Graduate Programs in Statistics/Biostatistics Table A

Total Page:16

File Type:pdf, Size:1020Kb

Graduate Programs in Statistics/Biostatistics Table A New York City Program (Apri 114-15)- Page 310 Salt Lake City Program (April 29-30)- Page 323 Notices of the American Mathematical Society April 1983, Issue 225 Volume 30, Number 3, Pages 249-384 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri­ can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of tho meet­ ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab­ stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE ISSUE 803 April 14-15, 1983 New York, New York EXPIRED April 804 April 29-30, 1983 Salt Lake City, Utah EXPIRED April 805 August 8-12, 1983 Albany, New York MAY 17, 1983 August (87th Summer Meeting) 806 October 28-29, 1983 Fairfield, Connecticut AUGUST 23, 1983 October 807 November 11-12, 1983 San Luis Obispo, California AUGUST 25, 1983 October 808 November 11-12, 1983 Evanston, Illinois AUGUST 29, 1983 October 809 January 25-29, 1984 Louisville, Kentucky NOVEMBER 2, 1983 January (90th Annual Meeting) 1984 April 6-7, 1984 Notre Dame, Indiana January 9-13, 1985 Anaheim, California (91 st Annual Meeting) January 21-25, 1987 San Antonio, Texas (93rd Annual Meeting) DEADLINES: Advertising (june Issue) April 21,1983 (August Issue) june 8, 1983 News/Special Meetings: Uune Issue) April 5, 1983 (August Issue) May 23, 1983 Other Events Sponsored by the Society April12-13, 1983, AMS-SIAM Symposium on Inverse Problems, New York Statler Hotel, New York, New York. This issue, page 312. May 1983, Symposium on Some Mathematical Questions in Biology, Detroit, Michigan. This issue, page 331. June 5-August 13, 1983, AMS Summer Research Conferences, University of Colorado, Boulder, Colorado. January issue, page 7 4. June 27 -July 8, 1983, AMS-SIAM Summer Seminar on Large-scale Computations in Fluid Mechanics, Scripps Institution of Oceanography, LaJolla, California. February issue, page 199. July 11-29, 1983, AMS Summer Research Institute on Nonlinear Functional Analysis and Applications, University of California, Berkeley. This issue, page 332. August 6-7, 1983, AMS Short Course: Population Biology, Albany, New York. This issue, page 336 Subscnbers' changes of address should be reported well in advance to avoid disruption of service: address labels are prepared four to six weeks in advance of the date of mailing. Requests for a change of address should always include the member or subscriber code and preferably a copy of the entire mailing label. Members are reminded that U. S. Postal Service change-of­ address forms are not adequate for this purpose, since they make no provision for several important items of information which are essential for the AMS records. Suitable forms are published from time to time in the Notices (e.g. June 1980, page 378). Send change. of address notices to the Society at Post Office Box 6248, Providence, RI 02940. [Notices is published eight times a year (January, February, April, June, August, October, November, December) by the American Mathematical Society at 201 Charles Street, Providence, RI 02904. Second class postage paid at Providence, RI and additional mailing offices. POSTMASTER: Send address change notices to Membership and Sales Department, American Mathematical Society, Post Office Box 6248, Providence, RI 02940.] Publication here of the Society's street address, and the other information in brackets above, is a technical requirement of the U. S. Postal Service. The street address should never be used by correspondents, unless they plan to deliver their messages by hand. Members are strongly urged to notify the Society themselves of address changes (in the manner described above), since (as explained above) reliance on the postal service change-of-address forms is liable to cause delays in processing such requests in the AMS office. Notices of the American Mathematical Society Volume 30, Number 3, April 1983 EDITORIAL COMMITTEE Paul F. Baum, Ralph P. Boas Raymond L. johnson, Mary Ellen Rudin Bertram Walsh, Daniel Zelinsky 251 "Big" News from Archimedes to Friedman, Everett Pitcher (Chairman) C. Smorynski MANAGING EDITOR 257 Newest Ratings of Graduate Programs in Lincoln K. Durst Mathematics, D. C. Rung ASSOCIATE EDITORS 268 Research Briefing Panel on Mathematics: History Hans Samelson, Queries and Background, W. Browder Ronald L. Graham, Special Articles 271 Report of the Research Briefing Panel SUBSCRIPTION ORDERS on Mathematics Subscription for Vol. 30 (1983): 280 National Science Foundation Budget Request $39 list, $20 member. The subscription for FY 1984 price for members is included in the annual dues. Subscriptions and orders 290 Mathematical and Computer Sciences in the FY for AMS publications should be 1984 Federal Budget, W. H. Pell addressed to the American Mathematical 300 Federal Support-Where Do We Stand? Society, P. 0. Box 1571, Annex Station, K. Hoffman Providence, Rl 02901. All orders must be prepaid. 302 Queries 304 News and Announcements ORDERS FOR AMS BOOKS AND INQUIRIES ABOUT SALES, SUBSCRIP­ 306 NSF News & Reports TIONS, AND DUES may be made by 307 Letters to the Editor calling Carol-Ann Blackwood at 308 1983 AMS Elections (Nominations by Petition) 800-556-7774 (toll free in U.S.) between 8:00a.m. and 4:15p.m. eastern time, 310 Future Meetings of the Society Monday through Friday. New York City, April 74-75, 310; Salt Lake City, April 29-30, 323; Symposium on CHANGE OF ADDRESS. To avoid Mathematical Biology, Detroit, May 37, 331; interruption in service please send AMS Summer Research Institute, 332; Albany, address changes four to six weeks in advance. It is essential to include the August 8-72, 333; Synopses, Short Course on member code which appears on the Population Biology, 350; Call for Topics, 352; address label with all correspondence Invited Speakers and Special Sessions, 355 regarding subscriptions. 357 New AMS Publications INFORMATION ABOUT ADVERTISING 359 Miscellaneous in the Notices may be obtained from New Doctorates (Supplement), 359 Wahlene Siconio at 401-272-9500. 360 Special Meetings CORRESPONDENCE, including changes 365 AMS Reports & Communications of address should be sent to American Recent Appointments, 365; Officers of the Mathematical Society, P.O. Box 6248, Society, 1982 and 1983, 366 Providence, Rl 02940. 367 Advertisements Second class postage paid at Providence, Rl, and additional mailing 380 Registration Forms offices. Copyright © 1983 by the Summer List of Applicants, 380, 381 American Mathematical Society. Albany Preregistration and Housing Printed in the United States of America. Reservation Form, 383, 384 JOURNALS PUBLISHED BY THE AMERICAN MATHEMATICAL SOCIETY TRANSLATION JOURNALS Soviet Mathematics-Doklady is a bimonthly translation journal containing the entire pure mathematics section of the DOKLADY AKADEMII NAUK SSSR. Mathematics of the USSR-Izvestija, a bimonthly journal, is a cover-to-cover translation of IZVESTIY A AKADEMII NAUK SSSR SERIYA MA TEMATICHESKA Y A. Mathematics of the USSR-Sbornik is a monthly journal and is a cover-to-cover translation of MATEMATICHSKii SBORNIK (NOVA Y A SERIY A). Theory of Probability and Mathematical Statistics is the cover-to-cover translation into English of TEORIYA VEROY ATNOSTEi I MA TEMA TICHESKAY A STATISTIKA. Vestnik Leningrad University (Mathematics) is the complete translation into English of the mathematics section of the VESTNIK LENINGRADSKOGO UNIVERSITETA. Transactions of the Moscow Mathematical Society is a translation into English of TRUDY MOSKOVSKOGO MATEMA TICHESKOGO OBSHCHESTV A. Proceedings of the Steklov Institute of Mathematics is a translation of the PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS IN THE ACADEMY OF SCIENCES OF THE USSR. RESEARCH JOURNALS Submission information for these journals is included in the May and September issues of the Bulletin. Bulletin (New Series) of the American Mathematical Society is a bimonthly journal which contains Research-Expository Papers, Research Announcements and Reviews of Books on Ad­ vanced Mathematics. Mathematics of Computation is a quarterly journal devoted to original papers in numerical analysis, the application of numerical methods and high-speed calculator devices, the computation of mathematical tables, the theory of high-speed calculating devices, and other aids to computa­ tion. Memoirs of the American Mathematical
Recommended publications
  • Man and Machine Thinking About the Smooth 4-Dimensional Poincaré
    Quantum Topology 1 (2010), xxx{xxx Quantum Topology c European Mathematical Society Man and machine thinking about the smooth 4-dimensional Poincar´econjecture. Michael Freedman, Robert Gompf, Scott Morrison and Kevin Walker Mathematics Subject Classification (2000).57R60 ; 57N13; 57M25 Keywords.Property R, Cappell-Shaneson spheres, Khovanov homology, s-invariant, Poincar´e conjecture Abstract. While topologists have had possession of possible counterexamples to the smooth 4-dimensional Poincar´econjecture (SPC4) for over 30 years, until recently no invariant has existed which could potentially distinguish these examples from the standard 4-sphere. Rasmussen's s- invariant, a slice obstruction within the general framework of Khovanov homology, changes this state of affairs. We studied a class of knots K for which nonzero s(K) would yield a counterexample to SPC4. Computations are extremely costly and we had only completed two tests for those K, with the computations showing that s was 0, when a landmark posting of Akbulut [3] altered the terrain. His posting, appearing only six days after our initial posting, proved that the family of \Cappell{Shaneson" homotopy spheres that we had geared up to study were in fact all standard. The method we describe remains viable but will have to be applied to other examples. Akbulut's work makes SPC4 seem more plausible, and in another section of this paper we explain that SPC4 is equivalent to an appropriate generalization of Property R (\in S3, only an unknot can yield S1 × S2 under surgery"). We hope that this observation, and the rich relations between Property R and ideas such as taut foliations, contact geometry, and Heegaard Floer homology, will encourage 3-manifold topologists to look at SPC4.
    [Show full text]
  • Copyright by Kyle Lee Larson 2015 the Dissertation Committee for Kyle Lee Larson Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Kyle Lee Larson 2015 The Dissertation Committee for Kyle Lee Larson certifies that this is the approved version of the following dissertation: Some Constructions Involving Surgery on Surfaces in 4{manifolds Committee: Robert Gompf, Supervisor Selman Akbulut Cameron Gordon John Luecke Timothy Perutz Some Constructions Involving Surgery on Surfaces in 4{manifolds by Kyle Lee Larson, B.S.; M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2015 Dedicated to my family. Acknowledgments I would like to thank my advisor Bob Gompf for his help and support throughout my career as a graduate student. He gave me the space and free- dom to mature and develop at my own pace, and without that I am certain I would not have finished. Learning how he thinks about and does mathematics has been a great education and inspiration for me. I would also like to thank the rest of my dissertation committee for the significant time and energy each one has given to help me grow as a mathematician. UT Austin is a wonderful place to be a topologist, and special thanks must go to Cameron Gordon in particular for helping to create such an environment. Chapter 4 of this dissertation consists of joint work with Jeffrey Meier, and it is my pleasure to thank him for being a great collaborator and an even better friend. There are a host of topologists whose help and friendship have made my time at Texas more productive and much more meaningful, includ- ing (but not limited to) Ahmad Issa, Julia Bennett, Nicholas Zufelt, Laura Starkston, Sam Ballas, C¸a˘grıKarakurt, and Tye Lidman.
    [Show full text]
  • Dusa Mcduff, Grigory Mikhalkin, Leonid Polterovich, and Catharina Stroppel, Were Funded by MSRI‟S Eisenbud Endowment and by a Grant from the Simons Foundation
    Final Report, 2005–2010 and Annual Progress Report, 2009–2010 on the Mathematical Sciences Research Institute activities supported by NSF DMS grant #0441170 October, 2011 Mathematical Sciences Research Institute Final Report, 2005–2010 and Annual Progress Report, 2009–2010 Preface Brief summary of 2005–2010 activities……………………………………….………………..i 1. Overview of Activities ............................................................................................................... 3 1.1 New Developments ............................................................................................................. 3 1.2 Summary of Demographic Data for 2009-10 Activities ..................................................... 7 1.3 Scientific Programs and their Associated Workshops ........................................................ 9 1.4 Postdoctoral Program supported by the NSF supplemental grant DMS-0936277 ........... 19 1.5 Scientific Activities Directed at Underrepresented Groups in Mathematics ..................... 21 1.6 Summer Graduate Schools (Summer 2009) ..................................................................... 22 1.7 Other Scientific Workshops .............................................................................................. 25 1.8 Educational & Outreach Activities ................................................................................... 26 a. Summer Inst. for the Pro. Dev. of Middle School Teachers on Pre-Algebra ....... 26 b. Bay Area Circle for Teachers ..............................................................................
    [Show full text]
  • View This Volume's Front and Back Matter
    Four-Manifold Theory AMERICAN MATHEMATICAL SOCIETY uo LU mE 35 http://dx.doi.org/10.1090/conm/035 COITEMPORAR¥ MATHEMATICS Titles in this Series Volume 1 Markov random fields and their applications, Ross Kindermann and J. Laurie Snell 2 Proceedings of the conference on integration, topology, and geometry in linear spaces, William H. Graves. Editor 3 The closed graph and P-closed graph properties in general topology, T. R. Hamlett and L. L. Herrington 4 Problems of elastic stability and vibrations, Vadim Komkov. Editor 5 Rational constructions of modules for simple Lie algebras, George B. Seligman 6 Umbral calculus and Hopf algebras, Robert Morris. Editor 7 Complex contour integral representation of cardinal spline functions, Walter Schempp 8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio. Editors 9 Papers in algebra, analysis and statistics, R. Lidl. Editor 10 Operator algebras and K-theory, Ronald G. Douglas and Claude Schochet. Editors 11 Plane ellipticity and related problems, Robert P. Gilbert. Editor 12 Symposium on algebraic topology in honor of Jose Adem, Samuel Gitler. Editor 13 Algebraists' homage: Papers in ring theory and related topics, S. A. Amitsur. D. J. Saltman and G. B. Seligman. Editors 14 Lectures on Nielsen fixed point theory, Boju Jiang 15 Advanced analytic number theory. Part 1: Ramification theoretic methods, Carlos J. Moreno 16 Complex representations of GL(2, K) for finite fields K, llya Piatetski-Shapiro 17 Nonlinear partial differential equations, Joel A. Smoller. Editor 18 Fixed points and nonexpansive mappings, Robert C. Sine. Editor 19 Proceedings of the Northwestern homotopy theory conference, Haynes R.
    [Show full text]
  • 6Z30q7fq.Pdf
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Visualizing Regular Tesselations: Principal Congruence Links and Equivariant Morphisms from Surfaces to 3-Manifolds Permalink https://escholarship.org/uc/item/6z30q7fq Author Goerner, Matthias Rolf Dietrich Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Visualizing Regular Tesselations: Principal Congruence Links and Equivariant Morphisms from Surfaces to 3-Manifolds by Matthias Rolf Dietrich Goerner, Sr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Peter Teichner, Co-chair Professor Ian Agol, Co-chair Professor Carlo Sequin Fall 2011 1 Abstract Visualizing Regular Tesselations: Principal Congruence Links and Equivariant Morphisms from Surfaces to 3-Manifolds by Matthias Rolf Dietrich Goerner, Sr. Doctor of Philosophy in Mathematics University of California, Berkeley Professor Peter Teichner, Co-chair Professor Ian Agol, Co-chair We study embeddings of regular tessellations into S3 such that some symmetries of the tessellation are directly visible in space. In the first chapter, we consider cusped hyperbolic 3-manifolds which arise from principal congruence subgroups and, therefore, are canonically tessellated by regular ideal hyperbolic tetrahedra. The codimension of an embedding of such a 3-manifold into S3 is zero, and the embedding fills all of S3 but a link, i.e., a disjoint union of knots. A new example constructed here is the 12-component link whose complement consists of 54 regular ideal hyperbolic tetrahedra. The link has 3-fold dihedral symmetry making some of the symmetries of its hyperbolic complement directly visible in the picture.
    [Show full text]
  • KNOT CONCORDANCES in 3-MANIFOLDS by Eylem Zeliha
    KNOT CONCORDANCES IN 3-MANIFOLDS By Eylem Zeliha Yıldız A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematics – Doctor of Philosophy 2019 ABSTRACT KNOT CONCORDANCES IN 3-MANIFOLDS By Eylem Zeliha Yıldız We deal with some questions regarding concordance of knots in arbitrary closed 3-manifolds. We first prove that, any non-trivial element in the fundamental group of a closed, oriented 3-manifold gives rise to infinitely many distinct smooth almost-concordance classes in the free homotopy class of the unknot. In particular, we consider these distinct smooth almost-concordance classes on the boundary of a Mazur manifold and we show none of these distinct classes bounds a PL-disk in the Mazur manifold. On the other hand, all the representatives we construct are topologically slice. We also prove that all knots in the free homotopy class of S1 × pt in S1 × S2 are smoothly concordant. To the Gökova Geometry Topology Conferences. iii ACKNOWLEDGEMENTS The material in this thesis is based on the paper "A Note on Knot Concordance" which is published in Algebraic & Geometric Topology 18-5 (2018), 3119–3128. DOI 10.2140/agt.2018.18.3119. iv TABLE OF CONTENTS LIST OF FIGURES ....................................... vi CHAPTER 1 INTRODUCTION ............................... 1 1.1 Overview . 1 1.2 Results and methods . 2 CHAPTER 2 PRELIMINARIES ............................... 4 2.1 Definitions, conventions, and notations . 4 2.2 Wall’s Self Intersection Number, and a Concordance Invariant . 5 CHAPTER 3 PROOF OF THEOREM 1.2.1 ......................... 8 3.1 PL-Slice . 8 3.2 Topologically Slice .
    [Show full text]
  • 2006-07 Report from the Mathematical Sciences Research Institute April 2008
    Mathematical Sciences Research Institute Annual Report for 2006-2007 I. Overview of Activities……………………………………………………........ 3 New Developments………………………………………………….. 3 Scientific Program and Workshops………………………………….. 5 Program Highlights………………………………………………….. 11 MSRI Experiences…………………………………………………… 15 II. Programs……………………………………………………………………….. 24 Program Participant List……………………………………………. 25 Participant Summary………………………………………………… 29 Publication List……………………………………………………… 30 III. Postdoctoral Placement……………………………………………………....... 35 IV. Summer Graduate Workshops………………………………………………… 36 Graduate Student Summary…………………………………………. 39 V. Undergraduate Program………………………………………………………… 40 Undergraduate Student Summary……………………………………. 41 VI. External Financial Support…………………………………………………….. 42 VII. Committee Membership……………………………………………………….. 47 VIII. Appendix - Final Reports…………………………………………………......... 49 Programs………………………………………………………………. 49 Geometric Evolution Equations and Related Topics…………... 49 Computational Applications of Algebraic Topology…………... 63 Dynamical Systems…………………………………………….. 70 Workshops……………………………………………………………… 80 Connections for Women: Computational Applications of Algebraic Topology…………………………………………….. 80 MSRI Short Course: An Introduction to Multiscale Methods….. 88 Connections for Women: Geometric Analysis and Nonlinear Partial Differential Equations…………………………... 90 Recent Developments in Numerical Methods and Algorithms for Geometric Evolution Equations….………………… 91 Lectures on String(y) Topology………………………………... 94 Introductory Workshop:
    [Show full text]
  • Triangulating Cappell-Shaneson Homotopy 4-Spheres
    Triangulating Cappell-Shaneson homotopy 4-spheres Ahmad Issa ORCID Identifier: 0000-0003-2444-6552 Submitted in total fulfillment of the requirements of the degree of Master of Philosophy August 2017 School of Mathematics and Statistics The University of Melbourne Declaration This is to certify that: (i) the thesis comprises only my original work towards the MPhil except where indicated in the Preface, (ii) due acknowledgement has been made in the text to all other material used, (iii) the thesis is fewer than 50,000 words in length, exclusive of tables, maps, bibliographies and appendices. Signed: Ahmad Issa Preface My original work towards the MPhil is contained in Chapter5, Sections 6.2-6.3, Chapter7, as well as Proposition 3.7. All other sections, in particular Chapters1, 2,4 and most of Chapter3 contain no original results. The material in Chapter4 was primarily taken from my MSc thesis [Iss12, Section 1.7]. Chapter4 contains no original results and serves only as relevant background material. Acknowledgements First, I would like to thank my supervisor Craig Hodgson for all his guidance, encouragement and patience throughout my MPhil. Thank you for all the wonderful maths discussions, for keeping me on track administratively, and for all the detailed feedback on an earlier draft of this thesis. More broadly, Craig has had a huge positive influence on my mathematical development from my early days, some 9 or so years ago, as a first year undergraduate when he posed extra challenge problems on assignments, through supervising me as an MSc student, and now to the completion of this MPhil thesis.
    [Show full text]
  • This Is Scott's BIBTEX File. References
    This is Scott's BIBTEX file. References [1] I. R. Aitchison and J. H. Rubinstein. Fibered knots and involutions on homotopy spheres. In Four-manifold theory (Durham, N.H., 1982), volume 35 of Contemp. Math., pages 1{74. Amer. Math. Soc., Providence, RI, 1984. MR780575. [2] Selman Akbulut. The Dolgachev surface, 2008. arXiv:0805.1524. [3] Selman Akbulut. Cappell-Shaneson homotopy spheres are standard, 2009. arXiv:0907.0136. [4] Selman Akbulut and Robion Kirby. A potential smooth counterexample in dimension 4 to the Poincar´econjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture. Topology, 24(4):375{390, 1985. MR816520 DOI:10.1016/0040-9383(85)90010-2. [5] A. Alexeevski and S. Natanzon. Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves. Selecta Math. (N.S.), 12(3-4):307{377, 2006. MR2305607,arXiv:math.GT/0202164. [6] Henning Haahr Andersen. Tensor products of quantized tilting modules. Comm. Math. Phys., 149(1):149{159, 1992. MR1182414 euclid.cmp/1104251142. [7] D. W. Anderson. Chain functors and homology theories. In Symposium on Algebraic Topol- ogy (Battelle Seattle Res. Center, Seattle, Wash., 1971), pages 1{12. Lecture Notes in Math., Vol. 249. Springer, Berlin, 1971. MR0339132. [8] Marta Asaeda. Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math., 18(2):191{202, 2007. MR2307421 DOI:10.1142/S0129167X07003996 arXiv:math.OA/ 0605318. [9] Marta Asaedap and Uffe Haagerup.p Exotic subfactors of finite depth with Jones in- dices (5 + 13)=2 and (5 + 17)=2. Comm. Math. Phys., 202(1):1{63, 1999.
    [Show full text]
  • Plugs in Simply-Connected 4 Manifolds with Boundaries
    PLUGS IN SIMPLY-CONNECTED 4 MANIFOLDS WITH BOUNDARIES By Wei Fan A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematics - Doctor of Philosophy 2015 ABSTRACT PLUGS IN SIMPLY-CONNECTED 4 MANIFOLDS WITH BOUNDARIES By Wei Fan In 1986, S. Boyer generalized Freedman's result to simply-connected topological 4 man- ifolds with boundaries. He proved in many cases, the intersection form and the boundary determine the homeomorphism types of the 4 manifolds. In this thesis, we will study simply- connected smooth 4 manifolds with boundaries by using handlebody techniques. We will show that: there do exist simply-connected smooth 4 manifolds with the same intersection form and the same boundary but not homeomorphic to each other, and the cause of this phenomenon is \Plug". ACKNOWLEDGMENTS I would like gratefully and sincerely thank my advisor Selman Akbulut for his guidance, support, patience and encouragement during my PhD program at Michigan State University. His unique perspective on research and sharp insight on almost any issue have been an invaluable resource to me in my studies. I would also like to thank Matt Hedden and Effie Kalfagianni for many enlightening conversations on many topics. I am indebted Luke Williams for uncountably many inspira- tional discussions and his continued support for Latex. I am thankful to my fellow graduate students at MSU. I have learned a great deal from many of you. I appreciate the atmosphere of mathematical learning during my years here. Last but not least, I am grateful to my dad Zhenfeng Fan, my mom Rongmei Yang and my girlfirend Caijin Huang for always having faith in me.
    [Show full text]
  • 4-Manifolds and Kirby Calculus
    4-Manifolds and Kirby Calculus Robert E. Gompf András I. Stipsicz Graduate Studies in Mathematics Volume 20 American Mathematical Society http://dx.doi.org/10.1090/gsm/020 Selected Titles in This Series 20 Robert E. Gompf and Andr´as I. Stipsicz, 4-manifolds and Kirby calculus, 1999 19 Lawrence C. Evans, Partial differential equations, 1998 18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997 17 Henryk Iwaniec, Topics in classical automorphic forms, 1997 16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997 15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997 14 Elliott H. Lieb and Michael Loss, Analysis, 1997 13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996 12 N. V. Krylov, Lectures on elliptic and parabolic equations in H¨older spaces, 1996 11 Jacques Dixmier, Enveloping algebras, 1996 Printing 10 Barry Simon, Representations of finite and compact groups, 1996 9 Dino Lorenzini, An invitation to arithmetic geometry, 1996 8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996 7 Gerald J. Janusz, Algebraic number fields, second edition, 1996 6 Jens Carsten Jantzen, Lectures on quantum groups, 1996 5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995 4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994 3 William W. Adams and Philippe Loustaunau, An introduction to Gr¨obner bases, 1994 2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993 1 Ethan Akin, The general topology of dynamical systems, 1993 4-Manifolds and Kirby Calculus 4-Manifolds and Kirby Calculus Robert E.
    [Show full text]