Arthropod Pests of Date Palm and Their Management

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Pests of Date Palm and Their Management CAB Reviews 2017 12, No. 049 Arthropod pests of date palm and their management H. A. F. El-Shafie1,2*, B. M. A. Abdel-Banat1,2 and M. R. Al-Hajhoj1 Address: 1 Date Palm Center of Research Excellence, King Faisal University, Al-Hofuf, 31982-Al-Hassa, Kingdom of Saudi Arabia. 2 Department of Crop Protection, Faculty of Agriculture, University of Khartoum, 13314-Shambat, Sudan. *Correspondence: Hamadttu Abdel Farag El-Shafie. Email: [email protected] Received: 12 October 2017 Accepted: 7 November 2017 doi: 10.1079/PAVSNNR201712049 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews © CAB International 2017 (Online ISSN 1749-8848) Abstract This review lists 132 species of insect and mite pests associated with date palm (Phoenix dactylifera L.) grown worldwide. These species are distributed among eight insect orders and 30 families, besides one order of mite comprising nine families. Most of the species (52) were reported on the leaf (frond), while 26 species were associated with the roots and trunk. Green fruits with their stalks and stored dates hosted 27 species each. Coleoptera represented 41% of the listed pest species, followed by Hemiptera (20%), Acari (16%) and Lepidoptera (12%). Although the number of date palm pest species seems to be high, only a few species are considered major pests of economic importance. The major pests include the red palm weevil, (Rhynchophorus ferrugineus), old world date mite (Oligonychus afrasiaticus), lesser date moth (Batrachedra amydraula), Dubas date bug (Ommatissus lybicus), green pit scale (Palmaspis phoenicis), carob moth (Ectomyelois ceratoniae), date palm longhorn beetle (Jebusaea hammerschmidti), and almond moth (Cadra cautella). The review also lists 90 species of predators and parasitoids representing nine orders and 23 families, indicating their potential role in date palm pest management. The paper summarizes the current knowledge on management tactics including monitoring, agrotechnical measures, biological control, semiochemical-based control and chemical control. The implementation of integrated pest management strategies against major pests, based on the above-mentioned tactics, is discussed. The information gathered in this review indicates that strict quarantine, semiochemicals including pheromones and training and education of farmers are expected to play a central role in area-wide IPM of major date palm pests. Keywords: Date palm, Arthropod pests, Natural enemies, Pest management, Phoenix dactylifera, Agrotechnical measures, Chemical control Review Methodology: The CAB abstract database was searched for the following keywords: date palm, arthropod pests and pest management. Additionally, published works in recognized journals, books and book chapters were thoroughly reviewed for relevant information. Common names and taxonomic status of insects and mites and their natural enemies were selected according to the common names of Insect Database of Entomological Society of America [1] for species available in that database. Introduction countries namely, Egypt, Iran, Saudi Arabia, Pakistan, Iraq, Algeria, United Arab Emirates, Sudan, Oman and Morocco. The date palm, Phoenix dactylifera L. (Arecales: Arecaceae) Date Palm is also found in Australia, Mexico, Namibia, Peru, is an important food and cash crop thriving well in hot arid South Africa, Spain and USA [6]. Pakistan and India also regions of the world [2]. It is believed to have originated in cultivate date palm despite the heavy monsoon rains that Mesopotamia (Iraq) where it has been cultivated some coincide with the ripening of dates [2]. The date palm has 6000 years ago [3]. Date palm had played a significant role been carried out from Mesopotamia to other parts of the in the economy of some date-producing countries, and the world [6]. Factors such as monoculture of date palm, global global production has increased from 1.8 million tons in warming, unrestricted application of insecticides and global 1962 to about 8 million tons in 2012 [4, 5]. Of this yield, movement of date palm planting materials have influenced 88% is produced in the Middle East and North African the pest complex and its natural enemies [5]. A good http://www.cabi.org/cabreviews 2 CAB Reviews example of this change is the red palm weevil, which has that exploit date palm as a resource such as the red palm invaded the Middle East in 1985. The weevil, a pest of weevil, Rhynchophorus ferrugineus that has been reported to coconut, is originally from the warm humid South and attack 40 palm species worldwide including date palm [77]. Southeast Asia has been now a major pest of date palm in The carob moth, Ectomyelois ceratoniae is an opportunistic the arid hot regions of the Middle East. Being evergreen with feeder and has 43 hosts from 18 plant families [61]. a unique morphology, the date palm provides shelter and food for a wide array of arthropod pests and their natural enemies. Diseases and pests that account for 30% loss in Feeding Behaviour, Nature of Damage and yield [7] are the main biotic constraints that hamper date Economic Importance palm cultivation and production. The nature and severity of the problems, however, vary with cultivar, location, The feeding patterns of date palm arthropod pests could be weather and cultural practices [8, 9]. Date palm has a broadly classified into three main categories; sap feeders, wide genetic diversity, and approximately 3000 cultivars defoliators and borers. (I) The sap feeders have piercing- exist in the world [10]. However, many pests and diseases sucking or rasping mouthparts that suck the sap causing threaten this genetic variability unless proper management chlorotic spots and discoloration on the affected parts. This is undertaken. Buxton [11] reviewed the insect pests of date group comprises the tiny phytophagous mites, thrips, scale palm in Mesopotamia (Iraq). The literature contains concise insects, mealy bugs, issid bugs and dubas bug. They are reports and lists of date palm pests from Oman, Jordon, found outside the date palm at the crown regions where Libya, Egypt, Qatar, Kuwait, Bahrain, UAE, Yemen, Sudan, soft and succulent tissues exist [78]. Mites are found on Pakistan, Tunisia, Palestine, and the USA. Carpenter and either the leaf blade or developing fruits where they may Elmer [8] who listed 54 arthropod pests of date palm gave cause 100% loss in yield. The date dust mite, Oligonychus the first worldwide review on date palm pest. A compre- afrasiaticus and the lesser date moth, Batrachedra amydraula hensive review on date palm pests in Israel listed 16 major are by far the most important pests damaging date palm and 15 minor insect and mite pests [12], which could give an developing fruits [14]. (II) Date palm defoliators are insects overview of the pest complex of date palm in neighbouring characterized by having chewing mouthparts. They include countries. It has been reported that the arthropod fauna of grasshopper, locusts, some beetles from the family date palm in the different countries of the Middle East and Buprestidae, and caterpillars of some moths. Locusts can Gulf regions are not isolated from each other [12, 13]. be a serious and devastating pest on date palm during the El-Shafie [14] listed 112 insect and mites pests associated plague and huge swarms where complete defoliation of with date palm worldwide as well as 45 predators and the crown could occur resulting in checking productivity of parasitoids. The main damaging taxonomic groups on date the palm for at least 3 years [12]. (III) Borers of economic palm are Coleoptera, Lepidoptera and Hemiptera from importance on date palm include the invasive red palm insects and Acari from mites. This review is devoted to weevil, the longhorn date palm stem borer, rhinoceros arthropod pests (insects and mites) of the date palm and beetles and frond borers. They feed inside the palm trunk, non-arthropod pests such as birds, flying bats, rodents, frond and fruit bunch stalk by excavating tunnels and nematodes, mollusks, pathogenic fungi, bacteria and viruses galleries in the internal tissues of the palm. Severe infes- are not included. The review enlists most arthropods pests tation by this group, particularly the red palm weevil and of date palm worldwide available in the literature with the longhorn borer, eventually lead to the collapse and emphasis on the management of species of economic death of the palm. The damage on date palm by one species importance including the role of their natural enemies. may depend on the damage by another species. For example, the larvae of almond moth, Cadra cautella [8], readily infest dates damaged by the oriental wasp, Vespa Insect and Mite Pests Associated with Date Palm orientalis [29, 51]. The damage of stone beetle on date fruits predispose them to subsequent attack by the sap beetle In this review, 132 species of insects and mites have been [12]. Among the listed date palm arthropod pests, a few reported to be associated with date palm (Tables 1–4). were reported to vector diseases. The date palm fruit These species were classified according to the preferred bunch borer, Oryctes elegans has been reported to transmit part they attack on date palm. Species that attack more than Fusarium proliferatum, the causal agent of wilt and dieback one part of the date palm were classified according to the disease in date palm [79]. The date palm leafhopper, part on which it inflicts the most economical damage. Cicadulina bipunctata (Melichar),
Recommended publications
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Apate Terebrans (Pallas) (Coleoptera: Bostrychidae) Atacando Árvores De Nim No Brasil
    May - June 2009 437 SCIENTIFIC NOTE Apate terebrans (Pallas) (Coleoptera: Bostrychidae) Atacando Árvores de Nim no Brasil RODOLFO M DE SOUZA, NORIVALDO DOS ANJOS, SHEILA A MOURÃO Lab. de Manejo de Pragas Florestais, Depto. de Biologia Animal, Univ. Federal de Viçosa, Av. Peter Henry Rolfs, s/n. Campus Universitário, 36570-000, Viçosa, MG; [email protected]; [email protected]; [email protected] Edited by André L Lourenção – IAC Neotropical Entomology 38(3):437-439 (2009) Apate terebrans (Pallas) (Coleoptera: Bostrychidae) Attacking Neem Trees in Brazil ABSTRACT - This paper describes and records the attack of adults Apate terebrans (Pallas) to a neem plantation located in Guarani, State of Minas Gerais, Brazil, in March 2007. The damage was characterized by a hole in the trunk, from where the shot-hole-borer enters constructing tunnels and feeding on the wood. This is the fi rst record of A. terebrans attacking neem trees in Brazil. KEY WORDS: Insecta, shot-hole-borer, Azadirachta indica, Meliaceae, forest entomology RESUMO - Este trabalho registra e descreve o ataque de adultos de Apate terebrans (Pallas) a um plantio de nim, localizado em Guarani, MG, em março de 2007. O dano é caracterizado por um furo no tronco, por onde a broca entra, construindo túneis para se alimentar. Este é o primeiro registro de A. terebrans atacando árvores de nim no Brasil. PALAVRAS-CHAVE: Insecta, broca-do-tronco, Azadirachta indica, Meliaceae, entomologia fl orestal O nim, Azadirachta indica (Meliaceae), nativo da Índia, e transformam-se em pupas em árvores mortas ou doentes, possui valor comercial devido principalmente à presença de diferentes daquelas utilizadas pelos adultos que se alimentam princípios ativos em suas sementes, folhas, frutos e raízes, os de madeira viva em troncos e galhos de árvores jovens e quais são usados na medicina e como agrotóxicos naturais sadias (Browne 1968).
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116
    ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116 Journal Homepage: - www.journalijar.com Article DOI: Article DOI: 10.21474/IJAR01/1427 DOI URL: http://dx.doi.org/10.21474/IJAR01/1427 RESEARCH ARTICLE INSECT PESTS OF FORESTRY PLANTS AND THEIR MANAGEMENT. Meeta Sharma Arid Forest Research Institute, Jodhpur (Rajasthan)-342005. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Indian arid zone covers 31.7 million ha hot desert and 0.78 million ha cold desert, which is about 12 percent of the country‟s total Received: 12 June 2016 geographical area. The mean annual rainfall in the region varies from Final Accepted: 19 July 2016 100 mm in the north- western sector of Jaisalmer to 550 mm in eastern Published: August 2016 districts of Rajasthan, Gujarat and Haryana. The rainfall is highly erratic having 65 percent coefficient of variability. The vegetation in Key words:- the Indian arid zone is very sparse , scanty and thorny. However, the Forest, Bruchid, Parasitoid.. forests and trees like many other plants, suffer from attack by insect pests and diseases which cause a lot of damage, resulting in poor tree growth, poor timber quality, and in some cases, complete destruction and reduction of forest cover in Indian arid zone also. Thus, trees and forests need to be protected from these agents of destruction. With the ever increasing human and livestock population, the amount of forest per capita is declining particularly in the less industrialized or developing areas of the world. It is estimated that the land under forest in developing countries is about 2100 million hectares, or more than half of the forested land on earth.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • Chapter 15. Central and Eastern Africa: Overview
    Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent.
    [Show full text]
  • Appl. Entomol. Zool. 45(1): 89-100 (2010)
    Appl. Entomol. Zool. 45 (1): 89–100 (2010) http://odokon.org/ Mini Review Psocid: A new risk for global food security and safety Muhammad Shoaib AHMEDANI,1,* Naz SHAGUFTA,2 Muhammad ASLAM1 and Sayyed Ali HUSSNAIN3 1 Department of Entomology, University of Arid Agriculture, Rawalpindi, Pakistan 2 Department of Agriculture, Ministry of Agriculture, Punjab, Pakistan 3 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK (Received 13 January 2009; Accepted 2 September 2009) Abstract Post-harvest losses caused by stored product pests are posing serious threats to global food security and safety. Among the storage pests, psocids were ignored in the past due to unavailability of the significant evidence regarding quantitative and qualitative losses caused by them. Their economic importance has been recognized by many re- searchers around the globe since the last few years. The published reports suggest that the pest be recognized as a new risk for global food security and safety. Psocids have been found infesting stored grains in the USA, Australia, UK, Brazil, Indonesia, China, India and Pakistan. About sixteen species of psocids have been identified and listed as pests of stored grains. Psocids generally prefer infested kernels having some fungal growth, but are capable of excavating the soft endosperm of damaged or cracked uninfected grains. Economic losses due to their feeding are directly pro- portional to the intensity of infestation and their population. The pest has also been reported to cause health problems in humans. Keeping the economic importance of psocids in view, their phylogeny, distribution, bio-ecology, manage- ment and pest status have been reviewed in this paper.
    [Show full text]
  • Miroshnikov, 2014: 19
    Russian Entomological Society Sochi National Park ADVANCES IN STUDIES ON ASIAN CERAMBYCIDS (COLEOPTERA: CERAMBYCIDAE) Papers by Alexandr I. MIROSHNIKOV, dedicated to the memory of Dr. Judson Linsley GRESSITT Edited by Alexandr S. KONSTANTINOV, S. Adam Ślipiński & Alexey Yu. SOLODOVNIKOV KMK Scientific Press Ltd. Krasnodar – Moscow 2014 KONSTANTINOV A.S., Ślipiński s.A. & SOLODOVNIKOV A.Yu. (Eds): Advances in studies on Asian cerambycids (Coleoptera: Cerambycidae). Papers by Alexandr I. MIROSHNIKOV, dedicated to the memory of Dr. Judson Linsley GRESSITT. Krasnodar – Moscow: KMK Scientific Press Ltd. 2014. – 237 pp. Dr. Alexandr S. KONSTANTINOV Systematic Entomology Laboratory, USDA, c/o Smithsonian Institution, Washington, U.S.A. Dr. S. Adam Ślipiński CSIRO Australian National Insect Collection, Canberra, Australia Dr. Alexey Yu. SOLODOVNIKOV Natural History Museum of Denmark, University of Copenhagen, Denmark Cover design by A.I. Miroshnikov Frontispiece illustration by K.V. Makarov & A.I. Miroshnikov © A.I. Miroshnikov, 2014 © Sochi National Park, 2014 © Russian Entomological Society, 2014 © KMK Scientific Press Ltd., 2014 ISBN 978-5-87317-820-9 To the memory of Dr. Judson Linsley Gressitt (1914–1982), to the day of his forthcoming centenary, this work is being dedicated. CONTENTS From the editors ............................................................................................... 7 –8 From the author ................................................................................................ 9 A.I. MIROSHNIKOV. New genera
    [Show full text]
  • Characterization of the 12S Rrna Gene Sequences of the Harvester
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • Survey of the Insect Pests from Some Orchards in the Middle of Iraq
    1 Plant Archives Vol. 20, Supplement 2, 2020 pp. 4119-4125 e-ISSN:2581-6063 (online), ISSN:0972-5210 SURVEY OF THE INSECT PESTS FROM SOME ORCHARDS IN THE MIDDLE OF IRAQ Hanaa H. Al-Saffar and Razzaq Shalan Augul Iraq Natural History Research Center & Museum, University of Baghdad, Baghdad, Iraq. E-mails : [email protected], [email protected] Abstract This study designed at identifying insect pests that attack some trees and shrubs grown in the orchards in different regions, middle of Iraq. The investigation included date palm, citrus, pomegranate trees and grape shrubs. During the survey, 10 species were recorded on date palms (the most infested was Ommatissus lybicus de Bergevin, 1930, followed by Oryctes elegans Prell, 1914), four species on citrus (the most infested was Aonidiella orientalis (Newstead, 1894) followed by whitefly Trialeurodes vaporariorum (Westwood, 1856), one species only on pomegranate ( Aphis punicae Passerini, 1863), and one species Arboridia hussaini (Ghauri, 1963) on Grapes. Given the importance of date palm trees in Iraq, the most important insect pests present and recorded in previous studies have been summarized. Also, the synonyms of the species and their geographical distribution are provided. Keywords : Iraq, Orchards, Pests, Shrubs, Survey, Trees. Introduction pomegranates, figs and grapes randomly during the period from 1 st .March to 1 st .November.2019. There are many tools The orchards in the middle of Iraq are one of the most important by farmers due to the important crops they offer in used to collect the specimens that including: nets, aspirators, the local market, such as dates, citrus fruits, pomegranate, light traps, and also by direct method using the forceps.
    [Show full text]
  • Influence of Temperature on Some Biological
    Journal of Biological Control, 29(3): 125-130, 2015 Research Article Influence of temperature on some biological characteristics ofTrichogramma evanescens (Westwood) (Hymenoptera: Trichogrammatidae) on the egg of lesser date moth Batrachedra amydraula Meyrick JASSIM K. MOHAMMAD, RADHI F. AL- JASSANY1 and ABUL- SATTAR A. ALI2* National Center for Organic Farming /MoA, Abu-Ghraib, Baghdad, Iraq. 1Department of Plant Protection, College of Agriculture, University of Baghdad, Abu-Ghraib, Baghdad, Iraq. 2Department of Plant Protection, College of Agriculture, Al-Anbar University, Al-Anbar, Iraq. *Corresponding author E-mail: [email protected] ABSTRACT: The egg parasitoids Trichogramma spp. were used in a large scale application in different agriculture systems and the spe- cies Trichogramma evanescens (Westwood) showed a very promising results when used against lesser date moth Batrachedra amydraula Meyrick (Lepidoptera: Cosmopterygidae). The efficiency of the parasitoids is affected by many environmental factors including tempera- ture. The effect of different temperature regimes on some biological characteristics of T. evanescens was investigated when reared on the egg B. amydraula under laboratory conditions. The longest life span was 35 days recorded at 15°C while the shortest one was 7 days at 33°C. The optimum temperature for the development of this parasitoid ranged between 22 and 27°C. The upper development threshold temperature was 38.4°C and the lower was 11.14°C. Results also showed that the highest parasitism rate was 94.4% recorded at 25±2°C. Adult emergence and female longevity were also influenced by temperature. The feasibility of the results in mass production and the use of the parasitoid for the control of lesser date moth also discussed.
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • Frutas Y Verduras Biológicas Tropicales
    Frutas y verduras biológicas tropicales Información sobre Mercado, Certificación y Producción para Productores y Compañías Comercializadoras Internacionales Naciones Unidas Conferencia de las Naciones Unidas para el Comercio y el Desarrollo Frutas y verduras biológicas tropicales Información sobre mercado, certificación y producción para productores y compañías comercializadoras internacionales Naciones Unidas Nueva York y Ginebra, 2003 Nota Los símbolos en los documentos de las Naciones Unidas están compuestos por letras mayúsculas con cifras. La mención de tales símbolos indica la referencia a un documento de las Naciones Unidas. Las designaciones que se utilizan y la presentación del material en esta publicación no implica la manifestación de ninguna opinión sea cual fuere por parte de la Secretaría de las Naciones Unidas con respecto a la situación legal de ningún país, territorio, ciudad o área o sus autoridades o con respecto a la delimitación de sus fronteras o límites. El material contenido en esta publicación se puede citar libremente, pero se solicita mencionar la fuente. Una copia de la publicación que contiene la citación o reimpresión se debe enviar a la Secretaría de la UNCTAD a: Palais des Nations, CH-1211 Geneva 10, Suiza Derechos reservados © Naciones Unidas, 2003 UNCTAD/DITC/COM/2003/2 Contenido Agradecimientos Prefacios Contenido AGRADECIMIENTOS PREFACIO Parte A: Producción y principios básicos de la agricultura biológica I. Aspectos generales de la agricultura biológica en la región tropical y subtropical 1.1. Filosofía y principios de la agricultura biológica Página 2 1.1.1. Definición y principios 1.1.2. Diferencias con otros sistemas de agricultura 1.1.3. ¿Por qué agricultura biológica? 1.1.4.
    [Show full text]