International Observational Campaigns of the Last Two Eclipses in EE Cephei: 2003 and 2008/9

Total Page:16

File Type:pdf, Size:1020Kb

International Observational Campaigns of the Last Two Eclipses in EE Cephei: 2003 and 2008/9 Astronomy & Astrophysics manuscript no. EECep˙AaA˙120417 c ESO 2018 September 19, 2018 International observational campaigns of the last two eclipses in EE Cep: 2003 and 2008/9 ⋆ C. Gałan1,2, M. Mikołajewski1, T. Tomov1, D. Graczyk3, G. Apostolovska4, I. Barzova5, I. Bellas-Velidis6, B. Bilkina5, R.M. Blake7, C.T. Bolton8, A. Bondar9, L. Br´at10,11, T. Bro˙zek1, B. Budzisz1, M. Cikała1,12, B. Cs´ak13, A. Dapergolas6, D. Dimitrov5, P.Dobierski1, M. Drahus14, M. Dr´o˙zd˙z15, S. Dvorak16, L. Elder17, S. Fra¸ckowiak1, G. Galazutdinov18, K. Gazeas19, L. Georgiev20, B. Gere21, K. Go´zdziewski1, V.P.Grinin22, M. Gromadzki1,23, M. Hajduk1,24, T.A. Heras25, J. Hopkins26, I. Iliev5, J. Janowski1, R. Koci´an27, Z. Kołaczkowski3,28, D. Kolev5, G. Kopacki28, J. Krzesi´nski15, H. Kuˇc´akov´a27, E. Kuligowska29, T. Kundera29, M. Kurpi´nska-Winiarska29 , A. Ku´zmicz29, A. Liakos19, T.A. Lister30, G. Maciejewski1, A. Majcher1,31, A. Majewska28, P.M. Marrese32, G. Michalska3,28, C. Migaszewski1, I. Miller33,34, U. Munari35, F. Musaev36, G. Myers37, A. Narwid28, P.N´emeth38, P.Niarchos19, E. Niemczura28, W. Ogłoza15, Y. Oˇgmen¨ 39, A. Oksanen40, J. Osiwała1, S. Peneva5, A. Pigulski28, V.Popov5, W. Pych41, J. Pye17, E. Ragan1, B.F. Roukema1, P.T. R´o˙za´nski1, E. Semkov5, M. Siwak15,29, B. Staels42, I. Stateva5, H.C. Stempels43, M. Ste¸´slicki28, E. Swierczy´nski´ 1, T. Szyma´nski29, N. Tomov5, W. Waniak29, M. Wie¸cek1,44, M. Winiarski15,29, P.Wychudzki1,2, A. Zajczyk1,24, S. Zoła15,29, and T. Zwitter45 (Affiliations can be found after the references) Received xxxxx xx, xxxx; accepted xxxxx xx, xxxx ABSTRACT Context. EE Cep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EE Cep together with the widely studied ε Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations. Aims. Two observational campaigns were carried out during the eclipses of EE Cep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses. Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession. Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EE Cep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a “bump” that is very clear in all the UBV(RI)C light curves. A temporary increase in the I-band brightness at the orbital phase ∼ 0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na i lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the Hα emission. Conclusions. These observations confirm that the eclipsing object in EE Cep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EE Cep; (ii) our explanation of the “bump” observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and m (iii) our suggested period of the disk precession (∼ 11–12 Porb) and predicted depth of about 2. for the forthcoming eclipse in 2014. arXiv:1205.0028v3 [astro-ph.SR] 26 Sep 2012 Key words. Stars: binaries, eclipsing – Stars: circumstellar matter – Stars: emission-line, Be 1. Introduction (epoch E = 0) by Romano (1956) and soon confirmed by Weber (1956), who reported observations obtained during a previous The 11th magnitude star EECep is a unique object among the eclipse in 1947 (E = -1). Since then, ten consecutive primary about 40 well-known eclipsing systems with orbital periods eclipses have been observed, while a secondary eclipse has never longer than one year. The primary B5 III star is obscured by been detected. The depths of the eclipses vary across a wide an invisible, dark secondary component of very low luminosity range of magnitudes from about 0m. 5to2m. 0 (see Graczyk et al. every 5.6 yr. The variability of the star was discovered in 1952 2003). However, all of them seem to have the same features: they are almost grey and have a similar asymmetric shape (the ⋆ Tables B.1 – B.36 are available at the CDS via descending branch of every eclipse has a longer duration than the anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via ascending one). In the light curves of all the eclipses, it is pos- http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/544/A53 2 C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep 0 1a 0.2 0.4 1 1a 4a 2 4 0.6 0.8 1 1 3 1.2 1.4 4 3 Var - comp [mag] 1.6 4a 2 1.8 2 Fig. 1. Schematic representation of the eclipse geometry in the 2.2 EECep system. The inner opaque and outer semi-transparent re- 720 740 760 780 800 820 gions of the disk are separated. The characteristic positions of JD - 2450000 the disk and the star configuration during the eclipses (left) cor- respond to the contact times (1a, 1, 2, 3, 4, 4a) distinguished in Fig. 2. U (dots) and i (crosses) light curves obtained during the the light curve (right). The figure shows a highly simplified case 1997 eclipse of EECep. that ignores a number of issues such as e.g. possible inhomo- geneities in the distribution of brightness on the star’s surface or of the actual size of the disk. results of the second campaign were systematically presented during the eclipse at a web page1. sible to distinguish five characteristic phases (shown in Fig.1): ingress (1-2) and egress (3-4) are preceded and followed, respec- 2. Observations tively, by extended atmospheric eclipse parts (1a-1 and 4-4a), 2.1. The 1997 eclipse and in the middle of the eclipses a bottom phase of variableslope (2-3) occurs. During the 1997 eclipse (epoch E = 8), the first multicolour The most plausible hypothesis to explain the observed shape UBVRCi (λ¯ i ≈ 7420 Å) photometric observations were made of the light curve, as well as the changes in the eclipse depth using a 60 cm Cassegrain telescope at the Piwnice Observatory during successive conjunctions and their weak dependence on near Toru´n(Poland) equipped with a one-channel photometer the photometric band was proposed by Mikołajewski & Graczyk (Mikołajewski & Graczyk 1999). This eclipse was one of the (1999). Their model considers the eclipses of a hot B5-type pri- deepest eclipses of all those observed in EECep. However, the mary by an invisible, dark companion, which is most proba- amplitude of the minimum changes quite weakly with wave- bly a dusty disk around a low-luminosity central object. The length from about 1m. 75 in the U passband to about 1m. 45 in i disk is slightly inclined to the orbital plane. The obscurations (Fig.2). These observations thus provided the first evidence that of the star by the opaque interior of the disk can explain the the eclipsing body cannot be an ordinary evolved cool star, mo- deep central parts of the eclipses, while the semi-transparent tivating us to organize a special international observational cam- exterior areas are responsible for the observed external wings, paign for the next two minima. A complete set of UBVRCi pho- which are similar to wings caused by atmospheric eclipses in tometry obtained in 1997 is shown in our Appendix (available ζ Aur type variable stars. The projection of the inclined disk online) in Table B.1. onto the sky plane produces oblong shape of an obscuring body, which is tilted with respect to the direction of motion during most of the occultations. Since the eclipses are not central (the 2.2. International photometric campaigns in 2003 and 2008/9 impact parameter is non-zero), the light curves observed during Observers from four European countries responded to the ap- the eclipses have an asymmetric shape (Fig. 1). A possible pre- peal of Mikołajewski et al. (2003) to perform a precise moni- cession of the disk can change both the inclination of the disk toring of the subsequent eclipse of EECep anticipated in 2003 to the line of sight and the tilt of its cross-section to the transit (epoch E = 9).
Recommended publications
  • Astronomy in Poland
    The Organisation Astronomy in Poland Marek Sarna1 Figure 1. Mikołaj Kazimierz Stępień2 Kopernik pictured in his Frombork observatory. From the painting by Jan Matejko (1838–89). 1 Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Warsaw, Poland 2 Warsaw University Observatory, Poland Polish post-war astronomy was built virtually from nothing. Currently, about 250 astronomers are employed in seven academic institutes and a few smaller units across Poland. Broad areas of astrophysics are covered and the level of astronomical research in Poland is higher than the world average. Joining ESO has created an atmosphere that Gorgolewski (in radio astronomy), liant Polish scientists decided to stay for is conducive to further improvements in Stanisław Grzędzielski (interstellar and good at different western academic the quality of Polish research, and it interplanetary matter), Jan Hanasz institutions. Nonetheless, most of them marks an important step towards the full (radio astronomy, space research), Jerzy preserved close ties with their Polish integration of Polish astronomers into Jakimiec (in the field of Solar flares), colleagues, e.g., by inviting them to visit the international scientific community. Tadeusz Jarzębowski (photometry of vari- abroad and carrying out collaborative able stars), Andrzej Kruszewski (polarisa- research or providing support for scien- tion of starlight, variable stars and extra- tific libraries. As soon as Poland achieved Poland is a country with a long astronomi- galactic astronomy), Wojciech Krzemiński independence, the older emigrant astron- cal tradition: Mikołaj Kopernik (Nicolaus (variable stars), Jan Kubikowski (stellar omers frequently began to visit Poland Copernicus, 1473–1543) with his great atmospheres), Józef Masłowski (radio for both shorter and longer stays.
    [Show full text]
  • Polish Mathematicians and Mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire)
    Science in Poland Stanisław Domoradzki ORCID 0000-0002-6511-0812 Faculty of Mathematics and Natural Sciences, University of Rzeszów (Rzeszów, Poland) [email protected] Małgorzata Stawiska ORCID 0000-0001-5704-7270 Mathematical Reviews (Ann Arbor, USA) [email protected] Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire) Abstract In this article we present diverse experiences of Polish math- ematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside traditional institutions, Polish scientific societies, publishing activities) in order to illus- trate the formation of modern Polish mathematical community. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Domoradzki, Stanisław; Stawiska, Małgorzata 2018: Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire. Studia Historiae Scientiarum 17, pp. 23–49. Available online: https://doi.org/10.4467/2543702XSHS.18.003.9323. ARCHIVE RECEIVED: 2.02.2018 LICENSE POLICY ACCEPTED: 22.10.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Stanisław Domoradzki, Małgorzata Stawiska Polish mathematicians and mathematics in World War I ... In Part I we focus on mathematicians affiliated with the ex- isting Polish institutions of higher education: Universities in Lwów in Kraków and the Polytechnical School in Lwów, within the Austro-Hungarian empire.
    [Show full text]
  • Abstracts.Pdf
    XXV SCIENTIFIC INSTRUMENT SYMPOSIUM “East and West the Common European Heritage” Jagiellonian University Museum Krakow, Poland 10 -14 September 2006 ISBN 83-921397-7-1 Druk: Poligrafia Inspektoratu Towarzystwa Salezjańskiego ul. Konfederacka 6, 30-306 Kraków XXV Scientific Instrument Symposium organised by: Scientific Instrument Commission International Union of the History and Philosophy of Science Division of History of Science http://www.sic.iuhps.org/ Jagiellonian University Museum Department of the History of Science and Scientific Instruments http://www3.uj.edu.pl/Muzeum/index.en.html Local Organising Committee: Prof. Stanisław Waltoś - Director of the Jagiellonian University Museum Ewa Wyka Małgorzata Taborska Maciej Kluza Anna Karolina Zawada Funding for the XXV Scientific Instrument Symposium was provided in part by: - Rector of the Jagiellonian University - International Union of the History and Philosophy of Science Division of History of Science - Scientific Instrument Commission Gaudeamus igitur Gaudeamus igitur While we're young, let us rejoice, Juvenes dum sumus Singing out in gleeful tones, Post jucundum juventutem After youth's delightful frolic, Post molestam senectutem And old age (so melancholic!), Nos habebit humus. Earth will cover our bones. Vivat academia Long live our academy, Vivant professores Teachers whom we cherish, Vivat membrum quodlibet Long live all the graduates, Vivat membra quaelibet And the undergraduates; Semper sint in flore. Ever may they flourish. vers. C. W. Kindeleben, 1781 Tr. J. Mark Sugars, 1997 5 6 TABLE OF CONTENTS 1. Gaudeamus igitur.....................................................................5 2. List of Participants ...................................................................9 3. Session I: East-West – Cooperation, Competition and Trade................................................................................23 4. Session II: Shot at Noon - Aspects of Artillery Instruments from Early Modern Europe ....................................................35 5.
    [Show full text]
  • International Observational Campaigns of the Last Two Eclipses in EE Cephei: 2003 and 2008/9,
    A&A 544, A53 (2012) Astronomy DOI: 10.1051/0004-6361/201016235 & c ESO 2012 Astrophysics International observational campaigns of the last two eclipses in EE Cephei: 2003 and 2008/9, C. Gałan1,2, M. Mikołajewski1,T.Tomov1, D. Graczyk3, G. Apostolovska4, I. Barzova5, I. Bellas-Velidis6, B. Bilkina5, R. M. Blake7,C.T.Bolton8, A. Bondar9,L.Brát10,11,T.Bro˙zek1,B.Budzisz1,M.Cikała1,12, B. Csák13, A. Dapergolas6, D. Dimitrov5, P. Dobierski1,M.Drahus14,M.Dró˙zd˙z15,S.Dvorak16,L.Elder17,S.Fra¸ckowiak1, G. Galazutdinov18, K. Gazeas19,L.Georgiev20,B.Gere21,K.Go´zdziewski1, V. P. Grinin22,M.Gromadzki1,23, M. Hajduk1,24,T.A.Heras25, J. Hopkins26, I. Iliev5, J. Janowski1,R.Kocián27, Z. Kołaczkowski3,28,D.Kolev5, G. Kopacki28, J. Krzesinski´ 15,H.Kucákovᡠ27,E.Kuligowska29, T. Kundera29, M. Kurpinska-Winiarska´ 29 , A. Ku´zmicz29,A.Liakos19,T.A.Lister30, G. Maciejewski1, A. Majcher1,31, A. Majewska28,P.M.Marrese32, G. Michalska3,28, C. Migaszewski1, I. Miller33,34,U.Munari35,F.Musaev36,G.Myers37,A.Narwid28,P.Németh38, P. Niarchos19,E.Niemczura28,W.Ogłoza15,Y.Ögmenˇ 39, A. Oksanen40,J.Osiwała1,S.Peneva5, A. Pigulski28, V. Popov5,W.Pych41,J.Pye17, E. Ragan1,B.F.Roukema1,P.T.Ró˙zanski´ 1, E. Semkov5,M.Siwak15,29,B.Staels42, I. Stateva5,H.C.Stempels43,M.Ste¸slicki´ 28,E.Swierczy´ nski´ 1,T.Szymanski´ 29,N.Tomov5,W.Waniak29, M. Wie¸cek1,44, M. Winiarski15,29, P. Wychudzki1,2, A. Zajczyk1,24,S.Zoła15,29, and T. Zwitter45 (Affiliations can be found after the references) Received 30 November 2010 / Accepted 17 April 2012 ABSTRACT Context.
    [Show full text]
  • Arxiv:1804.02448V1 [Math.HO] 6 Apr 2018 OIHMTEAIIN N AHMTC in MATHEMATICS and MATHEMATICIANS POLISH E Od N Phrases
    POLISH MATHEMATICIANS AND MATHEMATICS IN WORLD WAR I STANISLAW DOMORADZKI AND MALGORZATA STAWISKA Contents 1. Introduction 2 2. Galicja 7 2.1. Krak´ow 7 2.2. Lw´ow 14 3. The Russian empire 20 3.1. Warsaw 20 3.2. St. Petersburg (Petrograd) 28 3.3. Moscow 29 3.4. Kharkov 32 3.5. Kiev 33 3.6. Yuryev(Dorpat;Tartu) 36 4. Poles in other countries 37 References 40 Abstract. In this article we present diverse experiences of Pol- ish mathematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We first focus on those affiliated with Polish institutions of higher education: the ex- isting Universities in Lw´ow in Krak´ow and the Lw´ow Polytechnics arXiv:1804.02448v1 [math.HO] 6 Apr 2018 (Austro-Hungarian empire) as well as the reactivated University of Warsaw and the new Warsaw Polytechnics (the Polish Kingdom, formerly in the Russian empire). Then we consider the situations of Polish mathematicians in the Russian empire and other coun- tries. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside tradi- tional institutions– in Society for Scientific Courses in Warsaw and in Polish University College in Kiev; scientific societies in Krak´ow, Lw´ow, Moscow and Kiev; publishing activities) in order to illus- trate the formation of modern Polish mathematical community. Date: April 10, 2018. 2010 Mathematics Subject Classification. 01A60; 01A70, 01A73, 01A74. Key words and phrases. Polish mathematical community, World War I.
    [Show full text]
  • 202 EXTRAORDINARYASSEMBLY Order by Copernicus, Before
    202 EXTRAORDINARY ASSEMBLY order by Copernicus, before Johannes Kepler and the great Isaac Newton could read any kinematical or dynamical laws from it. Since then, the cosmic laboratory works and grows pushing its limits beyond stars, galaxies, and quasars, bringing a flow of new information about expected and un- expected phenomena. At the present time radio-astronomy and space research discover new proper- ties of matter and energy in pulsars, quasars, active nuclei of galaxies, X-ray sources, relict radiation, multiatomic molecules in the interstellar medium. Using the most modern techniques of optics, electronics, computing machinery, the modern astronomy stimulates their development by increas- ing its demands for uttermost precision and perfection and yields to physics and technology—in return—new data on cosmic phenomena. After a detailed analysis of the progress in all branches of astronomy over the last three years, made in Sydney at the ordinary General Assembly of the International Astronomical Union, within its more than forty commissions, you—astronomers from all the world—came to this country to discuss specifically the present day achievements in these branches of astronomy which took their origin directly from the work of Copernicus: as modern celestial mechanics, exploration of the planetary system, mysteries of gravity in collapsing cosmic masses or expanding envelopes of aging stars, and modern cosmology. These are the topics of the five symposia of this Extraordinary General Assembly. To see the span of progress in astronomy from Copernicus to the present-day astronomy, one more symposium—the sixth—is devoted to the beginnings of this progress, to the background, the birth, and the non-easy reception of the Copernican ideas.
    [Show full text]
  • Polish Mathematicians and Mathematics in World War I. Part II
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal Czasopism Naukowych (E-Journals) Science in Poland Stanisław Domoradzki ORCID 0000-0002-6511-0812 University of Rzeszów (Rzeszów, Poland) [email protected] Małgorzata Stawiska ORCID 0000-0001-5704-7270 American Mathematical Society (Ann Arbor, USA) [email protected] Polish mathematicians and mathematics in World War I. Part II. Russian Empire Abstract In the second part of our article we continue presentation of individual fates of Polish mathematicians (in a broad sense) and the formation of modern Polish mathematical community against the background of the events of World War I. In particu- lar we focus on the situations of Polish mathematicians in the Russian Empire (including those affiliated with the University of Warsaw, reactivated by Germans, and the Warsaw Polytechnic, founded already by Russians) and other countries. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Domoradzki, Stanisław; Stawiska, Małgorzata 2019: Polish mathematicians and mathematics in World War I. Part II: Russian Empire. Studia Historiae Scientiarum 18, pp. 55–92. DOI: 10.4467/2543702XSHS.19.004.11010. ARCHIVE RECEIVED: 13.11.2018 LICENSE POLICY ACCEPTED: 16.05.2019 Green SHERPA / PUBLISHED ONLINE: 15.11.2019 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Stanisław Domoradzki, Małgorzata Stawiska Polish mathematicians and mathematics ... Keywords: Polish mathematical community, World War I, Russian Empire, Society for Scientific Courses in Warsaw, Polish University College in Kiev, teaching at the academic level outside traditional institutions, Mathematics Subject Classification: 01A60, 01A70, 01A73, 01A74 Polscy matematycy i polska matematyka w czasach I wojny światowej.
    [Show full text]
  • Observo Ergo Sum Tadeusz Banachiewicz 1882
    Anna Karolina Zawada Observo ergo sum Tadeusz Banachiewicz 1882 - 1954 Muzeum Uniwersytetu Jagielloñskiego Collegium Maius Kraków 2004 Scenariusz wystawy | Authors of the exhibition: A. Karolina Zawada, Jacek Guzik Komisarz wystawy | Curator of the exhibition: A. Karolina Zawada Projekt plakatu i katalogu | Posters & catalogue design: Barbara £agan, A. Karolina Zawada Aran¿acja plastyczna wystawy | Exibition design: A. Karolin Zawada, Barbara £agan Druk | Printed by: Drukarnia Deka, Kraków ISBN: 83 - 921397-0-4 Wystawa czasowa Temporary exhibition Collegium Maius Collegium Maius 29 paŸdziernika -14 listopada 2004 29 October - 14 November 2004 Organizatorzy wystawy sk³adaj¹ serdeczne podziêkowania Dyrekcji oraz Pracownikom Archiwum Uniwersytetu Jagielloñskiego, Archiwum Nauki Polskiej Akademii Nauk i Polskiej Akademii Umiejêtnoœci, Biblioteki Akademii Pedagogicznej w Krakowie, Obserwatorium Astronomicznego Uniwersytetu Jagielloñskiego, Biblioteki Jagielloñskiej, panu doktorowi Janowi Mietelskiemu, panu doktorowi Jerzemu Kordylewskiemu, panu profesorowi Adamowi Strza³kowskiemu, panu profesorowi Jerzemu Kreinerowi oraz wszystkim pracownikom Muzeum UJ, którzy przyczynili siê do stworzenia tej wystawy. Spis treœci Contents ¯yciorys Tadeusza The Curriculum vitae of Banachiewicza spisany osobiœcie Tadeusz Banachiewicz przez Niego na potrzeby which was written Uniwersytetu Jagielloñskiego by him in 1920 for w 1920 roku 9 Jagiellonian University Tadeusz Banachiewicz 10 Tadeusz Banachiewicz Cychry - lata dzieciñstwa 24 Cychry - his childhood years Kalendarium ¿ycia Tadeusza The time line of Tadeusz Banachiewicza 29 Banachiewicz’s life Katalog wystawy 35 Catalogue Tadeusz Banachiewicz ok. 1910. ca. 1910. w³. pryw. ¯yciorys Tadeusza Bana- The Curriculum vitae of chiewicza spisany osobiœcie Tadeusz Banachiewicz which przez Niego na potrzeby was written by him in 1920 for Uniwersytetu Jagielloñskiego Jagiellonian University. w 1920 roku. Tadeusz Banachiewicz urodzi³ siê Tadeusz Banachiewicz was born on w Warszawie 13.
    [Show full text]
  • Polish Statisticians. Biographical Notes
    Library ISBN 978-83-7027-686-7 Price 20,00 zl of the Statistical News POLISH STATISTICIANS BIOGRAPHICAL NOTES POLISH ST A TISTICIANS BIOGRAPHIC AL NO TES Warsaw 2018 Library of the Statistical News POLISH STATISTICIANS BIOGRAPHICAL NOTES Warsaw 2018 Editorial Board Mirosław Krzyśko (chairman), Wojciech Adamczewski, Jan Berger, Elżbieta Gołata, Kazimierz Kruszka, Bożena Łazowska Language consultation Włodzimierz Okrasa Typesetting Beata Lipińska, Paweł Luty Publication available on website stat.gov.pl ISBN 978-83-7027-686-7 00-925 WARSZAWA, AL. NIEPODLEGŁOŚCI 208. Zakład Wydawnictw Statystycznych Information on sales of the publication – phone +48 (22) 608 32 10, 608 38 10 Zam. 197/2018/nakł. 800 Dear Readers Breakthroughs in the life of a nation always provoke thoughts on its past, economic, social and scientific achievements. This year’s centenary of regaining independence by Poland and the 100th anniversary of the establishment of Statistics Poland provide an opportunity to remind and popularise pioneers and outstanding Polish statisticians. With this in mind, a publication entitled Polish statisticians was created. The aim of the publication is to preserve the memory of the people who contributed to the organisation, development and popularisation of statistics in Poland and in the international arena. The publication presents biographies of thirty persons – eminent scientists and educators, discoverers of new methods and theories – who made a significant contribution to the development of statistics. Reading the biograms brings closer the evolution of statistical thought and helps to understand its universality, indicating the links with other disciplines of science. We hope that this publication will be a valuable item in the library of every reader interested in statistics as a science describing the world around us and the phenomena occurring in it.
    [Show full text]
  • Distinguished Graduates in Mathematics of the Jagiellonian
    DISTINGUISHED GRADUATES IN MATHEMATICS OF JAGIELLONIAN UNIVERSITY IN THE INTERWAR PERIOD. PART I: 1918-1925 STANISLAW DOMORADZKI AND MALGORZATA STAWISKA 1. Introduction 2 2. Profiles 7 2.1. Tadeusz Wa_zewski(1896-1972) 7 2.2. W ladys law Nikliborc (1899-1948) 10 2.3. Stanis law Bilski (1893-1934(?)) 12 2.4. Jan J´ozefLe´sniak (1901-1980) 12 2.5. Stanis law Go l¸ab(1902-1980) 13 2.6. Zofia Krygowska (1904-1988) 16 References 18 Contents arXiv:1508.05450v2 [math.HO] 19 Nov 2015 Date: November 20, 2015. 1 Abstract. In this study, we present profiles of some distinguished graduates in mathemat- ics of the Jagiellonian University from the years 1918-1939. We discuss their professional paths and scholarly achievements, instances of scientific collaboration, connections with other academic centers in Poland and worldwide, involvement in mathematical education and teacher training, as well as their later roles in Polish scientific and academic life. We also try to understand in what way they were shaped by their studies and how much of Krak´owscientific traditions they continued. We find strong support for the claim that there was a distinct, diverse and deep mathematical stream in Krak´owbetween the wars, rooted in classical disciplines like differential equations and geometry, but also open to new trends in mathematics. Part I concerns the graduates before the university reform, in 1918-1926. W niniejszej pracy przedstawiamy sylwetki niekt´orych wybitnych absolwent´owUniwer- sytetu Jagiello´nskiegow zakresie matematyki z lat 1918-1939. Omawiamy ich drogi za- wodowe i osi¸agni¸ecianaukowe, przyk ladywsp´o lpracynaukowej, zwi¸azkiz innymi o´srodkami akademickimi w Polsce i na ´swiecie,zaanga_zowanie w nauczanie matematyki i kszta lcenie nauczycieli oraz ich p´o´zniejszerole w polskim _zyciuakademickim.
    [Show full text]
  • The Polish Contribution to Mathematical and Physical Sciences in the Years 1918—1970
    ORGANON 12/13 AUTEURS ET PROBLÈMES Jôzef Hurwic (France) THE POLISH CONTRIBUTION TO MATHEMATICAL AND PHYSICAL SCIENCES IN THE YEARS 1918—1970 The subject is so vast that it seems more suitable for a work in several volumes than for a short conference. I am therefore obliged to confine myself to an outline illustrated by examples taken at random. This review has thus inevitably a somewhat subjective nature. I shall begin by a short reminder of the achievements of mathemati- cians whose results are of foremost importance in the fifty odd years under consideration. It is not an accident that this subject has received such intensive study in Poland. The results achieved owe more to man's intelligence than to expensive apparatus. This latter has always suffered from a constant lack of funds but there has been no lack of mental activity. In 1920 Wacław Sierpiński, Zygmunt Janiszewski and Stefan Ma- zurkiewicz founded "Fundamenta Mathematicae" in Warsaw. This jour- nal concentrated efforts on the theory of sets and its neighbouring fields such as the theory of functions of real variable, topology, mathematical logic. This review rapidly became one of the most important in the mathematical world. It gave rise to the celebrated Warsaw mathematical school. At the same time Hugo Steinhaus and Stefan Banach founded an excellent centre for research in the field of functional analysis at Lvov. The spaces defined by Banach and called throughout the world Banach's spaces are now currently used in mathematics. At Cracow between the two world wars classical mathematics were above all cul- tivated: Stanisław Zaremba worked in the field of differential equations, Franciszek Leja contributed to the progress of the theory of analytic functions.
    [Show full text]
  • Tadeusz Banachiewicz's Scientific Activity at Engelhardt Astronomical
    In memoriam Hilmar Duerbeck, p. 453–462 (Acta Historica Astronomiae, Vol. 64) W. R. Dick, C. Sterken (eds.). © Akad. Verlagsanstalt, Leipzig 2018 Tadeusz Banachiewicz’s scientific activity at Engelhardt Astronomical Observatory of Kazan University Yury Nefedyev, Kazan, Piotr Flin, Kielce, Elena Panko, Odessa, Ramil Shaimukhametov, Kazan, Alexey Andreev, Kazan This paper describes the scientific activities of Tadeusz Banachiewicz (1882–1954) during his work at Engelhardt Astronomical Observatory from 1910 to 1915. Dieser Beitrag beschreibt die wissenschaftlichen Aktivitäten von Tadeusz Banachiewicz (1882–1954) während seiner Tätigkeit an der Engelhardt-Sternwarte zwischen 1910 und 1915. Dedication One of us (Piotr Flin) collaborated with Hilmar Duerbeck in several scientific projects. Among them there was one concerning the history of astronomy. We also planned several other projects. Unfortunately, cruel fate stopped this fruitful collaboration and the projects remain unfinished. When writing papers dealing with the early years of Tadeusz Banachiewicz’s scientific career, we quite often asked Hilmar for help. He always demonstrated deep interest in the subject, and answered our questions quickly and promptly with his great and charming sense of humour. The present paper is dedicated to the memory of our late and much lamented friend, Professor Hilmar W. Duerbeck. 454 Yury Nefedyev, Piotr Flin, Elena Panko, Ramil Shaimukhametov, Alexey Andreev 1 Introduction In 1901, in a forest near Kazan, the Astronomical Observatory of Kazan Imperial University was established (Martinoff 1951). It was created on the basis of dona- tions, to Kazan University, of the scientific equipment of V. P. Engelhardt’s private astronomical observatory in Dresden. The construction was managed under the direction of D.
    [Show full text]