6Z30q7fq.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Congruence Subgroups of Matrix Groups
Pacific Journal of Mathematics CONGRUENCE SUBGROUPS OF MATRIX GROUPS IRVING REINER AND JONATHAN DEAN SWIFT Vol. 6, No. 3 BadMonth 1956 CONGRUENCE SUBGROUPS OF MATRIX GROUPS IRVING REINER AND J. D. SWIFT 1. Introduction* Let M* denote the modular group consisting of all integral rxr matrices with determinant + 1. Define the subgroup Gnf of Mt to be the group of all matrices o of Mt for which CΞΞΞO (modn). M. Newman [1] recently established the following theorem : Let H be a subgroup of M% satisfying GmnCZH(ZGn. Then H=Gan, where a\m. In this note we indicate two directions in which the theorem may be extended: (i) Letting the elements of the matrices lie in the ring of integers of an algebraic number field, and (ii) Considering matrices of higher order. 2. Ring of algebraic integers* For simplicity, we restrict our at- tention to the group G of 2x2 matrices (1) . A-C b \c d where α, b, c, d lie in the ring £& of algebraic integers in an algebraic number field. Small Roman letters denote elements of £^, German letters denote ideals in £&. Let G(3l) be the subgroup of G defined by the condition that CΞΞO (mod 91). We shall prove the following. THEOREM 1. Let H be a subgroup of G satisfying (2) G(^)CHCGP) , where (3JΪ, (6)) = (1). Then H^GφW) for some Proof. 1. As in Newman's proof, we use induction on the number of prime ideal factors of 3JL The result is clear for 9Jέ=(l). Assume it holds for a product of fewer than k prime ideals, and let 2Ji==£V«- Qfc (&i^l)> where the O4 are prime ideals (not necessarily distinct). -
Mechanical Aspire
Newsletter Volume 6, Issue 11, November 2016 Mechanical Aspire Achievements in Sports, Projects, Industry, Research and Education All About Nobel Prize- Part 35 The Breakthrough Prize Inspired by Nobel Prize, there have been many other prizes similar to that, both in amount and in purpose. One such prize is the Breakthrough Prize. The Breakthrough Prize is backed by Facebook chief executive Mark Zuckerberg and Google co-founder Sergey Brin, among others. The Breakthrough Prize was founded by Brin and Anne Wojcicki, who runs genetic testing firm 23andMe, Chinese businessman Jack Ma, and Russian entrepreneur Yuri Milner and his wife Julia. The Breakthrough Prizes honor important, primarily recent, achievements in the categories of Fundamental Physics, Life Sciences and Mathematics . The prizes were founded in 2012 by Sergey Brin and Anne Wojcicki, Mark Zuckerberg and Priscilla Chan, Yuri and Julia Milner, and Jack Ma and Cathy Zhang. Committees of previous laureates choose the winners from candidates nominated in a process that’s online and open to the public. Laureates receive $3 million each in prize money. They attend a televised award ceremony designed to celebrate their achievements and inspire the next generation of scientists. As part of the ceremony schedule, they also engage in a program of lectures and discussions. Those that go on to make fresh discoveries remain eligible for future Breakthrough Prizes. The Trophy The Breakthrough Prize trophy was created by Olafur Eliasson. “The whole idea for me started out with, ‘Where do these great ideas come from? What type of intuition started the trajectory that eventually becomes what we celebrate today?’” Like much of Eliasson's work, the sculpture explores the common ground between art and science. -
Mathematics Calendar
Mathematics Calendar Please submit conference information for the Mathematics Calendar through the Mathematics Calendar submission form at http:// www.ams.org/cgi-bin/mathcal-submit.pl. The most comprehensive and up-to-date Mathematics Calendar information is available on the AMS website at http://www.ams.org/mathcal/. June 2014 Information: http://www.tesol.org/attend-and-learn/ online-courses-seminars/esl-for-the-secondary- 1–7 Modern Time-Frequency Analysis, Strobl, Austria. (Apr. 2013, mathematics-teacher. p. 429) * 2–30 Algorithmic Randomness, Institute for Mathematical Sciences, 2–5 WSCG 2014 - 22nd International Conference on Computer National University of Singapore, Singapore. Graphics, Visualization and Computer Vision 2014, Primavera Description: Activities 1. Informal Collaboration: June 2–8, 2014. 2. Hotel and Congress Centrum, Plzen (close to Prague), Czech Repub- Ninth International Conference on Computability, Complexity and lic. (Jan. 2014, p. 90) Randomness (CCR 2014): June 9–13, 2014. The conference series 2–6 AIM Workshop: Descriptive inner model theory, American “Computability, Complexity and Randomness” is centered on devel- Institute of Mathematics, Palo Alto, California. (Mar. 2014, p. 312) opments in Algorithmic Randomness, and the conference CCR 2014 2–6 Computational Nonlinear Algebra, Institute for Computational will be part of the IMS programme. The CCR has previously been held and Experimental Research in Mathematics, (ICERM), Brown Univer- in Cordoba 2004, in Buenos Aires 2007, in Nanjing 2008, in Luminy sity, Providence, Rhode Island. (Nov. 2013, p. 1398) 2009, in Notre Dame 2010, in Cape Town 2011, in Cambridge 2012, and in Moscow 2013; it will be held in Heidelberg 2015. 3. Informal 2–6 Conference on Ulam’s type stability, Rytro, Poland. -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
Meetings & Conferences of The
Meetings & Conferences of the AMS IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website. See http://www.ams.org/meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL and in an electronic issue of the Notices as noted below for each meeting. abstract submission form found at http://www.ams.org/ Knoxville, Tennessee cgi-bin/abstracts/abstract.pl. University of Tennessee, Knoxville Algebraic Methods in Graph Theory and Combinator- ics (Code: SS 7A), Felix Lazebnik, University of Delaware, March 21–23, 2014 Andrew Woldar, Villanova University, and Bangteng Xu, Friday – Sunday Eastern Kentucky University. Arithmetic of Algebraic Curves (Code: SS 9A), Lubjana Meeting #1097 Beshaj, Oakland University, Caleb Shor, Western New Eng- Southeastern Section land University, and Andreas Malmendier, Colby College. Associate secretary: Brian D. Boe Commutative Ring Theory (in honor of the retirement Announcement issue of Notices: January 2014 of David E. Dobbs) (Code: SS 1A), David Anderson, Uni- Program first available on AMS website: February 6, 2014 versity of Tennessee, Knoxville, and Jay Shapiro, George Program issue of electronic Notices: March 2014 Mason University. Issue of Abstracts: Volume 35, Issue 2 Completely Integrable Systems and Dispersive Nonlinear Deadlines Equations (Code: SS 12A), Robert Buckingham, University of Cincinnati, and Peter Perry, University of Kentucky. For organizers: Expired Complex Analysis, Probability, and Metric Geometry For abstracts: January 28, 2014 (Code: SS 11A), Matthew Badger, Stony Brook University, Jim Gill, St. -
January 2013 Prizes and Awards
January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE -
Congruence Subgroups Undergraduate Mathematics Society, Columbia University
Congruence Subgroups Undergraduate Mathematics Society, Columbia University S. M.-C. 24 June 2015 Contents 1 First Properties1 2 The Modular Group and Elliptic Curves3 3 Modular Forms for Congruence Subgroups4 4 Sums of Four Squares5 Abstract First we expand the connection between the modular group and ellip- tic curves by defining certain subgroups of the modular group, known as \congruence subgroups", and stating their relation to \enhanced elliptic curves". Then we will carefully define modular forms for congruence sub- groups. Finally, as a neat application, we will use modular forms to count the number of ways an integer can be expressed as a sum of four squares. This talk covers approximately x1.2 and x1.5 of Diamond & Shurman. 1 First Properties Recall the modular group SL2 Z of 2 × 2 integer matrices with determinant one, and its action on the upper half-plane H = fτ 2 C : im(τ) > 0g: aτ + b a b γτ = for γ = 2 SL and τ 2 H: (1) cτ + d c d 2 Z Any subgroup of the modular group inherits this action on the upper half- plane. Our goal is to investigate certain subgroups of the modular group, defined as follows. Let a b a b 1 0 Γ(N) = 2 SL : ≡ mod N (2) c d 2 Z c d 0 1 1 (where we simply reduce each entry mod N). As the kernel of the natural morphism SL2 Z ! SL2 Z=NZ, we see Γ(N) is a normal subgroup of SL2 Z, called the principal congruence subgroup of level N. -
ANNEXURE 1 School of Mathematics Sciences —A Profile As in March 2010
University Yearbook (Academic Audit Report 2005-10) ANNEXURE 1 School of Mathematics Sciences —A Profile as in March 2010 Contents 1. Introduction 1 1.1. Science Education: A synthesis of two paradigms 2 2. Faculty 3 2.1. Mathematics 4 2.2. Physics 12 2.3. Computer Science 18 3. International Links 18 3.1. Collaborations Set Up 18 3.2. Visits by our faculty abroad for research purposes 19 3.3. Visits by faculty abroad to Belur for research purposes 19 4. Service at the National Level 20 4.1. Links at the level of faculty 20 5. Student Placement 21 5.1. 2006-8 MSc Mathematics Batch 21 5.2. 2008-10 MSc Mathematics Batch 22 6. Research 23 1. Introduction Swami Vivekananda envisioned a University at Belur Math, West Bengal, the headquarters of the Ramakrishna Mission. In his conversation with Jamshedji Tata, it was indicated that the spirit of austerity, service and renun- ciation, traditionally associated with monasticism could be united with the quest for Truth and Universality that Science embodies. An inevitable fruit of such a synthesis would be a vigorous pursuit of science as an aspect of Karma Yoga. Truth would be sought by research and the knowledge obtained disseminated through teach- ing, making knowledge universally available. The VivekanandaSchool of Mathematical Sciences at the fledgling Ramakrishna Mission Vivekananda University, headquartered at Belur, has been set up keeping these twin ide- als in mind. We shall first indicate that at the National level, a realization of these objectives would fulfill a deeply felt National need. 1.1. -
Congruence Subgroup Problem for Algebraic Groups: Old and New Astérisque, Tome 209 (1992), P
Astérisque A. S. RAPINCHUK Congruence subgroup problem for algebraic groups: old and new Astérisque, tome 209 (1992), p. 73-84 <http://www.numdam.org/item?id=AST_1992__209__73_0> © Société mathématique de France, 1992, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONGRUENCE SUBGROUP PROBLEM FOR ALGEBRAIC GROUPS: OLD AND NEW A. S. RAPINCHUK* Let G C GLn be an algebraic group defined over an algebraic number field K. Let 5 be a finite subset of the set VK of all valuations of K, containing the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) there corresponds the congruence subgroup Go(s)(*) = {96 G0(s) \ 9 = En (mod a)} , which is a normal subgroup of finite index in GQ(S)- The initial statement of the Congruence Subgroup Problem was : (1) Does any normal subgroup of finite index in GQ(S) contain a suitable congruence subgroup Go(s)(a) ? In fact, it was found by F. Klein as far back as 1880 that for the group SL2(Z) the answer to question (1) is "no". -
Man and Machine Thinking About the Smooth 4-Dimensional Poincaré
Quantum Topology 1 (2010), xxx{xxx Quantum Topology c European Mathematical Society Man and machine thinking about the smooth 4-dimensional Poincar´econjecture. Michael Freedman, Robert Gompf, Scott Morrison and Kevin Walker Mathematics Subject Classification (2000).57R60 ; 57N13; 57M25 Keywords.Property R, Cappell-Shaneson spheres, Khovanov homology, s-invariant, Poincar´e conjecture Abstract. While topologists have had possession of possible counterexamples to the smooth 4-dimensional Poincar´econjecture (SPC4) for over 30 years, until recently no invariant has existed which could potentially distinguish these examples from the standard 4-sphere. Rasmussen's s- invariant, a slice obstruction within the general framework of Khovanov homology, changes this state of affairs. We studied a class of knots K for which nonzero s(K) would yield a counterexample to SPC4. Computations are extremely costly and we had only completed two tests for those K, with the computations showing that s was 0, when a landmark posting of Akbulut [3] altered the terrain. His posting, appearing only six days after our initial posting, proved that the family of \Cappell{Shaneson" homotopy spheres that we had geared up to study were in fact all standard. The method we describe remains viable but will have to be applied to other examples. Akbulut's work makes SPC4 seem more plausible, and in another section of this paper we explain that SPC4 is equivalent to an appropriate generalization of Property R (\in S3, only an unknot can yield S1 × S2 under surgery"). We hope that this observation, and the rich relations between Property R and ideas such as taut foliations, contact geometry, and Heegaard Floer homology, will encourage 3-manifold topologists to look at SPC4. -
Preface Issue 4-2014
Jahresber Dtsch Math-Ver (2014) 116:199–200 DOI 10.1365/s13291-014-0108-4 PREFACE Preface Issue 4-2014 Hans-Christoph Grunau © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014 The last few years have been a good time for solving long standing geometrical- topological conjectures. This issue reports on the solution of the Willmore conject-√ ure—the “best” topological torus is a “real” torus with ratio of radii equal to 2— and one of Thurston’s conjectures—every hyperbolic 3-manifold can be fibered over a circle, up to passing to a finite cover. Starting in the 1960s, Thomas Willmore studied the integral of the squared mean curvature of surfaces in R3 as the simplest but most interesting frame invariant elas- tic bending energy. This energy had shown up already in the early 19th century—too early for a rigorous investigation. Willmore asked: What is the shape of a compact surface of fixed genus minimising the Willmore energy in this class? (In the 1990s, existence of minimisers was proved by Leon Simon, with a contribution by Matthias Bauer and Ernst Kuwert.) Willmore already knew that the genus-0-minimiser is a sphere. Assuming that symmetric surfaces require less energy than asymmetric ones (which has not been proved, yet) he studied families√ of geometric tori with the smaller radius 1 fixed and found that the larger radius 2 would yield the minimum in this very special family. He conjectured that this particular torus would be the genus- 1-minimiser. Almost 50 years later Fernando Marques and André Neves found and published a 100-page-proof. -
Copyright by Kyle Lee Larson 2015 the Dissertation Committee for Kyle Lee Larson Certifies That This Is the Approved Version of the Following Dissertation
Copyright by Kyle Lee Larson 2015 The Dissertation Committee for Kyle Lee Larson certifies that this is the approved version of the following dissertation: Some Constructions Involving Surgery on Surfaces in 4{manifolds Committee: Robert Gompf, Supervisor Selman Akbulut Cameron Gordon John Luecke Timothy Perutz Some Constructions Involving Surgery on Surfaces in 4{manifolds by Kyle Lee Larson, B.S.; M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2015 Dedicated to my family. Acknowledgments I would like to thank my advisor Bob Gompf for his help and support throughout my career as a graduate student. He gave me the space and free- dom to mature and develop at my own pace, and without that I am certain I would not have finished. Learning how he thinks about and does mathematics has been a great education and inspiration for me. I would also like to thank the rest of my dissertation committee for the significant time and energy each one has given to help me grow as a mathematician. UT Austin is a wonderful place to be a topologist, and special thanks must go to Cameron Gordon in particular for helping to create such an environment. Chapter 4 of this dissertation consists of joint work with Jeffrey Meier, and it is my pleasure to thank him for being a great collaborator and an even better friend. There are a host of topologists whose help and friendship have made my time at Texas more productive and much more meaningful, includ- ing (but not limited to) Ahmad Issa, Julia Bennett, Nicholas Zufelt, Laura Starkston, Sam Ballas, C¸a˘grıKarakurt, and Tye Lidman.