in Assembly Processes...... 7 B. Porphyrins Assembled by Coordination to Nonporphyrinic Metals ...... 23 C. Metal-Bridged Porphyrin Dimer ...... 30 D. Molecular Boxes for Porphyrins ...... 30 E. Combination of Coordination Bonds and Hydrogen Bonds ...... 31 IV. Rotaxanes and Catenanes Incorporating Two or Several Noncovalently Bound Porphyrins ...... 31 A. [2]-Catenanes ...... 32 B. Porphyrin Arrays with Noncovalently Assembled Components Incorporated in Rotaxane Structures ...... 34 V. Conclusion...... 40 References ...... 41

41 / Applications of Porphyrins and Metalloporphyrins to Materials Chemistry ...... 43 JUN-HONG CHOU, HARI SINGH NALWA, MARGARET E. KOSAL, NEAL A. RAKOW and KENNETH S. SUSLICK I. Introduction...... 000 II. Photonic Materials ...... 000 A. Mesogenic Porphyrins and Metalloporphyrins ...... 000 B. Porphyrins and Metalloporphyrins as Nonlinear Optical Materials ...... 000 C. Porphyrins and Metalloporphyrins as Opto-Materials ...... 000 III. Porphyrinic Solids ...... 000 A. Microporous Solids ...... 000 B. Conductive Polymers and Ferroelectrics ...... 000 C. Porphyrin-Based Chemical Sensors...... 000 IV. Conclusions ...... 000 References ...... 000

42 / Metalloporphyrins as Catalysts for Precision Macromolecular Synthesis...... 133 TAKUZO AIDA and SHOHEI INOUE I. Introduction...... 133 II. Metalloporphyrins Containing Nontransition Metals ...... 134 A. Ring-Opening Polymerization of Heterocyclic Monomers ...... 134 B. Addition Polymerization of Unsaturated Monomers ...... 145 C. Structure-Reactivity Relationships ...... 146 D. Effect of Axial Coordination ...... 146 E. Utilization of Steric Hindrance for Acceleration of Polymerization ...... 147 F. Ligand-Exchange Activity (Immortal Polymerization) ...... 149

v vi Contents

G. Stereochemical Aspects ...... 152 III. Metalloporphyrins Containing Transition Metals ...... 153 A. Ring-Opening Polymerization of Heterocyclic Monomers ...... 153 B. Addition Polymerization of Unsaturated Monomers ...... 153 IV. Conclusion...... 155 References ...... 155

43 / Porphyrins as Photosensitizers in Photodynamic Therapy...... 157 RAVINDRA K. PANDEY and GANG ZHENG I. Introduction...... 158 A. A Brief History of Photodynamic Therapy ...... 158 B. Mechanisms of Tumor Necrosis ...... 159 C. Basic Requirements for an Ideal Photosensitizer for PDT ...... 160 D. Advantages and Limitations of Photofrin ...... 161 II. Porphyrin-Based Photosensitizers ...... 161 A. Theoretical Considerations...... 161 B. Hematoporphyrin and Protoporphyrin Analogues...... 162 C. Tetraphenylporphyrin (TPP) Analogues...... 163 III. Chlorin-Based Photosensitizers ...... 164 A. Modi®cation of Chlorophyll a ...... 164 B. Importance of Lipophilicity ...... 166 C. Chemical Modi®cation of Purpurin-18 ...... 167 IV. Synthetic Chlorins ...... 170 A. Benzoporphyrin Derivatives (BPD) ...... 170 B. Benzochlorins, Naphthochlorins, Purpurins and Verdins ...... 172 C. Tetra(hydroxyphenyl)chlorins (THPC)...... 177 D. Vic-Dihydroxy- and Ketochlorins ...... 177 E. Azachlorins ...... 178 F. Tailor-Made Chlorins ...... 179 G. Chlorins with Ethylidene Groups ...... 179 H. Spirochlorins ...... 181 I. Direct Synthesis of Chlorins from Dipyrromethanes...... 181 V. Bacteriochlorin-Based Photosensitizers ...... 182 A. Naturally Occurring Bacteriochlorins ...... 182 B. Tolyporphyrin from the Alga Tolypothrix nodosa ...... 183 C. Stable Bacteriochlorins from Rb. sphaeroides ...... 183 VI. Synthetic Bacteriochlorins...... 184 A. Tetrahydrobacteriochlorins and Isobacteriochlorins ...... 185 B. Vic-Dihydroxybacteriochlorins and Isobacteriochlorins ...... 185 C. Bacteriochlorins via Diels±Alder Reaction Approach ...... 185 D. Vic-Dihydroxybacteriochlorins and their Keto-Analogues ...... 187

E. Effect of Electron Withdrawing Substituents in OsO4 Reactions and Pinacol-Pinacolone Reaction ...... 190 F. Benzobacteriochlorins ...... 196 VII. Isomeric Porphyrins ...... 196 A. Porphycenes ...... 196 B. Inverted Porphyrins ...... 198 VIII. Porphyrin Dimers and Higher Oligomers ...... 198 A. Porphyrin Dimers with Ether, Ester and Carbon-Carbon Linkages ...... 198 B. Chlorin Dimers with Carbon±Carbon Linkages ...... 201 C. Chlorin Dimers with Amide Linkages ...... 203 IX. Expanded Porphyrins ...... 204 Contents vii

A. Sapphyrins and Texaphyrins...... 204 B. Vinylogous Porphyrins ...... 205 X. Miscellaneous Porphyrins and Chlorins ...... 205 A. Glycosylated Porphyrins and Chlorins...... 205 B. Barbituric Acid Functionalized Porphyrins and Chlorins ...... 206 C. Nucleoside Adducts of Porphyrins and Chlorins ...... 206 D. Porphyrins Containing Six-Membered Rings ...... 207 XI. Endogenous Porphyrins from ALA ...... 208 A. Cationic Photosensitizers ...... 209 XII. Cationic Porphyrins, Chlorins and Phthalocyanines ...... 209 XIII. Phthalocyanines and Naphthalocyanines...... 211 XIV. Current Status of Photosensitizers Under Clinical Trials...... 214 A. Advantages and Disadvantages of Some Selected Photosensitizers ...... 224 XV. Conclusions ...... 224 References ...... 225

44 / Porphyrin-Based Electrochemical Sensors ...... 231 TADEUSZ MALINSKI I. Introduction...... 232 II. Amperometric / Voltammetric Porphyrin-Based Sensors ...... 232 A. Conductive Polymeric Porphyrins...... 232 B. Sensors for Detection of Metal Cations...... 236 C. Nitric Oxide Sensors ...... 240 D. Preparation and Measurement of NO with Amperometric Sensors...... 245 III. Potentiometric Porphyrinic Sensors for Detection of Ions ...... 251 A. Preparation of Porphyrin-Based Potentiometric Sensors for Anions...... 252 B. Potentiometric Sensor for Nickel ...... 254 References ...... 255

45 / Calixpyrroles: Novel Anion and Neutral Substrate Receptors ...... 257 JONATHAN L. SESSLER and PHILIP A. GALE I. Introduction...... 257 II. Early Work ...... 258 III. Structural Studies of Free Ligands ...... 258 IV. Coordination Chemistry of Simple Systems ...... 259 A. Cation Coordination Chemistry ...... 259 B. Anion Coordination Chemistry...... 259 C. Neutral Molecule Coordination Chemistry ...... 262 V. Synthesis of Functionalized Calixpyrroles...... 264 A. b-Substituted Systems ...... 264 B. meso-Substituted Systems ...... 265 VI. Properties of Functionalized Calixpyrroles ...... 265 A. Self-Assembly of ``meso-hook'' Carboxylate 12 ...... 265 B. Anion-Binding Properties of b-Substituted Calix[4]pyrroles ...... 267 VII. Calix[4]pyrrole Conjugates ...... 267 A. Calixpyrrole-Based Sensors...... 267 B. Calixpyrrole-Modi®ed HPLC Media ...... 269 VIII. Expanded Calixpyrroles ...... 271 IX. From Calixpyrroles to Calixpyridines ...... 272 X. Related Heterocalixarene Analogues ...... 274 viii Contents

A. Calixindoles ...... 274 B. Azolophanes ...... 276 XI. Conclusion...... 276 Note Added in Proof ...... 276 References ...... 277

46 / Porphyrins and Metalloporphyrins as Receptor Models in Molecular Recognition ...... 279 HISANOBU OGOSHI, TADASHI MIZUTANI, TAKASHI HAYASHI and YASUHISA KURODA I. New Aspects of Synthesis and Design of Porphyrins for Receptor Models ...... 280 A. Introduction ...... 280 B. Chemical Modi®cation of Naturally Occurring Porphyrins ...... 280 C. Synthetic Strategy for Multifunctional Porphyrins as Building Blocks for Receptors ...... 281 D. Strapped Porphyrins ...... 284 E. Oligoporphyrins ...... 284 F. Chiral Porphyrins...... 285 II. Host±Guest Chemistry of Porphyrins in Molecular Recognition...... 287 A. Recognition of Amines and Diamines ...... 287 B. Amino-Acid Recognition in Water...... 291 C. Recognition of Amino-Acid Derivatives in Organic Solvents...... 297 D. Chiral Recognition of Amino-Acid Derivatives ...... 298 E. Alcohols and Sugar Recognition...... 300 F. Quinone Recognition...... 303 G. DNA Recognition ...... 304 H. Solvent Effects on Molecular Recognition ...... 306 I. Thermodynamic Parameters of Complexation ...... 307 J. Combinations of Porphyrin and Other HostsÐPorphyrin±Calixarene, Porphyrin±Cyclodextrin, Porphyrin±Steroids ...... 310 K. Kinetic Aspects of Recognition ...... 311 III. Electron Transfer Regulated by Molecular Recognition ...... 312 A. Introduction ...... 312 B. Design of Donor±Acceptor Pairing via Noncovalent Interaction ...... 312 C. Determination of ET Rate Constants ...... 313 D. Noncovalently Linked Donor±Acceptor Pairings via Hydrogen-Bonding Interaction ...... 313 E. Noncovalently Linked Donor±Acceptor Pairings via van der Waals Contacts ...... 317 F. Noncovalently Linked Donor±Acceptor Pairings via Metal Coordination ...... 318 G. Energy Transfer Within Noncovalently Linked Donor±Acceptor Complex...... 320 H. Intracomplex ET via Molecular-Recognition Process on Protein Surface ...... 322 I. Survey of ET Model Systems ...... 325 IV. Self-Organized Porphyrin Systems...... 325 A. Covalently Linked Multiporphyrin Systems ...... 326 B. Self-Assembling Multiporphyrin System ...... 328 References ...... 336

Index ...... 341 The Porphyrin Handbook

Volume 7 / Theoretical and Physical Characterization

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... xi Contributing Authors...... xiii Contents of Volumes in This Set ...... xxi

47 / Quantum Chemical Studies of Molecular Structures and Potential Energy Surfaces of Porphyrins and Hemes ...... 1 ABHIK GHOSH I. Introduction ...... 1 II. Prototype Molecular Structures and Methodological Requirements ...... 3 III. Hydroporphyrins and Azaporphyrins...... 4 IV. Porphyrin Isomers ...... 6 V. Corroles ...... 9 VI. Carbaporphyrins ...... 12 VII. NH Tautomers and Tautomerization ...... 16 VIII. Nonplanar Porphyrins ...... 21 IX. Porphyrin Cation Radicals...... 23 X. Iron(II) Porphyrins ...... 24 XI. Iron(III) Porphyrins ...... 26 XII. Carbonmonoxyhemes ...... 30 XIII. Oxyheme and Nitrosylheme...... 32 XIV. Iron(IV)-Oxo Porphyrins ...... 34 XV. Concluding Remarks ...... 35 References ...... 35

48 / Models for the Electronic Structure of Metalloporphyrins from High-Resolution X-ray Diffraction and Ab Initio Calculations ...... 39 CLAUDE LECOMTE, MARIE-MADELEINE ROHMER and MARC BEÂNARD I. Introduction ...... 40 II. Electron Density and Quantum Chemistry ...... 40 A. The SchroÈdinger Equation ...... 40 B. The Hydrogenoid Atom and Beyond ...... 41 C. Basis Sets ...... 42 D. Correlation Density ...... 44 E. Density Functional Theory (DFT) ...... 44 III. Electron Density Study from High-Resolution X-ray Diffraction Methods ...... 48 A. De®nitions ...... 48 B. Experimental Methods ...... 50 C. Electron Density Models ...... 50 D. Estimation of d Electron Population ...... 54 E. Molecular Systems to Which Experimental Electron Density Methods May Be Applied: Dif®culties Related to Porphyrin Crystals ...... 55 IV. Theoretical Models for Metalloporphyrins and Related Complexes...... 55 A. The Four-Orbital Model...... 55 B. Metalloporphyrins: the Metal±Macrocycle Interactions...... 55 C. Problems Encountered in the Ab Initio Description of Metalloporphyrins...... 56 V. Electron Density and Charge Distributions in Metalloporphyrins ...... 57

v vi Contents

A. Cobalt Porphyrins ...... 57 B. Four-Coordinate Ferrous Porphyrins: Fe II (TPP)...... 60

C. (THF)2Fe(TPP): the Unique Example of a Hexacoordinated High-Spin Ferrous Complex ...... 64 D. Structural and Electronic Variability in bis-Pyridine and bis-Imidazole Iron Porphyrins...... 65 III III E. Five-Coordinate Fe(III) Porphyrins: (OCH3)Fe (TPP) and the (F)Fe (P) Model ...... 69 F. Nickel Porphyrins ...... 71 G. Charge and Spin Density Distributions of Copper and Silver Porphyrins ...... 72 H. Charge Density of Di¯uoro-Octaethylporphyrin Germanium(IV) ...... 73 VI. Conclusions...... 74 References ...... 75

49 / X-Ray Absorption Spectroscopy Applied to Porphyrin Chemistry ...... 79 JOSEÂ GOULON, CHANTAL GOULON-GINET and VINCENT GOTTE I. Scope of XAS Today...... 80 A. XANES and Polarization Effects ...... 80 B. EXAFS and MEXAFS...... 82 C. Fluorescence-Detected X-ray Excitation Spectra ...... 84 D. Resonant X-ray Emission Spectroscopy...... 84 E. Synchrotron Radiation Sources of Third Generation ...... 85 F. Outline of the Chapter ...... 86 II. Formal Theories of XAS ...... 87 A. MSW Formalisms ...... 87 B. XANES and EXAFS Regimes ...... 93 C. Local Effective Potentials ...... 97 D. Spin-Dependent Effects ...... 103 III. Practice of XAS ...... 109 A. Standard Analyses of EXAFS...... 109 B. Difference EXAFS Analyses ...... 119 C. Analyses of XANES Spectra ...... 127 D. Challenges for Third-Generation SR Sources ...... 132 IV. Applications in Porphyrin Chemistry and Biochemistry ...... 139 A. Hemoproteins and Biomimetic Compounds...... 139 B. Non-Iron Porphyrins ...... 150 C. Concluding Remarks ...... 156 References ...... 157

50 / Molecular Simulations and Normal-Coordinate Structural Analysis of Porphyrins and Heme Proteins ...... 167 JOHN A. SHELNUTT I. Introduction ...... 168 II. Theory ...... 188 A. Molecular Mechanics ...... 188 B. Force Fields...... 190 C. Molecular Dynamics ...... 191 D. Normal-Coordinate Structural Decomposition ...... 191 III. Normal-Coordinate Structural Analysis ...... 194 A. Porphyrins and Nonheme Metalloporphyrins ...... 194 B. Iron Porphyrins and Heme Proteins ...... 199 IV. Molecular Mechanics and Dynamics Calculations ...... 201 A. Porphyrins and Simple Porphyrin Complexes ...... 202 B. Superstructures Containing Porphyrins...... 212 Contents vii

C. Porphyrin Radicals and Diacids ...... 216 D. Hydroporphyrins...... 217 E. Heme Proteins ...... 217 V. Conclusions and the Future ...... 219 A. Normal-Coordinate Structural Decomposition ...... 219 B. Molecular Mechanics and Dynamics ...... 220 References ...... 220

51 / Resonance Raman Spectra of Heme Proteins and Model Compounds ...... 225 JAMES R. KINCAID I. General Introduction ...... 226 II. Oxygen Transport: Myoglobin and Hemoglobin ...... 227 A. Introduction ...... 227 B. The RR Spectra of Natural Hemes ...... 228 C. The Iron±Histidine Stretching Mode ...... 232 D. Exogenous Axial Ligands ...... 236 E. Time-Resolved Resonance Raman Studies of Hemoglobin ...... 251 III. Peroxidases ...... 258 A. Plant Peroxidases ...... 258 B. Mammalian Peroxidases ...... 272 IV. Cytochromes P450 ...... 277 A. Introduction ...... 277 B. RR Studies of Cytochrome P450cam ...... 277 C. RR Studies of Other Cytochromes P450 ...... 284 D. Summary ...... 286 V. Other Heme Proteins ...... 287 A. Cytochrome c ...... 287 B. Cytochrome c Oxidase ...... 287 C. Nitric Oxide Synthase ...... 287 References ...... 287

52 / Resonance Raman Spectroscopy of Petroporphyrins ...... 293 ROMAN S. CZERNUSZEWICZ, ESTELLE M. MAES and J. GRAHAM RANKIN I. Introduction ...... 293 II. Electronic Spectra and Resonance Raman Scattering of Petroporphyrins...... 296 A. In-Plane Skeletal Vibrations ...... 296 B. Peripheral Substituent Vibrations ...... 306 III. Vibrational Mode Description and Assignments of Resonance Raman Spectra ...... 307 A. Tetrapyrrole Macrocycle Local Coordinates ...... 307 B. Alkyl Local Coordinates ...... 308 IV. Petroporphyrin Skeletal Vibrations and Structure in Solution ...... 316 A. The Role of Central Metal Ion ...... 318 B. Contributions from b,b-Tetrahydrobenzo Exocyclic Rings ...... 322 C. Structural Effects due to meso, b-Cycloalkano Ring Size ...... 322 D. Raman Active IR Modes of Cycloalkanoporphyrin Skeletons ...... 325 V. Raman Marker Bands of Structure at the Petroporphyrin Periphery ...... 326 A. Etioporphyrin Positional Isomerism ...... 326 B. Tetrahydrobenzoporphyrin Regioisomerism ...... 328 C. Cycloalkanoporphyrins ...... 330 VI. Summary and Conclusions...... 334 References ...... 335 viii Contents

53 / Magnetic Circular Dichroism Spectroscopy of Heme Proteins and Model Systems ...... 339 JENNIFER CHEEK and JOHN H. DAWSON I. Introduction ...... 339 II. Histidine-Ligated Heme Systems...... 340 A. Peroxidases...... 340 B. Heme b-Containing Proteins ...... 343 C. Heme c-Containing Proteins ...... 345 D. Myoglobin and Myoglobin Mutants ...... 347 E. Heme-Copper Terminal Oxidases...... 350 F. Denitrifying Heme Enzymes...... 354 G. Mixed-Heme Systems ...... 356 H. Porphyrin Model Complexes ...... 356 I. Unusual Heme Systems ...... 359 III. Thiolate-Ligated Heme Systems ...... 361 IV. Bis-Methionine-Ligated Systems ...... 366 V. Tyrosine-Ligated Systems ...... 366 References ...... 367

54 / Mass Spectrometry of Porphyrins and Metalloporphyrins ...... 371 J. MARTIN E. QUIRKE I. Introduction ...... 373 A. Format of Chapter...... 374 II. Electron Ionization Mass Spectrometric (EIMS) Analyses of Cyclic Tetrapyrroles ...... 374 A. The EIMS and ``In Beam'' EIMS Experiments...... 374 B. EIMS Analyses of Free-Base Porphyrins ...... 374 C. EIMS Analyses of Metalloporphyrins...... 379 D. EIMS Analyses of Geoporphyrins ...... 381 E. EIMS Analyses of Chlorins ...... 383 F. ``In Beam'' and ``Near Beam'' EIMS Analyses of Chlorins and Chlorophylls ...... 385 G. EIMS Analyses of Chlorin Analogues and Isobacteriochlorins ...... 385 H. EIMS Analyses of Hexahydroporphyrins ...... 386 I. EIMS Analyses of Isomers of the Porphyrin Skeleton ...... 386 J. EIMS Analyses of Expanded and Contracted Porphyrin Systems ...... 387 K. EIMS Analyses of Carbaporphyrins and Related Compounds ...... 388 L. EIMS Analyses of Porphyrin Analogues Bearing Other Heteroatoms...... 389 III. Electron Ionization Tandem Mass Spectrometric (EIMS/MS) Analyses of Cyclic Tetrapyrroles ...... 389 A. The EIMS/MS Experiments...... 389 B. EIMS/MS Analyses of Porphyrins, Geoporphyrins and Metalloporphyrins...... 390 C. EIMS/MS Analyses of Porphyrin Mixtures ...... 391 IV. Chemical Ionization (CI) and Desorption Chemical Ionization Mass Spectrometric Analyses of Cyclic Tetrapyrroles ...... 393 A. The CIMS and Desorption CIMS Experiments...... 393 B. CIMS Analyses of Free-base Porphyrins...... 393 C. CIMS Analyses of Metalloporphyrins ...... 394 D. Negative Ion Chemical Ionization Mass Spectrometric (ECNCIMS) Analyses of Porphyrins and Metalloporphyrins ...... 395 V. Gas Chromatography-Electron Ionization Mass Spectrometric (GCMS) Analyses of Porphyrins and Metalloporphyrins ...... 396 VI. Field Desorption Mass Spectrometric (FDMS) Analyses of Cyclic Tetrapyrroles ...... 397 A. The FDMS Experiment ...... 397 B. FDMS Analyses of Cyclic Tetrapyrroles ...... 397 Contents ix

C. Applications of FDMS in Cyclic Tetrapyrrole Chemistry ...... 397 VII. Fast Atom Bombardment (FAB) Mass Spectrometric and Liquid Secondary Ion Mass Spectrometric (LSIMS) Analyses of Cyclic Tetrapyrroles ...... 398 A. The FAB/LSIMS Experiment ...... 398 B. Selection of the FAB Matrix for Analyses of Cyclic Tetrapyrroles...... 399 C. FAB Fragmentation Processes for Cyclic Tetrapyrroles ...... 399 D. Applications of FAB Analyses of Cyclic Tetrapyrroles ...... 403 E. Solid SIMS Analyses...... 405 VIII. Plasma Desorption Mass Spectrometric (PDMS) Analyses of Cyclic Tetrapyrroles ...... 405 A. The PDMS Experiment ...... 405 B. PDMS Analyses of Cyclic Tetrapyrroles ...... 405 C. Variations on the PDMS Experiment...... 406 IX. Laser Desorption Mass Spectrometric (LDMS) and Matrix Assisted Laser Desorption Mass Spectrometric (MALDI) Analyses of Cyclic Tetrapyrroles...... 406 A. The LDMS and MALDI Experiments ...... 408 B. LDMS/MALDI Analyses of Cyclic Tetrapyrroles ...... 408 C. Applications of LDMS/MALDI Analyses of Cyclic Tetrapyrroles...... 409 X. Electrospray Mass Spectrometric (ESMS) and Ionspray Analyses of Cyclic Tetrapyrroles...... 409 A. The ESMS and Ionspray Experiments ...... 409 B. ESMS Analyses of Cyclic Tetrapyrroles ...... 410 C. ESMS Analyses of Porphyrin-Containing Proteins ...... 411 D. Other Applications of ESMS Analyses of Cyclic Tetrapyrroles ...... 412 XI. Fourier Transform Mass Spectrometric (FTMS) Analyses of Cyclic Tetrapyrroles...... 412 A. The FTMS Experiment ...... 412 B. FTMS Analyses of Cyclic Tetrapyrroles ...... 412 XII. Separations and Mass Spectrometric Analyses of Cyclic Tetrapyrroles ...... 414 A. High Performance Liquid Chromatography-Mass Spectrometry (LCMS) Analyses of Cyclic Tetrapyrroles ...... 414 B. Other Linked Analyses of Cyclic Tetrapyrroles ...... 415 XIII. Inductively Coupled Plasma-Mass Spectrometric (ICPMS) Analyses of Cyclic Tetrapyrroles ...... 415 A. The ICPMS Experiment ...... 415 B. ICPMS Analyses of Cyclic Tetrapyrrolic Systems ...... 415 XIV. Stable Isotope Mass Spectrometric Analyses of Cyclic Tetrapyrroles ...... 415 A. The Measurement and Signi®cance of 13C/12C Ratios ...... 415 B. Studies on 13C/12C Ratios of Cyclic Tetrapyrrolic Systems ...... 416 XV. Summary ...... 416 References ...... 416

Index ...... 423 The Porphyrin Handbook

Volume 8 / Electron Transfer

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... ix Contributing Authors...... xi Contents of Volumes in This Set ...... xix

55 / Electrochemistry of Metalloporphyrins in Nonaqueous Media ...... 1 KARL M. KADISH, ERIC VAN CAEMELBECKE and GUY ROYAL I. Introduction and Scope of Review ...... 3 A. Overview of Past and Current Work ...... 3 B. Porphyrin Electrochemistry in the Early 1960s and the 1970s ...... 7 C. Porphyrin Electrochemistry in the 1980s and the 1990s ...... 7 II. Characterization of Porphyrin Redox Reactions ...... 8 A. Selection of Appropriate Solvent ...... 8 B. Selection of Appropriate Supporting Electrolyte ...... 9 C. Measuring and Reporting Redox Potentials ...... 10 D. Measuring and Reporting the Number of Electrons Transferred...... 10 E. Assigning Site of Electron Transfer ...... 10 F. Selection of Appropriate Porphyrin Reference Compound ...... 10 G. Factors In¯uencing Half-Wave Potentials ...... 10 III. Effect of Macrocycle Structure on Potentials ...... 11 A. Octaethylporphyrins (OEP) and Tetraphenylporphyrins (TPP) ...... 11 B. Tetramesitylporphyrins (TMP) ...... 14

C. Octaalkyltetraphenylporphyrins (R8TPP)...... 14 D. Dodecaphenylporphyrins (DPP) ...... 16 E. Tetrabenzoporphyrins (TBP)...... 16

F. Octabromotetraphenylporphyrins (Br8TPP) ...... 17

G. Octabromotetramesitylporphyrins (Br8TMP)...... 17

H. Penta¯uorophenylporphyrins (F20TPP)...... 18

I. Penta¯uorophenyl Octasubstituted Porphyrins (Br8F20TPP, Cl8F20TPP and Me8F20TPP) ...... 18 J. Tetra(4-methylpyridinium)porphyrins (TMpyP)...... 19 K. Tetra(4-sulfonatophenyl)porphyrins (TPPS)...... 20 L. Alkyl and Aryl Nitrogen-Substituted Porphyrins (N-RP)...... 20 M. Isoporphyrins ...... 20 IV. Porphyrins with Speci®c Axial Ligands...... 21 A. Sigma-Bonded Alkyl and Aryl Complexes ...... 21 B. NO Complexes ...... 22 C. CO Complexes ...... 24 V. Periodic Table of Metalloporphyrins ...... 25 A. Free Base Porphyrins ...... 25 B. Group 1 Porphyrins...... 25 C. Group 2 Porphyrins...... 25 D. Group 3 Porphyrins...... 25 E. Group 4 Porphyrins...... 26 F. Group 5 Porphyrins...... 27 G. Group 6 Porphyrins...... 28 H. Group 7 Porphyrins...... 32

v vi Contents

I. Group 8 Porphyrins...... 38 J. Group 9 Porphyrins...... 59 K. Group 10 Porphyrins...... 66 L. Group 11 Porphyrins...... 73 M. Group 12 Porphyrins...... 75 N. Group 13 Porphyrins...... 76 O. Group 14 Porphyrins...... 79 P. Group 15 Porphyrins...... 83 Q. Lanthanides and Actinides Porphyrins ...... 87 VI. Double-Decker Complexes ...... 87 VII. Porphyrins Linked to Porphyrins ...... 88 VIII. Porphyrins Linked to Other Redox Active Sites ...... 89 IX. Substituent Effects on Redox Reactivity ...... 90 A.Overview...... 90 B. Phenyl-Ring-Substituted Tetraphenylporphyrins ...... 92 C. Substituents Directly on the Porphyrin Skeleton ...... 93 X. Correlations of Redox Potentials ...... 95 A. With Structural Data ...... 95 B. With Chemical Properties of Porphyrins, (Catalysis) ...... 95 C. Determination of Axial Ligand Binding and Calculation of Binding Constants ...... 96 D. Spectroelectrochemistry ...... 96 XI. Summary...... 97 References ...... 97

56 / Electron Transfer Chemistry of Porphyrins and Metalloporphyrins ...... 115 SHUNICHI FUKUZUMI I. Introduction ...... 115 II. Factors Which Control Rates of Electron Transfer ...... 115 III. Electron Self-Exchange Reactions ...... 116 A. Reactions of Iron(II)/Iron(III) Porphyrins ...... 116 B. Heme Proteins ...... 119 C. Generation of Iron(IV) Porphyrins...... 123 D. Other Metalloporphyrins ...... 128 IV. Site of Electron Transfer of Metalloporphyrins ...... 132 V. Cleavage of Metal±Carbon Bond of Organometallic Porphyrins...... 137 VI. Electron Transfer Catalytic Systems ...... 140 A. Thermal Catalysis ...... 140 B. Photocatalysis ...... 143 VII. Conclusions and Future Prospects...... 145 References ...... 146

57 / Intramolecular Photoinduced Electron-Transfer Reactions of Porphyrins ...... 153 DEVENS GUST and THOMAS A. MOORE I. Introduction ...... 154 II. Photosynthesis ...... 154 A. Natural Photosynthesis ...... 154 B. Arti®cial Photosynthesis ...... 155 III. Theoretical Descriptions of Photoinduced Electron Transfer ...... 156 A. Electronic Coupling...... 157 B. Effect of Solvent ...... 157 IV. Intramolecular Photoinduced Electron Transfer in Porphyrin-Based Systems ...... 157 Contents vii

A. Porphyrin±Quinone Dyads ...... 158 B. More Complex Porphyrin±Quinone Systems: Slowing Charge Recombination ...... 163 C. Porphyrins Linked to Aromatic Imides ...... 170 D. Porphyrins Linked to Fullerenes ...... 174 E. Porphyrins Linked to Transition Metal Complexes...... 178 F. Porphyrins Linked to Viologens ...... 179 G. Porphyrins Linked to Carotenoid Polyenes ...... 180 H. Porphyrins Linked to Other Porphyrins ...... 181 V. Photoinduced Electron Transfer in Self-Assembled Systems ...... 184 VI. Conclusions ...... 185 References ...... 185

58 / Electrochemistry of Heme Proteins ...... 191 FRED M. HAWKRIDGE and ISAO TANIGUCHI I. Introduction ...... 191 II. Background ...... 192 III. Methods ...... 193 A. Cyclic Voltammetry ...... 193 B. Potential-Step Chronocoulometry ...... 197 IV. Application Examples ...... 197 V. Summary...... 200 References ...... 201

Index ...... 203 The Porphyrin Handbook

Volume 9 / Database of Redox Potentials and Binding Constants

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... vii Contributing Authors...... ix Contents of Volumes in This Set ...... xvii

59 / Metalloporphyrins in Nonaqueous Media: Database of Redox Potentials...... 1 KARL M. KADISH, GUY ROYAL, ERIC VAN CAEMELBECKE and LENA GUELETTI I. Introduction ...... 2 II. Abbreviations Used in the Database ...... 2 A. Macrocycles ...... 2 B. Axial Ligands ...... 2 C. Solvents ...... 2 D. Supporting Electrolytes ...... 3 E. Reference Electrodes and Reference Couples ...... 3 III. Organization of the Database ...... 3 A. Type of Macrocycle (Ring) ...... 6 B. Type and Oxidation State of Metal Ion ...... 8 C. Type of Axial Ligand ...... 8 D. Solvent...... 10 E. Supporting Electrolyte ...... 10 F. Reference Electrode ...... 10 G. Temperature...... 10 H. Redox Potentials...... 10 I. References ...... 10 IV. Tables of Electrochemical Data ...... 11 Table 1. TPP Macrocycle ...... 11 Table 2. OEP Macrocycle ...... 90 Table 3. TMP and Substituted TMP Macrocycles...... 118 Table 4. TBP and Substituted TBP Macrocycles ...... 121

Table 5. XnTPP Macrocycles and Derivatives Where X ˆ Br, Cl or F and n ˆ 1to8...... 122

Table 6. T(X5)PP and b-Substituted T(X5)PP Macrocycles (X ˆ Cl,F)...... 127 Table 7. DPP and Substituted DPP Macrocycles ...... 130

Table 8. R8TPP Macrocycle (R ˆ Alkyl Group) and TCxTPP...... 133 Table 9. Phenyl-Substituted TPP Macrocycles ...... 134 Table 10. b-Substituted TPP and TPP-like Macrocycles ...... 164 Table 11. meso-Substituted OEP Macrocycles and Oxophlorin Macrocycles ...... 169 Table 12. Macrocycles with Charged Substituents ...... 176 Table 13. N-Substituted Macrocycles ...... 179 Table 14. Natural Porphyrins and Derivatives ...... 181 Table 15. Picket-Fence and Basket-Handle Macrocycles ...... 192 Table 16. Other Substituted Porphyrin Macrocycles ...... 202 Table 17. Porphyrins Adsorbed on an Electrode (Porphyrin Films) ...... 207 References ...... 212

v vi Contents

60 / Equilibrium Data of Porphyrins and Metalloporphyrins...... 221 MASAAKI TABATA and JUN NISHIMOTO I. Introduction ...... 222 II. Porphyrin Names ...... 222 III. Porphyrin Structures...... 222 IV. Equilibrium Constants ...... 222 V. Metal Ions ...... 223 VI. Data Arrangement ...... 223 VII. Abbreviations of Measurement Methods ...... 223 VIII. Abbreviations of Solvents ...... 223 IX. How to Find Speci®c Equilibrium Data ...... 224 Figures 1-1±1-5. Structures of Natural Porphyrins and Their Derivatives...... 224 Figures 2-1±2-18. Structures of Synthetic and Simple Porphyrins...... 227 Figures 3-1±3-3. Structures of Side-Arm Porphyrins...... 241 Figures 4-1±4-6. Structures of Picket-Fence Porphyrins ...... 243 Figures 5-1±5-14. Structures of Strapped and Capped Porphyrins ...... 246 Figures 6-1±6-8. Structures of Bridged, or Dimeric, Trimeric, and Oligomeric Porphyrins ...... 254 Figures 7-1±7-7. Structures of Other Types of Porphyrins ...... 258 Table 1. Equilibrium Data of Axial Ligation ...... 263 Table 2. Equilibrium Data for Ligand-Exchange Reactions ...... 355 Table 3. Equilibirum Data for Interaction of Free-Base or Prototonated Porphyrins with Ligands, Dimerization of Metalloporphyrins and Free-Base Porphyrins, Metalation of Porphyrins, and Hydrolysis of Metalloporphyrins ...... 368 Table 4. Equilibrium Data of Protonation and Deprotonation of Free-Base Porphyrins ...... 387 Table 5. Other Types of Reactions ...... 393 Table 6. Porphyrin Names and Abbreviations ...... 401 Table 7. Abbreviations of Binding Ligands ...... 413 References ...... 417 The Porphyrin Handbook

Volume 10 / Database of Tetrapyrrole Crystal Structure Determination

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry University of California, Davis Davis, California

Roger Guilard Faculte des Sciences Gabriel Universite de Bourgogne Dijon, France

SAN DIEGO SAN FRANCISCO NEW YORK BOSTON LONDON SYDNEY TORONTO Contents

Preface...... vii Contributing Authors...... ix Contents of Volumes in This Set ...... xvii

61 / Database of Tetrapyrrole Crystal Structure Determinations ...... 1 MATHIAS O. SENGE I. General Remarks ...... 1 Table 1. Abbreviations ...... 2 Table 2. Structure Listing ...... 4 Table 3. Unit Cell Listing...... 42 Table 4. Author Listing ...... 90 Table 5. Index ...... 107 References ...... 196

Cumulative Index ...... 219

v The Porphyrin Handbook

Volume 11 / Bioinorganic and Bioorganic Chemistry

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents of Volume 11

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

62 / Functional and Structural Analogs of the Dioxygen Reduction Site in Terminal Oxidases ...... 1 JAMES P. COLLMAN, ROMAN BOULATOV, and CHRISTOPHER J. SUNDERLAND I. Introduction: Heme/Cu Terminal Oxidases ...... 1 II. Structural and Spectroscopic Models of the Heme a3/CuB Site...... 5 A. General Synthetic Methodologies...... 5 B. Oxo and Hydroxo Bridged Systems ...... 11 C. Cyanide Bridged Systems ...... 13 D. Carboxylate Bridged Systems ...... 16 E. Carbon Monoxide Adducts of (por)FeII/CuI Systems ...... 17 III. Reactivity of Heme a3 /CuB Analogs Toward O2 Under Noncatalytic and Single Turnover Conditions ...... 18 A. Characterization of Peroxide Bridged Intermediates ...... 19 II I B. Reaction of Fe /Cu Centers with O2 ...... 22 IV. Functional Analogs of the Dioxygen Reduction Site in Heme/Cu Terminal Oxidases ...... 23 A. Methodologies ...... 23 B. General Mechanism of Electrocatalytic O2 (H2O2) Reduction at an Iron Porphyrin ...... 28 C. Electrocatalytic O2 Reduction by Simple Fe Porphyrins ...... 29 D. Functional Heme a3/CuB Analogs...... 32 V. Cofacial Diporphyrins ...... 35 A. Molecular Structure and Physicochemical Properties ...... 36 B. Nonaqueous Dioxygen Chemistry of Group 2 Biscobaltdiporphyrins ...... 38 C. Electrocatalytic O2 Reduction ...... 40 D. Catalytic Properties of Monocobaltdiporphyrins Containing a Nonredox Active Cation with Strong Lewis Acidity ...... 43 E. Summary ...... 44 VI. Summary and Outlook ...... 44 References ...... 45

63 / Heme Protein Dynamics: Electron Tunneling and Redox Triggered Folding ...... 51 HARRY B. GRAY and JAY R. WINKLER I. Introduction ...... 51 II. Semiclassical Theory of Electron Transfer ...... 51 III. Reorganization Energies of Ru-Modified Heme Proteins ...... 53 A. Ru-Cytochrome c ...... 53 IV. Electronic Coupling...... 55 A. Superexchange Coupling...... 55 B. Tunneling Pathways in Proteins ...... 56 C. Rate/Distance Dependence ...... 56 V. Tunneling Timetables ...... 57 A. Heme Proteins ...... 57 B. Water ...... 58 VI. Tunneling Across Heme Protein–Protein Interfaces ...... 59 VII. Redox-Coupled Folding of Proteins...... 62 A. Cytochrome c ...... 63 B. Cytochrome b562 ...... 64

v vi Contents

C. Cytochrome c 0 ...... 65 D. Zn-cytochrome c ...... 67 References ...... 71

64 / Chiral Metalloporphyrins and Their Use in Enantiocontrol ...... 75 JEAN-CLAUDE MARCHON and RENE´ RAMASSEUL I. Introduction ...... 75 II. Syntheses of Chiral Porphyrins and Metalloporphyrins ...... 76 A. Chiral meso-Substituted Porphyrins ...... 76 B. Other Chiral Porphyrins ...... 76 C. Chiral di- and tri-Porphyrin Arrays ...... 76 III. Enantiocontrol with Chiral Metalloporphyrins ...... 76 A. Asymmetric Catalytic Oxidation...... 76 B. Asymmetric Catalytic Aziridination ...... 90 C. Asymmetric Catalytic Cyclopropanation ...... 90 D. Chiral Recognition ...... 94 E. Memory Systems ...... 102 F. Miscellaneous Applications ...... 102 IV. Transition Metal Chiroporphyrins ...... 111 A. Synthesis of Chiroporphyrins ...... 111 B. Chiroporphyrin Stereochemistry ...... 113 C. Spin States of Fe(III) Chiroporphyrins ...... 114 D. Asymmetric Additions to Olefins Catalyzed by Mn(III) Chiroporphyrins ...... 117 E. Enantioselective Binding of Chiral Ligands by Metallochiroporphyrins ...... 118 F. Irreversible Binding of Amines to Co(III) Chiroporphyrins ...... 121 G. Chiroporphyrin Derivatizing Agents for Chiral Analysis by NMR Spectroscopy ...... 123 V. Perspectives ...... 124 References ...... 126

65 / Carbene Complexes of Metalloporphyrins and Heme Proteins ...... 133 GE´RARD SIMONNEAUX and PAUL LE MAUX I. Introduction ...... 134 A. Carbenes ...... 134 B. Metal–Carbene Binding...... 134 II. Structure and Bonding ...... 134 A. X-ray Methods ...... 134 B. Spectroscopic Characterization ...... 135 C. Metal–Carbene Formalism...... 135 III. Methods of Synthesis of Metal–Carbene Bond in Porphyrins ...... 136 A. Preparation from Polyhalogenated Precursors Under Reducing Conditions ...... 136 B. Preparation from Diazo Compounds ...... 137 C. Preparation from Zero-Valent Metalloporphyrin Dianions...... 137 D. Preparation from Isonitrile Complexes ...... 137 E. Preparation from Iodonium Ylide ...... 138 F. Insertion of Zero-Valent Metals into the C–N Bond of N,N’-Bridged Porphyrins ...... 138 IV. Synthetic Metal–Carbene Porphyrin Derivatives and Their Reactivity ...... 139 A. Group 6 ...... 139 B. Group 7 ...... 139 C. Group 8 ...... 139 D. Group 9 ...... 146 E. Group 10 ...... 148 F. Group 11 ...... 148 G. Group 12 ...... 148 Contents vii

V. Metalloporphyrins as Catalysts for Carbene Transfer ...... 148 A. Cyclopropanation...... 148 B. Insertion ...... 150 C. Sigmatropic Rearrangements ...... 151 D. Olefination of Aldehydes ...... 152 VI. Carbenes as Ligands to Heme Proteins ...... 152 A. Cytochromes P450 ...... 152 B. Myoglobin and Hemoglobin ...... 155 Conclusion ...... 156 References ...... 156

66 / Metalloporphyrins in the Biomimetic Oxidation of Lignin and Lignin Model Compounds: Development of Alternative Delignification Strategies...... 161 CLAUDIA CRESTINI and PIETRO TAGLIATESTA I. Introduction ...... 161 II. Lignin ...... 162 A. Occurrence and Biological Role ...... 162 B. Lignin Structure ...... 163 C. Lignin Degradation: Importance of Pulping and Bleaching Processes in the Industrial Production of Paper ...... 163 III. Lignin Degradation Enzymes Containing Porphyrins Prosthetic Group ...... 167 A. Lignin Peroxidase (LiP) ...... 168 B. Manganese Peroxidase (MnP) ...... 169 IV. Models of Lignin Degradation Enzymes...... 171 A. LiP Models ...... 171 B.MnPModels...... 172 V. Metalloporphyrins as Biomimetic Systems for Lignin and Lignin Model Compounds Degradation ...... 174 A. Oxidation of Lignin Model Compounds ...... 175 B. Aerobic Oxidations...... 193 C. Oxidation of Lignin ...... 195 D. Oxidation of Pulps ...... 197 E. Development of Porphyrin-Mediator Systems ...... 198 VI. Conclusions ...... 200 References ...... 201

67 / Biochemistry of Methyl-CoM Reductase and Coenzyme F430 ...... 205 STEPHEN W. RAGSDALE I. Introduction ...... 205 A. Introducing Methanogens and Factor F430...... 205 B. Introducing MCR ...... 206 C. The Genes Encoding MCR ...... 206 D. Discovery of the Nickel Coenzyme F430 ...... 207 E. Structure and Biosynthesis of F430 ...... 208 F. Properties of the MCR Substrates – Methyl-Coenzyme M (Methyl-SCoM) and Coenzyme B ...... 208 II. Isolation and Activation of MCR...... 209 III. Structure of F430 andMCR...... 210 IV. Spectroscopic Studies of MCR ...... 212 A. EPR Spectroscopy...... 212 B. ENDOR Studies ...... 215 C. Cryoreduction of MCR ...... 215 D. X-ray Absorption Studies ...... 217 E. Resonance Raman (RR) Spectroscopy of MCR ...... 218 F. Spectroscopy of MCRox1 versus MCRred1 ...... 220 G. Other Red States of MCR ...... 221 viii Contents

V. Mechanism of Methane Formation by MCR...... 221 A. Steady State and Presteady-State Kinetic Studies ...... 221 B. Presteady-State Kinetic Studies...... 222 C. Mechanisms of Methane Formation ...... 222 VI. Summary and Perspectives for the Future ...... 226 References ...... 226

68 / Structure, Reactions, and Functions of B12 and B12-Proteins ...... 229 BERNHARD KRA¨ UTLER AND SIGRID OSTERMANN I. Introduction ...... 229 II. B12: Structure and Reactivity ...... 231 A. Crystallographic Structural Studies ...... 231 B. Structural Studies of B12-Derivatives by Nuclear Magnetic Resonance (NMR) Spectroscopy...... 238 C. Other Methods Used for Structural Studies of B12-Derivatives ...... 240 III. B12-Electrochemistry ...... 241 A. Thermodynamic Redox Properties of Cobamides ...... 241 B. Kinetic Redox Properties of Cobamides ...... 244 C. Organometallic Electrochemical Synthesis ...... 244 IV. Reactivity of B12-Derivatives in Organometallic Reactions...... 245 V. B12-Cofactors in Enzymatic Reactions ...... 250 A. Occurrence and Structure of Natural Corrinoids ...... 250 B. B12-Dependent Methyl Transferases ...... 251 C. Coenzyme B12-Dependent Enzymes...... 255 D. Other B12-Dependent Enzymatic Reactions...... 268 E. Metabolism Using an Adenosyl Radical not Derived from Coenzyme B12 ...... 269 VI. B12: Medical Aspects...... 269 References ...... 270

Index...... 277 The Porphyrin Handbook

Volume 12 / The Iron and Cobalt Pigments: Biosynthesis, Structure, and Degradation

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 12

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

69 / Regulatory Mechanisms of Eukaryotic Tetrapyrrole Biosynthesis ...... 1 BERNHARD GRIMM I. Introduction ...... 2 A. The Variety of Tetrapyrroles ...... 2 B. Conservation and Complexity of the Metabolic Regulation in the Tetrapyrrole Biosynthetic Pathway . 3 II. Differences and Similarities of the Metabolic Pathway in Animals and Plants ...... 4 A. Regulatory Principles ...... 4 B. Two Pathways to Synthesize the Unique Precursor 5-Aminolevulinic Acid...... 5 C. The Entire Metabolic Chain of Tetrapyrrole Biosynthesis in Animals and Plants ...... 6 D. Compartmentation of Tetrapyrrole Biosynthesis ...... 6 III. Control of Mammalian Heme Synthesis...... 7 A. Metabolic Control at the Early Steps of the Pathway ...... 7 B. Control of ALA Synthase Expression in Erythroid and Hepatic Cells...... 8 C. Summary ...... 9 IV. Control of Plant Tetrapyrrole Biosynthesis ...... 9 A. Introduction ...... 9 B. The Rate-Limiting Step: 5-Aminolevulinic Acid Synthesis ...... 10 C. Porphyrin Synthesis ...... 12 D. Mg-Chelatase...... 13 E. Fe-Chelatase ...... 15 F. Protochlorophyllide Oxidoreductase...... 16 V. The Regulatory Network ...... 17 A. The Significance of Regulation of Tetrapyrrole Biosynthesis and Symbiotic Interaction Between Plants and Soil Bacteria ...... 17 B. Photosensitization by Porphyrins ...... 18 C. Porphyrin and Heme Transport ...... 20 D. Control of Porphyrin IX Distribution into the Mg-Protoporphyrin- and Fe-Protoporphyrin-Synthesizing Pathway...... 21 E. Negative Regulation of the Rate-Limiting Step of 5-Aminolevulinic Acid Synthesis by Feedback Control ...... 21 F. Tetrapyrrole Biosynthesis Monitors Plastid Development and Directs Nuclear Gene Expression . .... 23 G. Heme and Tetrapyrrole Metabolites as Signaling Molecules ...... 24 H. Interaction Between Phytochrome and Plastid Signaling ...... 26 VI. Conclusion...... 26 References ...... 29

70 / The Biosynthesis of Coproporphyrinogen III ...... 33 PETER M. SHOOLINGIN-JORDAN I. Introduction ...... 34 II. The Biosynthesis of 5-Aminolaevulinic Acid ...... 34 A. 5-Aminolaevulinic Acid Synthase...... 34 B. The C5 Pathway for the Biosynthesis of 5-Aminolaevulinic Acid ...... 40 III. The Transformation of 5-Aminolaevulinic Acid into Uroporphyrinogen III...... 44 A. 5-Aminolaevulinic Acid Dehydratase ...... 46 B. Porphobilinogen Deaminase ...... 55 C. Uroporphyrinogen III Synthase...... 62

v vi Contents

IV. The Transformation of Uroporphyrinogen III into Coproporphyrinogen III ...... 66 A. Uroporphyrinogen Decarboxylase ...... 66 V. Further Conversion of Coproporphyrinogen III into Haem and Alternative Pathways that Transform Uroporphyrinogen III into Precorrin-2, Sirohaem, Factor F430 and Vitamin B12...... 71 References ...... 72

71 / Coproporphyrinogen III and Protoporphyrinogen IX Oxidases ...... 75 MUHAMMAD AKHTAR I. Coproporphyrinogen III Oxidase...... 75 A. Introduction ...... 75 B. Isolation of and Structural Studies on Coproporphyrinogen III Oxidase ...... 75 C. Anaerobic Coproporphyrinogen III Oxidase ...... 77 D. Gene Nomenclature ...... 78 E. The Order in Which the Propionate Side-Chains are Decarboxylated ...... 78 F. Stereochemical and Mechanistic Studies on Aerobic Coproporphyrinogen III Oxidase ...... 78 G. Concerning the Stereochemistry and Mechanism of the Anaerobic Coproporphyrinogen III Oxidase . 81 H. Coproporphyria ...... 82 II. Protoporphyrinogen IX Oxidase ...... 84 A. Isolation, Genetic, and Structural Studies on Aerobic Protoporphyrinogen IX Oxidase...... 84 B. The Prosthetic Group of Aerobic Protoporphyrinogen IX Oxidase ...... 85 C. Anaerobic Protoporphyrinogen IX Oxidase ...... 85 D. Stereochemical and Mechanistic Studies on Protoporphyrinogen IX Oxidase ...... 85 E. Protoporphyrinogen IX Oxidase is the Site of Action of Herbicides ...... 90 F. Variegate Porphyria ...... 90 References ...... 90

72 / Ferrochelatase ...... 93 HARRY A. DAILEY and TAMARA A. DAILEY I. Background ...... 93 II. Studies on Enzyme Activity ...... 95 A. Cellular Location ...... 95 B. Enzyme Assays...... 95 C. Substrate Specificity ...... 96 D. N-Alkyl Porphyrins and Ferrochelatase ...... 97 E. Effects of Lipids ...... 98 III. Enzyme Mechanism ...... 98 IV. Crystal Structures of Ferrochelatases ...... 99 A. Bacillus subtilis Ferrochelatase...... 99 B. Human Ferrochelatase ...... 101 V. Proposed Enzyme Mechanism ...... 106 VI. Plant Ferrochelatases...... 110 VII. Nonferrochelatase-Catalyzed Metalation ...... 111 VIII. Mammalian Genomic Organization and Regulation ...... 112 IX. Erythropoietic Protoporphyria ...... 113 X. Ferrochelatase and Iron Metabolism ...... 114 XI. Diversity and Ferrochelatase Evolution ...... 115 References ...... 118

73 / The Family of d-Type Hemes: Tetrapyrroles with Unusual Substituents ...... 123 RUSSELL TIMKOVICH I. Introduction ...... 123 II. Heme d1 ...... 124 A. Occurrence, Distribution, and Role in Microbial Nitrite Reduction ...... 124 B. Structure Determination by Isolation and Chemical Spectroscopy ...... 125 Contents vii

C. In Vitro Synthesis of the d1 Macrocycle ...... 126 D. Chemical Properties of the Macrocycle...... 128 E. Crystallography of cyt cd1 ...... 129 F. Why Heme d1? ...... 132 G. Biosynthesis of Heme d1 ...... 134 III. Hemes d ...... 143 A. Structures of the Tetrapyrroles ...... 143 B. Chemical Properties and Synthesis of Hemes d ...... 145 C. Biogenesis and Crystallography of Heme d ...... 146 IV. Honorary d-type Hemes ...... 148 A. Visible Spectroscopy Relations...... 148 B. Sulfheme ...... 149 C. Nitrihemes...... 149 D. Myeloperoxidase Heme ...... 149 E. P460 Heme of Hydroxylamine Oxidoreductase...... 150 F. The Heme of Chlorocruorin and Its Relation to Heme a and Heme o ...... 151 G. Compound 785, a Chlorin Intermediate in Desulfovibrio Tetrapyrrole Biosynthesis ...... 151 V. Concluding Remarks ...... 154 References ...... 154

74 / Biosynthesis and Role of Heme O and Heme A ...... 157 TATSUSHI MOGI I. Variations in Hemes and Related Compounds ...... 158 A. Biosynthesis of Protoheme IX...... 158 B. Covalently Bound Derivatives of Heme B ...... 158 C. Extractable Derivatives of Heme B ...... 158 II. Biosynthesis of Heme O ...... 161 A. Cytochrome bo3-Type Quinol Oxidase from Escherichia coli ...... 161 B. Discovery and Distribution of Heme O ...... 161 C. Genes Encoding Heme O Synthase ...... 162 D. Localization and Expression of Heme O Synthase ...... 162 E. In Vitro Heme O Synthesis by the CyoE/CtaB-Overproduced Membranes ...... 164 F. Mechanism of Heme O Synthesis ...... 164 G. Structure and Evolution of Heme O Synthase ...... 165 III. Biosynthesis of Heme A...... 165 A. Heme A Biosynthesis Requires Molecular Oxygen...... 165 B. Heme A Biosynthesis in Bacillus ...... 166 C. Regulation of Heme A Biosynthesis in B. subtilis ...... 167 D. Heme A Biosynthesis in Yeast ...... 167 E. Structure and Evolution of Heme A Synthase ...... 170 F. Enzymatic Mechanism of Heme A Synthesis ...... 172 IV. Role of Farnesylated Hemes...... 174 A. Substrate Specificity at the Heme-Binding Sites ...... 174 B. Role of the Farnesylated Hemes at the Binuclear Center...... 175 V. Organization of Genes Coding the Heme–Copper Terminal Oxidases and Heme O and Heme A Synthases ...... 176 References ...... 177

75 / Heme Oxygenase Structure and Mechanism ...... 183 PAUL R. ORTIZ DE MONTELLANO and KARINE AUCLAIR I. Introduction ...... 183 II. Biological Functions of Heme Oxygenase ...... 185 A. Mammalian Systems ...... 185 B. Plants and Bacteria...... 186 viii Contents

III. Heme Oxygenase Proteins ...... 187 A. Protein Expression ...... 187 B. Proximal Heme Ligand ...... 188 C. Distal Heme Ligand ...... 189 IV. Heme Oxygenase Structure ...... 189 A. Crystal Structures ...... 189 B. Solution Structures ...... 191 V. Interaction with Cytochrome P450 Reductase and Reductive Reactions ...... 192 VI. Small Physiological Ligands ...... 193 VII. Substrate Specificity ...... 194 VIII. Heme Oxygenase Model Systems...... 195 IX. Stage One: -meso-Hydroxylation ...... 196 A. Formation of the Activated Oxygen Species ...... 196 B. Substitution of H2O2 for O2 and Reducing Equivalents...... 197 C. Reaction with Peracids and Alkylhydroperoxides...... 197 D. The Oxidation of -meso-Methyl Heme ...... 199 E. Heme Oxidation Regiochemistry ...... 199 X. Stage Two: -meso-Hydroxyheme to Verdoheme ...... 201 XI. Stage Three: Verdoheme to Biliverdin ...... 203 XII. Heme Oxygenase Kinetics ...... 204 XIII. Implications of Electrophilic Heme Oxidation by an FeIII–OOH Intermediate ...... 205 References ...... 207

76 / Genetic and Mechanistic Exploration of the Two Pathways of Vitamin B12 Biosynthesis ...... 211 A. IAN SCOTT, CHARLES A. ROESSNER, and PATRICIO J. SANTANDER I. Introduction ...... 211 II. Genetics of Cobalamin Biosynthesis ...... 212 A. The Cobalamin Biosynthetic Genes of Pseudomonas denitrificans and Salmonella typhimurium – Evidence for Two Alternate Pathways to Cobalamin ...... 212 III. Comparison of the Aerobic and Anaerobic Pathways to Cobalamin from Aminolevulinic Acid ...... 212 A. The Conversion of ALA to Hydrogenobyrinic Acid (Aerobic Pathway) or Cobyrinic Acid (Anaerobic Pathway)...... 212 B. The Conversion of HBA and Cobyrinic Acid to Cobalamin ...... 222 IV. Genomics of Cobalamin Biosynthesis – Are there Other Variations in the Route to B12? ...... 225 V. Conclusions ...... 227 References ...... 227

Index...... 229 The Porphyrin Handbook

Volume 13 / Chlorophylls and Bilins: Biosynthesis, Synthesis, and Degradation

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents of Volume 13

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

77 / Mechanism, Structure, and Regulation of Magnesium Chelatase ...... 1 ROBERT D. WILLOWS and MATS HANSSON I. Introduction ...... 2 A. Metal Ion Chelatases and Naturally Occurring Metalated Tetrapyrroles ...... 2 II. Chemical Considerations for Magnesium Insertion into Porphyrins...... 4 III. Assay, Purification, and Properties of Magnesium Chelatase ...... 6 A. In Vivo and In Organello Assays ...... 6 B. In Vitro Assays ...... 8 C. Optimal Subunit Stoichiometry and Kinetic Parameters ...... 11 IV. Identification and Characterization of Genes for Magnesium Chelatase ...... 14 A. Mutants: Plant, Algae, and Bacteria ...... 14 B. Magnesium Chelatase Genes...... 24 C. Regulation of Gene Expression ...... 25 V. Properties and Structure of Magnesium Chelatase...... 30 A. ATPase Activity of Magnesium Chelatase Subunits...... 30 B. I and D Proteins...... 31 C. H Subunits...... 34 D. Interaction of Subunits ...... 37 E. Inhibition of Magnesium Chelatase ...... 38 VI. A Model for Magnesium Chelatase Activity ...... 39 A. Magnesium Insertion...... 39 B. Regulation ...... 41 VII. Other Aspects...... 41 A. Localization of Magnesium Chelatase in Higher Plant Chloroplasts ...... 41 B. Plastid Nuclear Factor and Involvement of Magnesium Chelatase in Plastid Development...... 42 C. Comparison of Other Metal Ion Chelatases with Magnesium Chelatase ...... 43 References ...... 43

78 / Intermediate Steps in Chlorophyll Biosynthesis: Methylation and Cyclization...... 49 DAVID W. BOLLIVAR I. Introduction ...... 49 II. Characteristics and Analysis of Intermediates ...... 50 A. Absorbance ...... 50 B. Fluorescence ...... 52 C. Chromatography...... 53 III. Genetics ...... 53 A. General Pathway Analysis ...... 53 B. S-Adenosyl-L-Methionine : Mg-Protoporphyrin IX Methyltransferase ...... 53 C. Mg-Protoporphyrin IX Monomethyl Ester Cyclase ...... 55 IV. Biochemistry ...... 58 A. Methyltransferase ...... 58 B. Mg-Protoporphyrin IX Monomethyl Ester Cyclase ...... 61 V. Future Directions ...... 67 A. Methyltransferase ...... 67 B. Cyclases ...... 67 VI. Conclusions ...... 67 References ...... 68

v vi Contents

79 / The Last Steps of Chlorophyll Synthesis ...... 71 W. RU¨ DIGER I. Introduction ...... 71 II. Reduction of Protochlorophyllide to Chlorophyllide ...... 73 A. NADPH:Protochlorophyllide Oxidoreductase (POR)...... 73 B. Early Investigation on Protochlorophyllide and Protochlorophyllide Holochrome ...... 74 C. POR Genes ...... 76 D. The POR Protein ...... 77 E. Substrates and Cosubstrates ...... 79 F. Are There Parallel Pathways of Chlorophyll Synthesis? ...... 81 III. Formation of Chlorophyll b ...... 83 A. Evolution of the Pathway to Chlorophyll b ...... 83 B. Labeling Experiments ...... 84 C. Protochlorophyllide b and Protochlorophyll b ...... 85 D. Chlorophyllide a Oxygenase (CAO) ...... 86 IV. Reduction of Chlorophyll b to Chlorophyll a ...... 89 A. Chemical Reduction of the Formyl Group...... 89 B. Physiological Reduction of the Formyl Group ...... 90 V. Esterification of Chlorophyllides ...... 92 A. Chlorophyllase...... 92 B. Chlorophyll Synthase ...... 93 C. Esterification of Bacteriochlorophyllides and Analogues with Bacteriochlorophyll Synthases ...... 102 VI. Conclusions ...... 104 References ...... 105

80 / The Light-Independent Protochlorophyllide Reductase: A Nitrogenase-Like Enzyme Catalyzing a Key Reaction for Greening in the Dark ...... 109 YUICHI FUJITA and CARL E. BAUER I. Introduction ...... 110 II. The Protochlorophyllide Reduction in Biosynthesis of Chlorophyll and Bacteriochlorophyll ...... 111 A. Nomenclature of Protochlorophyllide ...... 111 B. The Reaction of Protochlorophyllide Reduction...... 111 III. Brief Overview of the Light-Dependent Protochlorophyllide Reductase ...... 112 IV. Historical Perspective of the Light-Independent Protochlorophyllide Reductase ...... 113 A. Observation of Light-Independent Greening in Gymnosperms...... 113 B. Finding of Genes for Light-Independent Pchlide Reduction...... 113 V. Distribution of the chlLNB Genes among Phototrophs ...... 114 VI. Characteristics of the chlLNB Genes in Various Phototrophs ...... 118 A. The bchLNB Genes ...... 118 B. The chlLNB Genes ...... 118 C. Multiple Loss Events of the chlLNB Genes During the Evolution of Chloroplasts...... 124 VII. Regulation of the Light-Independent Protochlorophyllide Reductase...... 125 A. Oxygen Regulatory Circuits – Photosynthetic Bacteria ...... 125 B. Oxygenic Phototrophs: Two Protochlorophyllide Reduction Systems ...... 126 C. Angiosperms: Possible Presence of a Second Light-Independent Protochlorophyllide Reductase . . . . . 133 VIII. Similarities to Nitrogenase Subunits ...... 133 A. Nitrogenase ...... 133 B. Similarity between BchL/ChlL and NifH (Fe Protein) ...... 134 C. Similarity among BchN/ChlN, BchB/ChlB, NifD, and NifK Proteins ...... 137 D. Chlorophyllide Reductase (BchX, BchY, and BchZ) ...... 146 IX. Biochemistry of the Light-Independent Protochlorophyllide Reductase: Nitrogenase-like Features ...... 146 A. Over-Expression System and Purification of the Subunits ...... 147 B. Initial Characterization of the Light-Independent Protochlorophyllide Reductase...... 147 C. How a Nitrogenase-like Enzyme Operates in Oxygenic Phototrophs ...... 150 Contents vii

X. Evolutionary Implication: Conversion from Bacteriochlorophyll to Chlorophyll and Oxygenic Photosynthesis...... 150 XI. Perspective...... 152 References ...... 152

81 / Chlorosome Chlorophylls (Bacteriochlorophylls c, d, and e): Structures, Partial Syntheses, and Biosynthetic Proposals ...... 157 KEVIN M. SMITH I. Introduction ...... 157 II. Gross Structural Assignments ...... 158 III. Nomenclature...... 162 A. Nyborg Nomenclature Protocols ...... 163 IV. Detailed Structural Assignments ...... 163 V. Chemical Interconversions of the Chl a, b and BChl c, d,ande Series...... 168 A. Phe a into BPhe d ...... 168 B. BPhe d into BPhe c ...... 168 C. BPhe e into BPhe c ...... 169 D. Phe b into BPhe f ...... 169 E. BPhe d into Bacteriopetroporphyrins ...... 170 VI. Biological Transformations of the BChl d into BChl c ...... 172 VII. Biosynthetic Results and Hypotheses...... 174 References ...... 180

82 / Chlorophyll Breakdown and Chlorophyll Catabolites ...... 183 BERNHARD KRA¨ UTLER I. Introduction ...... 183 II. Chlorophyll Breakdown and Chlorophyll Catabolites in Vascular Plants ...... 185 A. Early Events in Chlorophyll Breakdown ...... 185 B. Central Steps of Chlorophyll Breakdown...... 188 C. Late Stages of Chlorophyll Breakdown ...... 196 D. Subcellular Organization of Chlorophyll Breakdown ...... 203 E. Regulation of Chlorophyll Breakdown in Higher Plants ...... 203 F. Chlorophyll Breakdown and the Nutrient Economy of Plants ...... 203 III. Chlorophyll Catabolites from the Green Algae Chlorella protothecoides and Chlamydomonas reinhardtii ...... 204 IV. Chlorophyll Catabolites from Marine Organisms ...... 205 V. Porphinoid Remnants of Chlorophylls in Oil ...... 205 VI. Miscellaneous and Conclusions ...... 205 References ...... 207

83 / Biosynthesis and Biological Functions of Bilins ...... 211 NICOLE FRANKENBERG and J. CLARK LAGARIAS I. Introduction ...... 211 A. Natural Occurrence of Bilins ...... 211 B. The Four Biliverdin Isomers...... 212 C. and its Metabolites ...... 212 D. Phytobilins...... 215 E. Bilins Derived from Chlorophyll...... 215 II. Heme-Derived Bilin Biosynthetic Enzymes ...... 217 A. Heme Oxygenases ...... 218 B. NAD(P)H-Dependent BV IX Reductases, BVR-A and BvdR ...... 219 C. Biliverdin IX -Reductase, BVR-B ...... 220 D. Ferredoxin-Dependent Bilin Reductases ...... 221 viii Contents

E. Bilin Isomerases ...... 224 F. Bilin Lyases ...... 224 III. Chlorophyll-Derived Bilin Biosynthetic Enzymes ...... 225 A. pFCC : Ferredoxin Oxidoreductase (RCCR) ...... 225 IV. Bilins as Regulatory Molecules ...... 226 A. Phytochromes: Biliprotein Photoreceptors ...... 226 B. The Extended Phytochrome Family: Bilin Sensors and Photoisomerases ...... 228 C. Bilin Biosynthesis Mutants in Plants ...... 229 D. Induced Bilin Deficiency in Plants: Expression of Mammalian Biliverdin Reductase ...... 230 E. Regulation of Bilin Metabolism in Cyanobacteria...... 230 F. Bilirubin as a Signaling Molecule...... 231 V. Biotechnological Applications of Bilin Metabolism ...... 231 A. In vivo Assembly of Phytochromes and Phycobiliproteins...... 231 B. Phytofluors: A New Family of Phytochrome-Based Fluorescent Biliproteins ...... 232 Note Added in Proof...... 232 References ...... 233

84 / Synthesis of Bilins ...... 237 ALBERT GOSSAUER 1. Introduction ...... 237 II. Total Synthesis of Bile Pigments ...... 238 A. Synthesis of Bilins from Cyclic Tetrapyrroles ...... 238 B. Stepwise Synthesis of Bilins ...... 244 III. Transformations of the Bilin Skeleton ...... 263 A. Reduction of C¼C-Bonds ...... 263 B. Dehydrogenation Reactions...... 263 C. Acid-Catalyzed Rearrangements...... 263 D. Fragmentation of Biliverdin Derivatives at the C10 Bridge ...... 268 IV. Retrospective View and Outlook ...... 268 References ...... 271

Index...... 275 The Porphyrin Handbook

Volume 14 / Medical Aspects of Porphyrins

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 14

Preface ...... xiii Contributors to Volumes 1–20 ...... xv Contents of Volumes 1–20 ...... xxxi

85 / Erythropoietic Disorders Involving Heme Biosynthesis ...... 1 SYLVIA S. BOTTOMLEY I. Introduction ...... 2 II. Sideroblastic Anemias ...... 2 A. Underlying Mechanisms ...... 3 B. Pathophysiology...... 8 C. Clinical Aspects ...... 9 III. Lead Poisoning ...... 12 A. Sources ...... 12 B. Metabolic Effects ...... 12 C. Clinical Features...... 12 D. Diagnosis ...... 13 E. Treatment ...... 13 IV. Porphyrias ...... 13 A. Acute Intermittent Porphyria ...... 13 B. Congenital Erythropoietic Porphyria ...... 13 C. Hepatoerythropoietic Porphyria ...... 13 D. Hereditary Coproporphyria (Harderoporphyria) ...... 14 E. Erythropoietic Protoporphyria ...... 14 V. Iron-Deficient Erythropoiesis ...... 14 A. Iron Lack...... 14 B. Impaired Transport of Iron...... 14 C. Impaired Recycling of Iron ...... 16 VI. Animal Models ...... 16 A. Models of Sideroblastic Anemia...... 16 B. Models of Iron Transport Defects ...... 17 References ...... 18

86 / Acute Intermittent Porphyria: From Clinical to Molecular Aspects ...... 23 JEAN-CHARLES DEYBACH and HERVE´ PUY I. Introduction and Classification of Human Porphyrias ...... 23 II. Acute Intermittent Porphyria...... 23 A. PBG Deaminase Gene and Protein...... 24 B. Prevalence of Acute Intermittent Porphyria ...... 27 C. Clinical Features...... 27 D. Pathophysiology...... 28 E. Precipitating Factors ...... 30 F. Diagnosis of Acute Attacks ...... 31 G. Diagnosis of AIP in Patients and Family Study...... 32 H. Molecular Pathology...... 33 III. Treatment of Acute Attacks ...... 37 IV. Summary ...... 39 References ...... 39

87 / Congenital Erythropoietic Porphyria ...... 43 HUBERT DE VERNEUIL, CE´CILE GED, and FRANC¸ OIS MOREAU-GAUDRY I. Introduction ...... 43

v vi Contents

II. Clinical Findings in CEP ...... 44 A. Cutaneous Signs...... 44 B. Hematological Features...... 44 C. Ocular Involvement ...... 44 D. Bone and Tooth Involvement...... 45 E. Special Features in the Newborn ...... 45 F. Evolution and Prognosis ...... 45 III. Enzymology and Biochemical Findings ...... 46 A. Biochemical Findings ...... 46 B. Hematological Findings ...... 47 C. The Uroporphyrinogen III Synthase (UROIIIS) Enzyme ...... 48 D. The Enzyme Defect in CEP ...... 48 IV. Molecular Biology and Pathology ...... 49 A. cDNA and Genomic Sequences ...... 49 B. Molecular Pathology...... 51 C. Correlations Between Genotype and Phenotype ...... 54 V. Physiopathology ...... 54 A. Isomer I Porphyrin Accumulation...... 54 B. Cutaneous Photosensitivity ...... 56 C. Hemolytic Anemia ...... 57 VI. Diagnosis ...... 57 A. Positive Diagnosis ...... 57 B. Differential Diagnosis ...... 58 VII. Treatment...... 59 A. Skin Protection...... 59 B. Other Symptomatic Treatments ...... 59 C. Bone Marrow Transplantation ...... 59 D. Experimental Gene Therapy ...... 61 References ...... 63

88 / Porphyria Cutanea Tarda and Related Disorders ...... 67 G. H. ELDER I. Introduction ...... 67 A. History and Nomenclature ...... 68 II. The Human UROD Locus...... 69 III. Human Uroporphyrinogen Decarboxylase (UROD) ...... 69 IV. Molecular Pathology and Classification of UROD Deficiency Disorders ...... 70 A. Hepatic UROD ...... 70 B. Classification and Molecular Genetics ...... 71 V. Porphyria Cutanea Tarda ...... 74 A. Prevalence...... 74 B. Clinical Features...... 74 C. Porphyrin Overproduction...... 79 D. Clinical Management ...... 80 E. Pathogenesis ...... 82 VI. Hepatoerythropoietic Porphyria ...... 86 A. Clinical Features...... 86 B. Laboratory Diagnosis ...... 87 C. Treatment and Prognosis ...... 87 References ...... 88

89 / Variegate Porphyria ...... 93 PETER MEISSNER, RICHARD HIFT, and ANNE CORRIGALL I. Introduction ...... 93 II. History and Prevalence ...... 94 Contents vii

III. Heme Biosynthetic Enzymes in Variegate Porphyria (VP) ...... 95 A. The Enzymatic Defect in VP ...... 95 B. Other Heme Synthetic Enzymes in VP ...... 95 C. The Protoporphyrinogen Oxidase (PPO) Gene and its Product ...... 96 D. PPO Mutations...... 97 E. Effects of Mutations in PPO ...... 98 IV. Diagnosis of VP ...... 104 A. Clinical Diagnosis ...... 104 B. Laboratory Diagnosis ...... 104 V. Clinical Features of VP ...... 107 A. Skin Disease ...... 108 B. The Acute Attack ...... 111 C. Other Features of VP ...... 114 VI. Homozygous VP...... 114 A. Clinical Features...... 115 B. Molecular Biology ...... 115 VII. Conclusion...... 117 References ...... 117

90 / Protoporphyria ...... 121 TIMOTHY M. COX I. Protoporphyria ...... 122 II. Definition and History ...... 122 A. Definition ...... 122 B. History ...... 122 III. Prevalence of Protoporphyria ...... 124 IV. Clinical Features ...... 124 A. Skin Disease ...... 124 B. Hepatic Manifestations ...... 126 C. Neuropathy ...... 127 V. Pathological Features of Protoporphyria ...... 127 A. In the Skin...... 127 B. In the Liver ...... 128 C. In Haematopoietic Tissue ...... 128 VI. Biochemical Abnormalities ...... 128 VII. Pathogenesis...... 131 A. Cutaneous Photobiology of Protoporphyria ...... 131 B. Pathogenesis of Tissue Injury ...... 133 VIII. Clinical and Molecular Genetics of Protoporphyria ...... 136 A. Clinical Genetics ...... 136 B. Molecular Genetics of Protoporphyria ...... 137 C. Molecular Analysis of the Ferrochelatase Gene in Relation to Human Protoporphyria...... 139 D. Chromosomal Genetics of Protoporphyria...... 139 E. Transmission of Inherited Murine Protoporphyria...... 139 F. Molecular Structure and Function of Human Ferrochelatase ...... 141 IX. Diagnosis of Protoporphyria ...... 141 X. Treatment...... 141 A. Symptomatic ...... 141 B. Measures to Reduce Protoporphyrin Production ...... 143 C. Measures to Enhance Disposal of Excess Protoporphyrin ...... 143 D. Liver Transplantation ...... 143 XI. Future Directions in Protoporphyria Research ...... 144 XII. Summary ...... 145 References ...... 146 viii Contents

91 / Miscellaneous Abnormalities in Porphyrin Production and Disposal ...... 151 RICHARD HIFT and PETER MEISSNER I. Introduction ...... 151 II. Porphyrin Excretion in Bile and Urine...... 152 III. Secondary Porphyrinopathies ...... 152 A. Hepatobiliary Disease...... 153 B. Alcohol and Porphyrin Metabolism ...... 153 IV. The Bronze Baby Syndrome...... 154 V. The Multiple Chemical Sensitivity Syndrome ...... 154 VI. Porphyrin Abnormalities in Response to Lead and Other Industrial Toxins ...... 154 A. Effects of Lead Poisoning on Hematopoietic Enzyme Activity ...... 154 B. Clinical Features of Lead Poisoning ...... 155 C. Use of Porphyrin Detection for Monitoring of Lead Poisoning...... 155 D. Effect of Other Heavy Metals on Heme Synthesis ...... 155 E. Industrial Exposure to Other Agents ...... 156 VII. Pseudoporphyria ...... 156 A. Drug-Associated Pseudoporphyria ...... 156 B. Sunbed Pseudoporphyria...... 158 C. Pseudoporphyria Associated with the Consumption of Brewers’ Yeast ...... 158 VIII. Disturbances in Porphyrin Metabolism and Excretion Associated with Renal Disease...... 158 A. Porphyrin Abnormalities in Renal Failure ...... 158 B. Effects of Dialysis on the Porphyrin Abnormalities of Renal Failure ...... 159 C. Pathogenesis of the Altered Porphyrin Profiles Associated with Renal Failure ...... 159 D. Role of Aluminium in the Disturbed Porphyrin Metabolism Associated with Renal Failure...... 161 E. Therapy of End-Stage Renal Disease Associated Pseudoporphyria ...... 161 IX. Porphyrin Disturbances in Carcinomatosis...... 162 A. Pathogenesis of Hepatocellular Carcinoma (HCC) in Acute ...... 162 X. Familial Conjugated Hyperbilirubinaemias ...... 163 A. Abnormalities in Porphyrin Excretion in the Familial Conjugated Hyperbilirubinaemias...... 163 B. Dubin–Johnson Syndrome ...... 163 C. Rotor’s Syndrome ...... 164 References ...... 165

92 / Porphyria Caused by Chlorinated AH Receptor Ligands and Associated Mechanisms of Liver Injury and Cancer ...... 169 ANDREW G. SMITH I. Introduction ...... 170 II. Known Porphyrogenic Polyhalogenated Aromatic Chemicals ...... 170 A. Chemical Families ...... 170 B. General Toxicity Characteristics of Polyhalogenated Aromatics ...... 172 C. Metabolism ...... 173 D. Interaction with the AH Receptor and Gene Expression ...... 173 III. Porphyria and Porphyrinuria in Man ...... 176 A. Porphyria Induced by Hexachlorobenzene ...... 176 B. Polyhalogenated Biphenyls ...... 179 C. Polychlorinated Dibenzo-p-Dioxins ...... 180 D. Comparison Between Polyhalogenated Aromatics in Humans...... 181 IV. Experimental Porphyria in Animals by Polyhalogenated Aromatic Chemicals ...... 182 A. Basic Studies ...... 182 B. Porphyrins that Accumulate...... 184 C. Modification of Response by Intrinsic Factors ...... 186 V. Metabolic Responses...... 190 A. Modulation of Heme Synthesis and Degradation ...... 190 Contents ix

B. Synthesis and Metabolism of Hemoproteins ...... 193 C. Iron Metabolism ...... 194 VI. Mechanistic Hypotheses of Uroporphyria ...... 195 A. Oxidation of Uroporphyrinogen...... 195 B. Inhibition of Uroporphyrinogen Decarboxylase ...... 195 VII. Liver Injury and Cancer Associated with Porphyria...... 198 A. Liver Injury ...... 198 B. Possible Link with Hepatocellular Carcinoma ...... 199 VIII. Summary ...... 203 References ...... 204

93 / Porphyria: A Diagnostic Approach ...... 211 FELIX W. M. DE ROOIJ, ANNIE EDIXHOVEN, and J. H. PAUL WILSON I. Introduction ...... 212 II. Approach to the Diagnosis of the Porphyrias ...... 215 A. Acute Attack Porphyrias ...... 215 B. Cutaneous Porphyrias ...... 219 C. Secondary Porphyrinurias ...... 228 D. Problems with Classification of Porphyric Patients ...... 230 III. Quantitation of Biochemical Parameters in the Porphyrias ...... 231 A. Urine Porphobilinogen (PBG) and Delta-Aminolevulinic Acid (ALA) ...... 231 B. Urinary Porphyrins by High-Performance Liquid Chromatography...... 232 C. Extraction of Porphyrin Free Acids from Feces and Measurement by Reversed Phase High-Performance Liquid Chromatography ...... 233 D. Fluorimetric Scanning of Serum and Plasma Porphyrins for the Diagnosis and Typing of Porphyrias ...... 234 E. Determination of Delta-Aminolevulinic Acid (ALA) and Porphobilinogen (PBG) in Plasma by Fluorimetric Enzyme Assay ...... 234 F. Free Protoporphyrin and Zinc Protoporphyrin in Erythrocytes by High-Performance Liquid Chromatography ...... 236 G. Delta-Aminolevulinic Acid Dehydratase (ALA-D) in Erythrocytes...... 236 H. Porphobilinogen Deaminase in Erythrocytes ...... 237 I. Porphobilinogen Deaminase Assay in Lymphoblastoid Cell Lines ...... 238 J. Uroporphyrinogen Decarboxylase in Erythrocytes ...... 239 K. Coproporphyrinogen III Oxidase Assay in Lymphoblastoid Cell Lines ...... 240 L. Protoporphyrinogen IX Oxidase in Lymphoblastoid Cell Lines ...... 241 M. Ferrochelatase in Lymphoblastoid Cell Lines or Biopsies ...... 242 References ...... 243

94 / Approaches to Treatment and Prevention of Human Porphyrias ...... 247 KARL E. ANDERSON I. Introduction ...... 248 II. Classification of Human Porphyrias—as Related to Treatment ...... 248 III. Acute Intermittent Porphyria...... 248 A. Potential Mechanisms for Neurologic Effects—Treatment Implications ...... 249 B. Factors that Precipitate Acute Attacks ...... 250 C. Specific Therapies—Glucose and Heme ...... 250 D. General and Supportive Therapy ...... 253 E. Management of Long Term Complications ...... 253 F. Other Therapies ...... 254 G. Treatment of Seizures in Acute Porphyrias ...... 254 H. Treatment Approaches that Address Factors that Precipitate Attacks...... 254 I. Prevention of Acute Attacks...... 258 x Contents

IV. 5-Aminolevulinic Acid Dehydratase-Deficient (ALAD) Porphyria ...... 259 A. Treatment and Prevention ...... 259 V. Congenital Erythropoietic Porphyria ...... 260 A. Treatment and Prevention ...... 260 VI. Porphyria Cutanea Tarda ...... 261 A. Treatment and Prevention ...... 262 B. Porphyria Cutanea Tarda Associated with End-Stage Renal Disease...... 268 VII. Hepatoerythropoietic Porphyria ...... 269 A. Treatment and Prevention ...... 269 VIII. Hereditary Coproporphyria ...... 269 A. Treatment and Prevention ...... 270 IX. Variegate Porphyria...... 270 A. Treatment and Prevention ...... 271 X. Erythropoietic Protoporphyria ...... 271 A. Treatment and Prevention ...... 273 B. Treatment and Prevention of Liver Complications ...... 273 C. Bone Marrow Transplantation and Gene Therapy ...... 274 XI. Dual Porphyria ...... 275 XII. Porphyria Due To Tumors ...... 275 References ...... 275

95 / Management and Treatment of the Porphyrias ...... 285 J. H. P. WILSON and F. W. M. DE ROOIJ I. Introduction ...... 285 II. Treatment of the Acute Porphyric Attack ...... 286 A. The Acute Porphyric Attack...... 286 B. Specific Treatment of Acute Porphyric Attacks ...... 287 C. Supportive Measures...... 289 III. Treatment of the Cutaneous Porphyrias ...... 291 A. Porphyria Cutanea Tarda (PCT) ...... 291 B. Erythropoietic Protoporphyria (EPP) ...... 293 C. Variegate Porphyria ...... 295 D. Congenital Porphyria ...... 295 IV. Conclusion...... 295 Appendix ...... 295 References ...... 300

96 / Porphyria: A Toxicogenetic Disease ...... 303 RICHARD J. HIFT, PETER N. MEISSNER and MICHAEL R. MOORE I. Introduction ...... 304 II. Drugs and the Acute Porphyrias ...... 305 III. Chemicals and Porphyria...... 306 A. Allylisopropyl Acetamide (AIA) ...... 306 B. N-Alkylation of Heme by DDC ...... 307 C. Porphyrinogenesis by Halogenated Aromatic Hydrocarbons ...... 307 IV. Drug-Induced Neuropathy ...... 308 V. The Effect of Age on Drug Metabolism ...... 308 VI. Identification of Unsafe Drugs ...... 308 VII. Recommendations on Drug Safety ...... 309 VIII. Drug Categories: Specific Points ...... 310 A. Infections...... 310 B. Cardiovascular Medication ...... 325 C. Lipid Lowering Agents ...... 325 D. Analgesics and Antiinflammatories ...... 326 Contents xi

E. Neurological and Psychiatric Practice...... 327 F. Gastroenterological Practice ...... 330 G. Diabetes and Endocrinology ...... 330 H. Dermatology ...... 332 I. Drugs Used in Pulmonological Practice ...... 332 2. Beta 2 Stimulants...... 332 J. Anaesthesia ...... 332 K. Antineoplastic Agents ...... 333 L. Immunosuppressive Agents ...... 334 IX. Homeopathic Remedies...... 334 X. Impact of Drugs of Abuse ...... 335 A. Alcohol ...... 335 B. Smoking ...... 335 C. Other Drugs of Abuse...... 335 References ...... 335

Index...... 339 The Porphyrin Handbook

Volume 15 / Phthalocyanines: Synthesis

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 15

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

97 / Synthesis of Phthalocyanine Precursors...... 1 WESLEY M. SHARMAN and JOHAN E. VAN LIER I. Introduction ...... 1 II. Phthalocyanine Precursors ...... 4 III. Phthalonitriles...... 5 A. Ammonolysis/Dehydration of Phthalic Acid Derivatives ...... 6 B. Rosenmund–von Braun Reaction ...... 11 C. Palladium-Catalyzed Cyanation of Aryl Triflates ...... 16 D. Diels–Alder and Other Cycloaddition Reactions ...... 19 E. Modification of Substituted Phthalonitriles ...... 26 IV. Diiminoisoindolines ...... 45 V. Novel Designed Phthalocyanine Precursors ...... 47 VI. Other Phthalic Acid Derivatives ...... 49 VII. Aza Derivatives ...... 49 VIII. Other Phthalocyanine Precursors ...... 51 IX. Conclusion...... 53 References ...... 53

98 / The Synthesis of Symmetrical Phthalocyanines ...... 61 NEIL B. McKEOWN I. Introduction ...... 61 II. Part I. General Aspects of Phthalocyanine Synthesis ...... 62 A. The Development of Phthalocyanine Synthesis ...... 62 B. Methods of Phthalocyanine Synthesis ...... 63 C. Mechanistic Aspects of Phthalocyanine Formation...... 67 D. Methods of Purification...... 68 E. Phthalocyanine Characterisation ...... 69 III. Part II. A Survey of Symmetrical Phthalocyanines ...... 69 A. Introduction and Explanation of the Tables ...... 69 B. Concluding Remarks...... 116 References ...... 116

99 / Design and Synthesis of Low-Symmetry Phthalocyanines and Related Systems ...... 125 M. SALOME´ RODRI´GUEZ-MORGADE, GEMA DE LA TORRE, and TOMA´ S TORRES I. Introduction ...... 125 II. General Synthetic Methods for the Preparation of Unsymmetrically Substituted Phthalocyanines ...... 126 A. Synthesis of A3B Phthalocyanines ...... 126 B. Synthesis of A2B2 Phthalocyanines ...... 129 III. Unsymmetrically Functionalized Phthalocyanines for the Construction of Complex Systems...... 131 A. Ethynyl- and Ethenyl-Linked Binuclear Phthalocyanine Systems ...... 132 B. Phthalocyanines Bound to Electroactive Subunits ...... 136 IV. Synthesis of Chiral Phthalocyanines ...... 138 V. Synthesis of Low-Symmetry Phthalocyanine Related Systems...... 141 A. Subphthalocyanines ...... 142 B. Synthesis of Intrinsically Unsymmetrical A3B Macrocycles ...... 142 C. Synthesis of A2B2 Macrocycles ...... 146 D. Miscellaneous ...... 152

v vi Contents

VI. Conclusions ...... 154 Note Added in Proof...... 154 References ...... 155

100 / Synthesis and Spectroscopic Properties of Phthalocyanine Analogs ...... 161 NAGAO KOBAYASHI I. Introduction ...... 162 II. 1,2-Naphthalocyanines ...... 162 III. 2,3-Naphthalocyanines ...... 175 A. Synthesis, X-Ray, NMR and IR Spectroscopies...... 175 B. Electronic Absorption, MCD and Emission Spectroscopies and MO Calculations ...... 179 C. Electrochemistry ...... 181 D. Other Properties ...... 182 IV. Anthracocyanines ...... 182 A. Synthesis ...... 182 B. Properties ...... 183 V. Phenanthrocyanine, Triphenylocyanine, and Fluoranthrocyanine ...... 184 VI. Tetrapyridoporphyrazines...... 186 A. Synthesis ...... 186 B. Properties ...... 187 VII. Tetrapyrazinoporphyrazines, Their Related Derivatives, and Analogs ...... 191 A. Synthesis and X-Ray Data ...... 191 B. NMR and IR Spectroscopies ...... 195 C. Electrochemistry ...... 195 D. Electronic Absorption, CD and MCD Spectroscopies ...... 199 VIII. Thiophenoporphyrazines and Dithioleporphyrazines ...... 205 IX. 9,10-Anthraquinocyanines ...... 206 X. Unsymmetrical Tetraazaporphyrins ...... 207 A. Synthesis ...... 207 B. X-Ray Data ...... 215 C. NMR and IR Spectroscopy ...... 216 D. Electronic Absorption, MCD, and Other Spectroscopies ...... 225 E. Electrochemistry ...... 232 XI. Tetraarenoazaporphyrins ...... 233 A. Synthesis and X-Ray Data ...... 233 B. Properties ...... 235 XII. Superphthalocyanines ...... 239 XIII. Subphthalocyanines ...... 241 A. Synthesis ...... 241 B. X-Ray Data and NMR and IR Spectroscopies ...... 244 C. Electronic Absorption, MCD, CD and Fluorescence Emission Spectroscopies ...... 248 D. Molecular Orbital Calculations ...... 253 E. Electrochemistry ...... 254 F. Other Properties ...... 254 XIV. Tetrabenzotriazacorrole ...... 254 XV. Other Phthalocyanine Analogs of Interest ...... 255 XVI. Concluding Remarks ...... 257 References ...... 257

101 / Porphyrazines with Annulated Heterocycles ...... 263 PAVEL A. STUZHIN and CLAUDIO ERCOLANI I. Introduction ...... 264 A. Scope of the Chapter ...... 264 B. Historical Background...... 264 Contents vii

C. Nomenclature ...... 265 D. General Synthetic Pathways ...... 267 E. Theoretical Considerations ...... 270 II. Porphyrazines with Annulated 5-Membered Heterocycles...... 274 A. N-Containing Heterocycles ...... 274 B. O- and O,N-Containing Heterocycles...... 279 C. S-Containing Heterocycles ...... 279 D. S,N- and Se,N-Containing Heterocycles ...... 285 III. Porphyrazines with Annulated 6-Membered Heterocycles...... 302 A. 2,3-Pyridoporphyrazines ...... 303 B. 3,4-Pyridoporphyrazines ...... 326 C. Pyrazinoporphyrazines ...... 331 D. Pyridazinoporphyrazines ...... 348 E. Pyrimidino- and Quinazolinoporphyrazines ...... 349 IV. Porphyrazines with Annulated 7-Membered Heterocycles...... 350 A. Diazepinoporphyrazines ...... 350 B. Benzodiazepinoporphyrazines ...... 355 V. Appendix A: Alphabetic List of Abbreviations Used in This Chapter...... 355 VI. Appendix B ...... 355 A. Synthetic Procedures ...... 355 References ...... 359

Index...... 365 The Porphyrin Handbook

Volume 16 / Phthalocyanines: Spectroscopic and Electrochemical Characterization

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents of Volume 16

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

102 / The Photophysical Properties of Phthalocyanines and Related Compounds ...... 1 KAZUYUKI ISHII and NAGAO KOBAYASHI I. Introduction ...... 1 II. Phthalocyanines with Closed-Shell Central Atoms ...... 2 A. General Features of Luminescence...... 4 B. General Features of Transient Absorption ...... 4 C. Effects of Substituents, Isotope and Oxidation ...... 8 D. Time-Resolved Electron Paramagnetic Resonance (TREPR) ...... 8 III. Phthalocyanines with an Open-Shell Central Metal ...... 10 A. Luminescent Diamagnetic Phthalocyanine Complexes ...... 11 B. Luminescent Paramagnetic Phthalocyanine Complexes ...... 13 C. Non-Luminescent Phthalocyanine Complexes ...... 14 IV. Phthalocyanine Derivatives and Related Compounds ...... 15 A. Effect of Changes in the  System and meso-Nitrogens ...... 15 B. Low-Symmetrical Phthalocyanine Derivatives ...... 20 V. Phthalocyanine Dimers and Oligomers ...... 23 A. Basic Theory of Exciton and Charge Resonance Interactions...... 23 B. Luminescence and Transient Absorption of Phthalocyanine Dimers...... 25 C. Time-Resolved Electron Paramagnetic Resonance of Phthalocyanine Dimers ...... 26 D. Phthalocyanine Oligomers ...... 29 E. Phthalocyanine-Porphyrin Heterooligomers...... 31 VI. Characteristic Excited-State Dynamics ...... 35 A. Photophysical Properties of Phthalocyanines Linked to Nitroxide Radicals ...... 35 B. Violet Emission ...... 38 C. Singlet-Oxygen-Sensitized Delayed Fluorescence (SOSDF) ...... 39 D. Electrogenerated Chemical Luminescence (ECL) ...... 39 References ...... 40

103 / Electronic Structures of Metal Phthalocyanine and Porphyrin Complexes from Analysis of the UV–Visible Absorption and Magnetic Circular Dichroism Spectra and Molecular Orbital Calculations ..... 43 JOHN MACK and MARTIN J. STILLMAN I. Introduction ...... 44 A. Nomenclature, Abbreviations, and Definitions...... 45 II. Background to the Origins of the Optical Spectrum ...... 47 A. Molecular Orbital Models of the -System ...... 47 B. Spectral Analysis of Porphyrins and Phthalocyanines ...... 49 III. Magnetic Circular Dichroism Spectroscopy ...... 53 IV. Spectral Band Deconvolution...... 55 A. Background ...... 55 B. Simpfit ...... 56 C. Rigid Shift Assumption ...... 59 V. Molecular Orbital Calculations...... 61 A. ZINDO/s Calculations...... 61 B. DFT-Based Calculations ...... 62 VI. Optical Spectroscopy of Main Group Metal Phthalocyanines ...... 62 A. MIIPc(2)...... 62 B. [MIIPc(1)]þ ...... 66

v vi Contents

C. [MIIPc(3)] ...... 69 D. [MIIPc(4)]2 ...... 72 E. [MIIPc(5)]3 and [MIIPc(6)]4 ...... 73 F. Band Assignments for [MIIPc(3)],[MIIPc(4)]2,[MIIPc(5)]3,and[MIIPc(6)]4 ...... 74 VII. Optical Spectroscopy of Transition Metal Phthalocyanines ...... 79 A. Overview ...... 79 B. FeIIPc(2)...... 84 C. RuIIPc(2)...... 95 D. FeIIIPc(2)...... 98 E. [FeIIIPc(1)]2þ ...... 107 F. [RuIIPc(1)]þ ...... 111 VIII. Conclusions ...... 112 References ...... 113

104 / Electrochemistry of Phthalocyanines ...... 117 MAURICE L’HER and ANNIG PONDAVEN I. Introduction ...... 118 II. Electrochemistry of Phthalocyanines ...... 119 A. Metal-Free Phthalocyanines...... 121 B. Group 1 Phthalocyanines: Lithium ...... 126 C. Group 2 Phthalocyanines: Magnesium, Barium ...... 134 D. Group 3 Phthalocyanines: Lanthanides and Actinides ...... 134 E. Group 4 Phthalocyanines: Titanium, Zirconium, Hafnium ...... 140 F. Group 5 Phthalocyanines: Vanadium ...... 141 G. Group 6 Phthalocyanines: Chromium, Molybdenum ...... 141 H. Group 7 Phthalocyanines: Manganese, Rhenium ...... 142 I. Group 8 Phthalocyanines: Iron, Ruthenium, Osmium...... 143 J. Group 9 Phthalocyanines: Cobalt, Rhodium, Iridium ...... 146 K. Group 10 Phthalocyanines: Nickel, Palladium, Platinum ...... 150 L. Group 11 Phthalocyanines: Copper, Silver ...... 151 M. Group 12 Phthalocyanines: Zinc, Cadmium, Mercury ...... 151 N. Group 13 Phthalocyanines: Aluminum, Gallium, Indium, Thallium ...... 152 O. Group 14 Phthalocyanines: Silicium, Germanium, Tin, Lead ...... 153 P. Group 15 Phthalocyanines: Phosphorus, Arsenic, Antimony, Bismuth ...... 155 III. Applications Derived from the Redox Properties ...... 155 A. Electrocatalysis...... 155 B. Electroanalysis and Sensors ...... 160 IV. Conclusion...... 163 References ...... 163

105 / Lanthanide Phthalocyanine Complexes ...... 171 RAYMOND WEISS and JEAN FISCHER Preliminary Remarks ...... 172 I. General Introduction ...... 172 II. Scope of the Chapter...... 175 III. Lanthanide Mono-Phthalocyanine Mixed-Ligand Complexes ...... 175 A. Introduction ...... 175 B. Syntheses...... 176 C. Formation of 2 : 1 : 4 Lanthanide Phthalocyaninate -Diketonate Complexes...... 179 D. Formation of 1 : 1 : 2 Lanthanide Phthalocyanine -Cation Radical -Diketonate Complexes ...... 179 E. Structural Information ...... 180 F. Optical Properties...... 180 G. Vibrational Characteristics...... 183 H. Magnetic Properties ...... 184 Contents vii

I. Redox Properties ...... 184 J. Applications...... 185 IV. Lanthanide Bis-Phthalo- and Naphthalo-Cyanine Complexes...... 185 A. Introduction ...... 185 B. Syntheses...... 186 C. Water-Soluble Complexes ...... 190 D. A Note on the Nature of the Green and Blue Forms ...... 190 E. Structural Information ...... 192 F. Optical Properties...... 198 G. Vibrational Characteristics...... 212 H. Magnetic Properties ...... 218 I. Mass Spectra ...... 221 J. X-ray Photoelectron Spectra ...... 221 K. Redox Properties ...... 222 V. Bis-Lanthanide Tris-Phthalo- and Naphthalo-Cyaninate Complexes ...... 232 A. Introduction ...... 232 B. Syntheses...... 233 C. Structural Information ...... 233 D. Optical Properties...... 234 E. Vibrational Characteristics...... 237 F. Magnetic Properties ...... 237 G. Mass Spectra ...... 237 H. Redox Properties ...... 238 VI. Applications of 1 : 2 and 2 : 3 Lanthanide Phthalo- and Naphthalo-Cyaninate Complexes...... 238 A. Introduction ...... 238 B. Electrochromic Displays ...... 239 C. Conducting Materials ...... 239 D. Gas Sensors ...... 240 E. Field Effect Transistors...... 241 F. Optical Nonlinear Materials ...... 241 G. Liquid Crystalline Molecular Semiconductors ...... 242 H. Molecular Electronic Components for Information Storage and Processing ...... 242 References ...... 242

106 / Photoelectrochemical Reactions at Phthalocyanine Electrodes ...... 247 D. SCHLETTWEIN, N. I. JAEGER, and T. OEKERMANN I. Introduction ...... 247 II. Basic Concepts ...... 248 A. Semiconductor Photoelectrochemistry ...... 248 B. Preparation of Thin Films ...... 251 C. Semiconductor Characteristics of Phthalocyanines ...... 253 D. Position of Frontier Energy Levels in Phthalocyanines ...... 254 III. Photocurrent Direction at Phthalocyanine Electrodes ...... 259 A. Conduction Type of Phthalocyanine Electrodes ...... 260 B. Role of Higher Excited States...... 262 IV. Reactant Adsorption ...... 264 V. Surface States ...... 267 A. Fermi-Level Pinning (FLP) ...... 267 B. The Role of Surface States Investigated by Dynamic Photoelectrochemical Methods ...... 268 VI. Sensitization of Oxide Semiconductors by Phthalocyanines...... 275 VII. Outlook ...... 277 References ...... 279

Index...... 285 The Porphyrin Handbook

Volume 17 / Phthalocyanines: Properties and Materials

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 17

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

107 / Physical Properties of Phthalocyanine-based Materials ...... 1 DANILO DINI and MICHAEL HANACK I. Definitions ...... 1 II. Phthalocyanines and Physical Properties ...... 3 III. Structural Features of Phthalocyanines ...... 4 A. Molecular Geometries...... 4 B. Spatial Arrangements of Molecules...... 6 IV. Electronic Structure of Phthalocyanines ...... 14 A. Electrons in -type Orbitals of Gaseous Species ...... 14 B. Electrons in Low-Lying Energy States of Gaseous Species ...... 15 C. Electronic Structure in Solid Phthalocyanines ...... 16 V. Optical Absorption of Phthalocyanines ...... 18 VI. Electrical Conduction in Phthalocyanines ...... 19 VII. Photoconduction in Phthalocyanines ...... 21 VIII. Nonlinear Optical Properties ...... 22 A. Introduction ...... 22 B. Optical Limiting: A Nonlinear Optical Effect ...... 23 C. Phthalocyanines for Optical Limiting ...... 26 D. Nonlinear Optical Properties of Crystals ...... 31 IX. Conclusions ...... 31 References ...... 31

108 / Phthalocyanine Thin Films: Deposition and Structural Studies...... 37 MICHAEL J. COOK and ISABELLE CHAMBRIER I. Introduction ...... 38 II. Film Deposition from the Vapour Phase ...... 39 A. Experimental Methods ...... 39 II B. H2Pc, Planar M Pcs, and LiPc ...... 39 C. Non-Planar MIIPcs...... 49 D. Halo-Metallophthalocyanines, MIIIPcXs...... 52 E. Oxometallophthalocyanines, MIVOPcs ...... 56 IV IV F. Silicon and Germanium Phthalocyanines, M Pc(OR)2 and [M PcO]n...... 59 G. Bis-Phthalocyanine Sandwich Complexes ...... 61 III. Film Deposition from the Air–Water Interface: Langmuir–Blodgett Films ...... 62 A. Experimental Methods ...... 62 B. Unsubstituted Phthalocyanines ...... 65 C. Tetrasubstituted Phthalocyanines ...... 70 D. Octasubstituted Phthalocyanines ...... 81 E. Dimers, Oligomers, and Polymers ...... 94 F. Miscellaneous Compounds ...... 103 IV. Film Deposition from Solution ...... 104 A. Cast and Spin-Coated Films...... 104 B. Films Obtained via Self-Assembly Protocols ...... 113 V. Concluding Remarks ...... 118 VI. Tables of LB Film Forming Experimental Conditions ...... 119 VII. References ...... 119

v vi Contents

109 / Phthalocyanine Aggregation...... 129 ARTHUR W. SNOW I. Introduction ...... 130 II. Historical Aspects ...... 130 III. Nature of the Aggregation Process ...... 132 IV. Measurement Methods ...... 136 A. Electronic Spectroscopy ...... 137 B. Fluorescence Spectroscopy ...... 142 C. Nuclear Magnetic Resonance (NMR) Spectroscopy ...... 142 D. Vapor Pressure Osmometry (VPO) ...... 145 E. Calorimetry ...... 147 F. Other Methods...... 147 V. Experimental Results ...... 150 A. Aqueous Systems ...... 151 B. Nonaqueous Systems ...... 151 VI. Correlations with Chemical Structure/Composition ...... 153 A. Complexed Metal Ions ...... 155 B. Peripheral Group Substitution ...... 157 C. Multinuclear Phthalocyanines ...... 161 D. Avoiding Aggregation ...... 163 VII. Correlations with Physical Environment...... 167 A. Solvent ...... 168 B. Electrolytes and pH ...... 169 C. Micelles ...... 169 VIII. Practical Applications ...... 170 A. Optical Filters ...... 171 B. Photodynamic Therapy ...... 171 C. Optical Limiting ...... 172 References ...... 173

110 / Porphyrins and Phthalocyanines in Macromolecules ...... 177 DIETER WO¨ HRLE and GU¨ NTER SCHNURPFEIL I. Introduction ...... 177 II. A Short Overview to Natural Systems ...... 179 III. Binding of Porphyrins and Phthalocyanines to Macromolecular Carriers by Covalent, Coordinative, and Ionic Bonds, Type I ...... 185 A. Covalent Bonds of Porphyrins and Phthalocyanines to Macromolecules, Type Ia ...... 185 B. Coordinative Bonds of Porphyrins and Phthalocyanines to Macromolecules, Type Ib ...... 211 C. Ionic Bonds of Porphyrins and Phthalocyanines to Charged Macromolecules, Type Ic ...... 214 IV. Porphyrins and Phthalocyanines as Part of a Linear or Cross-linked Macromolecule via the Ligand, Type II...... 218 A. Cyclization of Bifunctional or Higher Functional Ligand Precursors ...... 219 B. Polyreactions of Bifunctional or Higher Functional Porphyrins and Phthalocyanines ...... 224 V. Porphyrins and Phthalocyanines as Part of a Linear or Cross-linked Macromolecule via the Metal, Type III ...... 231 A. Polymeric Cofacial Stacked Porphyrins and Phthalocyanines ...... 231 B. Networks of Coordination Polymers ...... 232 VI. Physical Incorporation of Porphyrins and Phthalocyanines in Macromolecules, Type IV ...... 233 A. Incorporation in Organic Polymers...... 234 B. Incorporation in Inorganic Macromolecules ...... 238 VII. Conclusion...... 240 References ...... 240 Contents vii

111 / Porphyrins and Phthalocyanines Encapsulated in Inorganic Host Materials ...... 247 MICHAEL WARK I. Introduction ...... 247 II. Zeolites, Layered Structures, and Mesoporous Molecular Sieves as Host Materials...... 248 A. Zeolites and Aluminiumphosphates ...... 249 B. Layered Materials and Clays ...... 252 C. Mesoporous Molecular Sieves ...... 254 III. Intercalation into Clays, Layered Double Hydroxides, and Other Layered Minerals ...... 256 A. Synthesis and Characterization of Porphyrins and Phthalocyanines in Layered Inorganic Hosts . .... 256 B. Catalytic and Optical Application of Porphyrins and Phthalocyanines Embedded in Layered Inorganic Hosts ...... 259 IV. Porphyrins and Phthalocyanines in the Pores of Zeolites...... 261 A. Methods of Encapsulation ...... 261 B. Characterization of Zeolite-Encapsulated Porphyrins and Phthalocyanines ...... 265 C. Catalysis with Zeolite-Encapsulated Porphyrins and Phthalocyanines...... 266 D. Optical Applications of Zeolite-Encapsulated Porphyrins and Zeolite-like Porphyrin Structures...... 270 V. Porphyrins and Phthalocyanines in the Channel Systems of Mesoporous Molecular Sieves...... 271 A. Anchoring of Porphyrins or Phthalocyanines in Mesoporous Molecular Sieves ...... 271 B. Catalytic Properties of Porphyrins and Phthalocyanines in Mesoporous Molecular Sieves ...... 273 C. Porphyrins and Phthalocyanines as Structure-Directing Agents and Their Interactions in Mesoporous Molecular Sieves ...... 274 VI. Conclusions ...... 278 Appendix...... 279 References ...... 280

Index...... 285 The Porphyrin Handbook

Volume 18 / Multiporphyrins, Multiphthalocyanines, and Arrays

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 18

Preface ...... vii Contributors to Volumes 1–20 ...... ix Contents of Volumes 1–20 ...... xxv

112 / Single-Atom Bridged Dinuclear Metal Complexes with Emphasis on Phthalocyanine Systems ...... 1 BARBARA FLORIS, MARIA PIA DONZELLO, and CLAUDIO ERCOLANI I. Introduction ...... 1 II. M–O–M Bridged Species ...... 2 A. Fe–O–Fe Complexes...... 2 B. Mn–O–Mn and Cr–O–Cr and Related Heterometallic Complexes ...... 20 C. Other M–O–M Complexes ...... 22 III. M–N–M Bridged Species ...... 25 IV. M–C–M Bridged Species ...... 49 V. Conclusions ...... 58 References ...... 59

113 / Recent Advances in Free and Metalated Multiporphyrin Assemblies and Arrays; A Photophysical Behavior and Energy Transfer Perspective ...... 63 PIERRE D. HARVEY I. Introduction ...... 64 II. Photophysical Processes ...... 65 A. Absorption...... 65 B. Emission ...... 67 C. Electron and Energy Transfer ...... 68 D. Intramolecular Processes ...... 69 E. The Fo¨rster Mechanism...... 70 F. The Dexter Mechanism...... 70 III. Noncovalently Bonded Systems ...... 70 A. Face-to-Face Dimers...... 70 B. J- and H-Aggregates ...... 76 C. Oligomerization Through H-Bonds...... 77 D. Self-Association in the Excited States ...... 83 IV. Covalently Bonded Systems ...... 84 A.Dimers...... 85 B. Trimers ...... 165 C. Higher Oligomers...... 193 D. Dendrimers ...... 223 E. Polymers ...... 225 V. Conclusion...... 240 References ...... 243

114 / Stacked Polymeric Phthalocyanines: Synthesis and Structure-Related Properties...... 251 MICHAEL HANACK and DANILO DINI I. Introduction ...... 251 II. Synthesis of Stacked Phthalocyanine Polymers...... 253 A. Nonbridged Stacked Polyphthalocyanines...... 253 B. Bridged Stacked Polyphthalocyanines...... 260 III. Properties of Bridged Phthalocyanines...... 273 IV. Conclusions ...... 275 References ...... 276 v vi Contents

115 / Self-Assembly of Chiral Phthalocyanines and Chiral Crown Ether Phthalocyanines ...... 281 PALL THORDARSON, ROELAND J. M. NOLTE, and ALAN E. ROWAN I. Self-Assembly of Phthalocyanines ...... 281 II. Chiral Phthalocyanines ...... 282 A. Synthesis of Chiral Phthalocyanines ...... 282 B. Self-Assembly of Chiral Phthalocyanines...... 284 III. Crown Ether Phthalocyanines...... 289 A. Achiral Crown Ether Substituted Phthalocyanines ...... 289 B. Chiral Crown Ether Phthalocyanines...... 291 IV. Concluding Remarks ...... 300 References ...... 300

116 / New Developments in Corrole Chemistry; Special Emphasis on Face-to-Face Bismacrocycles ...... 303 ROGER GUILARD, JEAN-MICHEL BARBE, CHRISTINE STERN, and KARL M. KADISH I. Introduction ...... 303 II. Syntheses ...... 305 A. Synthesis of - and meso-Substituted Corroles...... 306 B. Synthesis of Symmetrical meso-Aryl-Substituted Corroles ...... 307 C. Synthesis of Unsymmetrical meso-Substituted-Aryl Corroles ...... 309 D. Synthesis of Totally Unsymmetrical meso-Substituted-Aryl Corroles ...... 312 E. Functionalization of Corroles...... 313 III. Face-to-Face Bismacrocycles ...... 314 IV. Metalation of Corroles, Biscorroles and Porphyrin–Corroles, Coordination of Small Molecules ...... 317 A. Aluminum and Gallium ...... 317 B. Cobalt Complexes of Alkyl- and Aryl-Substituted Derivatives ...... 318 C. Solid State Interaction of CO with Cobalt Corrole Complexes ...... 320 D. Catalysis by Metallocorrole Complexes...... 321 E. Cobalt Complexes of Biscorroles and Porphyrin–Corroles...... 322 V. Metal–Metal Bonded Corrole Homodimers ...... 327 A. Monocorrole Precursors ...... 327 B. Face-to-Face Bismacrocycle Precursors...... 330 VI. Metal–Metal Interactions in Corrole Dimers...... 331 A. Copper Biscorroles and Porphyrin–Corroles ...... 331 B. Nickel Biscorroles and Porphyrin–Corroles ...... 334 VII. Electrochemistry of Monocorroles, Biscorroles and Porphyrin–Corroles...... 337 A. Introduction and Overview ...... 337 B. Electrochemistry of Cobalt Alkyl and Aryl Substituted Corroles ...... 340 C. Electrochemistry of Cobalt Face-to-Face Biscorroles...... 342 D. Electrochemistry of Cobalt Porphyrin–Corrole Dyads ...... 343 E. Electrochemistry of Copper Monocorroles, Biscorroles, and Porphyrin–Corrole Dyads...... 344 F. Electrochemistry of Metal–Metal Bonded Ruthenium Corrole Homodimers ...... 346 References ...... 348

Index...... 351 The Porphyrin Handbook

Volume 19 / Applications of Phthalocyanines

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 19

Preface ...... ix Contributors to Volumes 1–20 ...... xi Contents of Volumes 1–20 ...... xxvii

117 / Phthalocyanines in Photobiology and Their Medical Applications ...... 1 EHUD BEN-HUR and WAI-SHUN CHAN I. Introduction ...... 2 II. Mechanisms of Photosensitization ...... 2 III. Photosensitization of Biomolecules ...... 3 A. Amino Acids ...... 3 B. Proteins ...... 3 C. Lipids ...... 4 D. Nucleic Acids ...... 4 IV. Photoinactivation of Microbial Pathogens ...... 4 V. Photosensitization of Mammalian Cells In Vitro ...... 6 A. Cellular Uptake of Phthalocyanines ...... 6 B. Cell Killing ...... 7 C. Mutagenicity ...... 13 VI. Photosensitization In Vivo ...... 14 A. Tumor Response...... 14 B. Normal Tissue Response ...... 17 C. Delivery, Tissue Distribution, and Toxicity ...... 20 VII. Medical Applications...... 25 A. Photodynamic Therapy of Cancer ...... 25 B. Ophthalmology ...... 26 C. Cardiovascular ...... 27 D. Transfusion Medicine ...... 28 E. Miscellaneous ...... 29 VIII. Conclusions ...... 30 References ...... 30

118 / Radical Phthalocyanines and Intrinsic Semiconduction...... 37 MARCEL BOUVET I. Introduction ...... 38 II. Molecules ...... 38 A. About Free Radicals ...... 38 B. Lithium Phthalocyanine Radical and Derivatives ...... 39 C. Radical Lanthanide Bisphthalocyanines and Derivatives...... 40 D. Other Radical Phthalocyanines ...... 51 III. Phthalocyanine-Based Materials ...... 52 A. Single Crystals ...... 53 B. Thin Films ...... 58 C. Langmuir–Blodgett Films ...... 62 D. Liquid Crystals ...... 65 E. Magnetic Properties ...... 67 IV. Molecular Semiconductors...... 69 A. Molecular Materials ...... 69 B. Conduction Phenomena ...... 70 C. Energy Gap Determinations...... 75 V. Electrical Properties: Experimental Results ...... 83 A. Lanthanides Bisphthalocyanines...... 83

v vi Contents

B. Lithium Phthalocyanines ...... 85 C. Conduction Properties in Long-Chain Substituted Phthalocyanines ...... 86 D. Other Cases...... 86 VI. Radical Phthalocyanine-Based Devices ...... 87 A. Field-Effect Transistors...... 87 B. Gas Sensors ...... 91 References ...... 98

119 / Phthalocyanine Dyes and Pigments...... 105 PETER ERK and HEIDI HENGELSBERG I. Introduction ...... 106 II. Syntheses of Phthalocyanine Pigments ...... 107 A. Syntheses of the Phthalocyanine Ring Structure ...... 107 B. Synthesis of Halogenated Copper Phthalocyanines ...... 115 III. Crystallization and Formulation of Phthalocyanine Pigments ...... 117 A. General Properties of Phthalocyanine Pigments ...... 117 B. Crystal Structures and Polymorphism of Phthalocyanines ...... 118 C. Crystal Morphology of Phthalocyanines ...... 127 D. Finishing of Phthalocyanine Pigments...... 128 E. Color Properties of Phthalocyanine Pigments...... 130 F. Formulation of Phthalocyanine Pigments ...... 131 IV. Properties and Applications of Commercial Phthalocyanine Pigments ...... 132 A. Copper Phthalocyanine Blue Pigments ...... 133 B. Metal-free Phthalocyanine Blue Pigments ...... 135 C. Copper Phthalocyanine Green Pigments ...... 135 D. Toxicological and Ecological Aspects ...... 136 V. Phthalocyanine Dyes...... 137 A. Phthalocyanine Sulfonic Acids...... 137 B. Sulfonamides of Phthalocyanine ...... 138 C. Aminomethylphthalocyanines ...... 142 D. IR-Absorbing Materials ...... 143 E. Other Phthalocyanines ...... 144 VI. Miscellaneous Applications of Phthalocyanines ...... 145 A. Catalytically Active Phthalocyanines ...... 145 B. Charge Generation Materials ...... 146 References ...... 146

120 / Enzyme-Like Catalytic Reactions of Metallophthalocyanines and Polymeric Metallophthalocyanines . . 151 MUTSUMI KIMURA and HIROFUSA SHIRAI I. Introduction ...... 151 II. Enzyme-Like Catalytic Reactions ...... 152 A. Catalase-Like Oxidation Reactions ...... 153 B. Peroxidase-Like Oxidation Reaction ...... 156 C. Oxidase-Like Oxidation Reaction...... 158 D. Oxygenase-Like Oxidation Reaction...... 164 III. Applications of Enzyme-Like Oxidation by Metallophthalocyanines ...... 165 A. Application to Odor-Removing System ...... 165 B. Application to Bactericidal System ...... 171 IV. Concluding Remarks ...... 173 References ...... 173

121 / Nonlinear Optical Properties of Phthalocyanines ...... 179 STEVEN R. FLOM I. Introduction ...... 179 Contents vii

II. Nonlinear Optical Formalisms ...... 179 III. Second Harmonic Generation ...... 183 A. Experimental Description ...... 183 B. Poled Films ...... 183 C. Langmuir–Blodgett Films ...... 184 D. Vapor Deposited Films ...... 184 IV. Third Harmonic Generation ...... 185 A. Experimental Description ...... 185 B. Spin Coated Films ...... 185 C. Epitaxial Single Crystals ...... 185 D. Phthalocyanine Analogs ...... 186 E. Solution Studies ...... 186 V. Electric Field-Induced Second Harmonic Generation and Hyper–Raleigh Scattering ...... 187 A. Experimental Description ...... 187 B. Symmetrically Substituted Phthalocyanines ...... 187 C. Unsymmetrically Substituted Phthalocyanines ...... 188 D. Subphthalocyanines ...... 188 VI. Concluding Remarks ...... 189 References ...... 189

Index...... 191 The Porphyrin Handbook

Volume 20 / Phthalocyanines: Structural Characterization

Editors

Karl M. Kadish Department of Chemistry University of Houston Houston, Texas

Kevin M. Smith Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Roger Guilard Faculte´ des Sciences Gabriel Universite´ de Bourgogne Dijon, France

Amsterdam Á Boston Á London Á New York Á Oxford Á Paris San Diego Á San Francisco Á Singapore Á Sydney Á Tokyo Contents of Volume 20

Preface ...... vii Contributors to Volumes 1–20 ...... ix Contents of Volumes 1–20 ...... xxv

122 / Single-Crystal Structures of Phthalocyanine Complexes and Related Macrocycles...... 1 MICHAEL KLAUS ENGEL I. Introduction ...... 1 A. Notations and Remarks ...... 1 B. History of Phthalocyanine Crystallographical Research...... 2 C. Basics of Phthalocyanine Structures ...... 4 II. Phthalocyanine Complexes with In-plane Coordinated Central Atoms ...... 9 A. CN1 and CN4 Complexes...... 9 B. CN6tr Complexes...... 25 III. Phthalocyanine Complexes with an Out-of-plane Coordinated Central Atom ...... 42 A. CN5, CN6cis, CN7cis, and CN8cis Complexes ...... 43 B. Bis- and Tris-phthalocyanines ...... 63 IV. Phthalocyanine-Related Complexes ...... 80 A. Substituted Phthalocyanines ...... 80 B. Naphthalocyanines...... 80 C. Phthalocyanine-Related Isoindole Complexes ...... 80 D. Sub- and Superphthalocyanines ...... 84 E. Porphyrazines ...... 85 F. Others...... 85 V. Conclusions ...... 86 Note Added in Proof...... 87 Appendices ...... 88 References ...... 236

Index...... 243

Cumulative Index to Volumes 11–20 ...... 247

v