<<

properties MA 751 Part 1 , This material is from basic linear algebra as a reference - will not go over in detail in class.

1. Preliminaries:

Recall: ‘‘ = {real numbers}; $ = {all triples of real numbers}, etc. Examples Definition (part 1): A vector space is a set of objects Z on which addition and scalar multiplication are defined. Precisely ifvv"# ,−Z we define

vv"# and if vv−Z we define - for all -−‘ . Elements of Z are called vectors.

[Additional required properties are below]. Examples Ex 1: ‘$: Examples Geometric representation of vector v: v œ @ ß@ ß@ œ arrow from origin to Ð@ @ ß@ ÑÀ ¡"#$ "ß#$ Examples

Addition: "ß #ß $  #ß "ß  " œ $ß $ß # ¡ ¡ ¡ Scalar multiplication:

 # "ß #ß $ œ  #ß  %ß  ' ¡ ¡ Vector space properties Properties:

1. uvvuœ 2. uvwÐ  ќРuvw  Ñ etc - Vector space properties 3. There exists a unique vector ! Ð œ !ß !ß ! Ñ such that ¡ vv!œ for all vectors v . 4. For each vv−Z , there exists a unique element  −Z such that vv œ! 5. for uvß−Z and -−-ÐÑœ--‘ u v u v 6. for -ß . −‘ and uuuu − Z , Ð-  .Ñ œ -  . 7. -Ð.uu Ñ œ Ð-.Ñ for -ß .ß u as above 8. for uuu−Z , "† œ

Remark on 4: clear if vvœÐ@ßáß@Ñ"8 then  œÐ@ßáß@Ñ " 8 in special case Zœ‘8 Þ Vector space properties Def. (part II - full definition): A vector space is a set of objects Z on which addition and scalar multiplication are defined with properties 1 - 8 above. Examples % Ex. 2: ‘ , e.g. ØB"#$% ßB ßB ßB Ù viewed geometrically (arrows) or in terms of vector algebra.

Ex 3: Zœ all polynomials of degree Ÿ# form a vector space:

# v œ+!" +B+B # Examples For example we have for ## vv"#œ$#B%Bà œ#B$B # vv"#œ&BB # $v" œ *  'B  "#B .

Properties 1 - 8 apply, e.g.:

vvvv"#œ #"

%Ðvv"#  Ñ œ % v "  % v # Þ Examples Ex 4: Zœ continuous functions 0ÐBÑ on Ò!ß1‘ Ó §

# @œ"#sin Bà @œBÎ"! Examples

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0 0.5 1 1.5 2 2.5 3 3.5 Examples

Add vectors:

# vv"# œsin B  B Î"! Scalar multiply:

$œ$Bv" sin Check vector properties (1-8) satisfied.

[vector space can be: arrows, polynomials, continuous functions; need only define addition, scalar mult, and vector properties (1-8) must hold]. Properties 2. Vector space properties:

Def 1: Given vector spaceZßßá−Zß and vv"# v 8 a vector wvv is a linear combination (LC) of "8 , á , if

wvœ-"" á - 88 v for some collection Ö-"8 ßáß- ק ‘ . Properties Ex 5: vœ "ß#ß$ à v œ #ß"ß" à v œ "ß#ß" à "# ¡ ¡ $ ¡ w œ  &ß )ß ( ¡

is linear combination of v3"#$À-œ"à-œ#à-œ# can let above. Properties

#BB Ex 6: vvv"#$œB#BàœB/àœ/sin sin

#B wvœBB#/3sin 6 is LC of the 3 , since

wvvvœ$"#$ ! #

Def 2: Given vector space ZÖßßáקZ the collection vv"# v 8 is linearly independent (LI) if no v3 is a LC of the others. Properties Note: if b-ßá-! constants"8 (not all ) s.t.

-á-œ!ß""vv 88 then say if -Á!" , @œ-Î-@á-Î-@ß"#""8"8 so one vector is a LC of others and so not lin. ind. Can reverse to show:

Theorem: v"8á v are lin. ind. iff do not exist const. - " ßáß- 8 (some non-zero) s.t.

c""vvá - 88 œ!Þ Properties Ex 7: vœ "ß#ß$ à v œ #ß"ß" à v œ "ß#ß" "# ¡ ¡ $ ¡ are LI

Reason: if ---œ!ß"" v ## v $$ v - "ß #ß $  - #ß  "ß  "  -  "ß #ß " œ !ß !ß ! "# ¡ ¡ $ ¡ ¡

Ê-#--œ!"#$ #-"# - #- $ œ! $-"#$ - - œ!

Êsolving, -"#$ œ- œ- œ! . Properties #BB Ex 8: vvv"#$œsin B#Bà œ# sin B/ à œ/ are LI

Proof: -œ!33v holds only with - 3 all 0; plug in several B 3 values to show thisß e.g., set Bœ!ßßÎ#11 in the equation

-œ!33v to obtain 3 separate equations from which it 3 follows all -œ!3 .

[note also that one of the vectors would have to be a combination of the other two for all B ; plausible that this cannot happen] Basis and dimesion 3. Dimension of a vector space:

Given a vector space Z

Def 3: We say that the set of vectors Wœ Ö@ßá@×"8 span Z if every vector A−Z can be written as a linear combination of vectors in W . Basis and dimesion Ex 9: @ œ "ß #ß $ à @ œ #ß  "ß " à @ œ  "ß #ß " span "# ¡ ¡ $ ¡ Zœ‘$ Þ To see this, note that we have to show that for any vector Aœ AßAßA ß we can find constants - ¡"#$ 3 such that

-@"" -@ ## -@ $$ œAÞ

[Again involves solving a system of equations; see exercises] Basis and dimesion Def. 4: The set of vectors WœÖvv"8 ßáß ×§Z is a basis for Z if (i) WZ spans (i.e., any vector A−Z can be written as a linear combination of vectors from WÑ , and (ii) the vectors from W are linearly independent.

Theorem 1: A set W§Z is a basis for Z iff every w −Z can be written uniquely as a linear combination of vectors in W .

Ex 10: vvœ "ß#ß$ à œ #ß"ß" à v œ "ß#ß" are "# ¡ ¡ $ ¡ a basis for ‘$Þ Basis and dimesion 3 Every vv− ‘ can be written as a LC of the 3 uniquely.

For example w´  $ß (ß ' œ " † vvv  " †  # † , ¡"#$ is only LC of the vw3 giving . Basis and dimesion

#BB Ex 11: vv"#œsin B#Bà œ# sin B/ à v $ œ/ are a basis for the vector space

Zœ all linear combinations of sin BßB#B and / . #B œÖ-"#$3sin B- B -/ À - −‘ × .

Note: All bases for vector space Z. have same number of elements. .œ dimension of Z. Vector norms 3. Norm (length) of a vector:

Notation: In ‘$ write

@" v œØ@ß@ß@Ùœ"#$ Ô×@# ÕØ@$

Def. 5: Norm vvœ² ² from end to origin

222 = È|@@@"#$ | + || +| | Vector norms Vector norms 4. Distance between vectors

$" Between uvœœÔ×## and Ô × : ÕØ"" Õ Ø

#### .œÈ Ð$"Ñ Ð#Ð#ÑÑ Ð""Ñ œmuv  m Vector norms Geometry: