This Is Scott's BIBTEX File. References
Total Page:16
File Type:pdf, Size:1020Kb
This is Scott's BIBTEX file. References [1] I. R. Aitchison and J. H. Rubinstein. Fibered knots and involutions on homotopy spheres. In Four-manifold theory (Durham, N.H., 1982), volume 35 of Contemp. Math., pages 1{74. Amer. Math. Soc., Providence, RI, 1984. MR780575. [2] Selman Akbulut. The Dolgachev surface, 2008. arXiv:0805.1524. [3] Selman Akbulut. Cappell-Shaneson homotopy spheres are standard, 2009. arXiv:0907.0136. [4] Selman Akbulut and Robion Kirby. A potential smooth counterexample in dimension 4 to the Poincar´econjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture. Topology, 24(4):375{390, 1985. MR816520 DOI:10.1016/0040-9383(85)90010-2. [5] A. Alexeevski and S. Natanzon. Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves. Selecta Math. (N.S.), 12(3-4):307{377, 2006. MR2305607,arXiv:math.GT/0202164. [6] Henning Haahr Andersen. Tensor products of quantized tilting modules. Comm. Math. Phys., 149(1):149{159, 1992. MR1182414 euclid.cmp/1104251142. [7] D. W. Anderson. Chain functors and homology theories. In Symposium on Algebraic Topol- ogy (Battelle Seattle Res. Center, Seattle, Wash., 1971), pages 1{12. Lecture Notes in Math., Vol. 249. Springer, Berlin, 1971. MR0339132. [8] Marta Asaeda. Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math., 18(2):191{202, 2007. MR2307421 DOI:10.1142/S0129167X07003996 arXiv:math.OA/ 0605318. [9] Marta Asaedap and Uffe Haagerup.p Exotic subfactors of finite depth with Jones in- dices (5 + 13)=2 and (5 + 17)=2. Comm. Math. Phys., 202(1):1{63, 1999. MR1686551 DOI:10.1007/s002200050574 arXiv:math.OA/9803044. [10] Marta Asaeda and Seidai Yasuda. On Haagerup's list of potential principal graphs of sub- factors, 2009. MR2472028 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144. [11] Marta Asaeda and Seidai Yasuda. On Haagerup's list of potential principal graphs of subfactors. Comm. Math. Phys., 286(3):1141{1157, 2009. MR2472028 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144. [12] Michael Atiyah. Topological quantum field theories. Inst. Hautes Etudes´ Sci. Publ. Math., (68):175{186 (1989), 1988. MR1001453. [13] Benjamin Audoux and Thomas Fiedler. A Jones polynomial for braid-like isotopies of ori- ented links and its categorification. Algebr. Geom. Topol., 5:1535{1553, 2005. arXiv:math. GT/0503080 MR2186108. [14] John Baez. lecture notes from the quantum gravity seminar (winter 2001, track 1, weeks 16 and 17), 2001. Online. [15] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys., 36(11):6073{6105, 1995. MR1355899 arXiv:q-alg/9503002 DOI:10.1063/1.531236. [16] F. Alexander Bais and Peter G. Bouwknegt. A classification of subgroup truncations of the bosonic string. Nuclear Phys. B, 279(3-4):561{570, 1987. DOI:10.1016/0550-3213(87)90010-1. [17] F.A. Bais and J.K. Slingerland. Condensate induced transitions between topologically or- dered phases, 2008. arXiv:0808.0627. [18] Bojko Bakalov and Alexander Kirillov, Jr. Lectures on tensor categories and modular func- tors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001. MR1797619. [19] Dror Bar-Natan. On the Vassiliev knot invariants. Topology, 34(2):423{472, 1995. MR1318886. [20] Dror Bar-Natan. On Khovanov's categorification of the Jones polynomial. Algebr. Geom. Topol., 2:337{370, 2002. MR1917056 arXiv:math.QA/0201043 DOI:10.2140/agt.2002.2.337. [21] Dror Bar-Natan. Khovanov homology for knots and links with up to 11 crossings. In Ad- vances in topological quantum field theory, volume 179 of NATO Sci. Ser. II Math. Phys. Chem., pages 167{241. Kluwer Acad. Publ., Dordrecht, 2004. MR2147420. [22] Dror Bar-Natan. Khovanov's homology for tangles and cobordisms. Geom. Topol., 9:1443{ 1499, 2005. arXiv:math.GT/0410495 MR2174270 DOI:10.2140/gt.2005.9.1443. 1 2 [23] Dror Bar-Natan. Fast Khovanov homology computations. J. Knot Theory Ramifications, 16(3):243{255, 2007. arXiv:math.GT/0606318 MR2320156. [24] Dror Bar-Natan and Scott Morrison. The Karoubi envelope and Lee's degeneration of Khovanov homology. Algebr. Geom. Topol., 6:1459{1469, 2006. arXiv:math.GT/0606542 MR2253455. [25] Dror Bar-Natan and Scott Morrison. The Karoubi envelope and Lee's degeneration of Kho- vanov homology, 2006. arXiv:math.GT/0606542 MR2253455. [26] John W. Barrett and Bruce W. Westbury. Spherical categories. Adv. Math., 143(2):357{375, 1999. MR1686423 arXiv:hep-th/9310164 DOI:10.1006/aima.1998.1800. [27] Arthur Bartels, Chris Douglas, and Andr´eHenriques. Local field theory and local fermions, may 2008. Topology seminar lecture by Chris Douglas, MIT. [28] Bruce Bartlett. Categorical aspects of topological quantum field theories, 2005. arXiv:math. QA/0512103. [29] Anna Beliakova and Christian Blanchet. Modular categories of types B, C and D. Com- ment. Math. Helv., 76(3):467{500, 2001. MR1854694 DOI:10.1007/PL00000385 arXiv:math. QA/0006227. [30] Anna Beliakova and Christian Blanchet. Skein construction of idempotents in Birman-Murakami-Wenzl algebras. Math. Ann., 321(2):347{373, 2001. MR1866492 DOI:10.1007/s002080100233 arXiv:math.QA/0006143. [31] Anna Beliakova and Stephan Wehrli. Categorification of the colored Jones polynomial and Rasmussen invariant of links. Canad. J. Math., 60(6):1240{1266, 2008. MR2462446 arXiv:math.QA/0510382. [32] Stephen Bigelow. Skein theory for the ADE planar algebras, 2009. arXiv:math.QA/0903. 0144. [33] Stephen Bigelow. Skein theory for the ADE planar algebras, 2009. arXiv:math.QA/0903. 0144. [34] Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder. Constructing the ex- tended haagerup planar algebra, 2009. arXiv:0909.4099, to appear Acta Mathematica. [35] Jocelyne Bion-Nadal. An example of a subfactor of the hyperfinite II1 factor whose principal graph invariant is the Coxeter graph E6. In Current topics in operator algebras (Nara, 1990), pages 104{113. World Sci. Publ., River Edge, NJ, 1991. MR1193933. [36] Dietmar Bisch. An example of an irreducible subfactor of the hyperfinite II1 factor with rational, noninteger index. J. Reine Angew. Math., 455:21{34, 1994. arXiv:MR1293872. [37] Dietmar Bisch. Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications (Waterloo, ON, 1994/1995), volume 13 of Fields Inst. Commun., pages 13{63. Amer. Math. Soc., Providence, RI, 1997. MR1424954 (preview at google books). [38] Dietmar Bisch. Principal graphs of subfactors with small Jones index. Math. Ann., 311(2):223{231, 1998. MR1625762 DOI:http://dx.doi.org/10.1007/s002080050185. [39] Dietmar Bisch. Subfactors and planar algebras. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 775{785, Beijing, 2002. Higher Ed. Press. MR1957084 arXiv:math.OA/0304340. [40] Dietmar Bisch, Paramita Das, and Shamindra Kumar Ghosh. The planar algebra of group- type subfactors, 2008. arXiv:0807.4134. [41] Dietmar Bisch and Uffe Haagerup. Composition of subfactors: new examples of infinite depth subfactors. Ann. Sci. Ecole´ Norm. Sup. (4), 29(3):329{383, 1996. MR1386923. [42] Dietmar Bisch and Vaughan Jones. Algebras associated to intermediate subfactors. Invent. Math., 128(1):89{157, 1997. MR1437496. [43] Dietmar Bisch and Vaughan F. R. Jones. Singly generated planar algebras of small dimen- sion. Duke Math. J., 101(1):41{75, 2000. MR1733737. [44] Dietmar Bisch, Remus Nicoara, and Sorin Popa. Continuous families of hyperfinite subfac- tors with the same standard invariant. Internat. J. Math., 18(3):255{267, 2007. MR2314611 arXiv:math.OA/0604460 DOI:10.1142/S0129167X07004011. [45] Christian Blanchet. Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology, 39(1):193{223, 2000. MR1710999 DOI:10.1016/S0040-9383(98)00066-4. [46] J. M. Boardman and R. M. Vogt. Homotopy-everything H-spaces. Bull. Amer. Math. Soc., 74:1117{1122, 1968. MR0236922 DOI:10.1090/S0002-9904-1968-12070-1. 3 [47] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin, 1973. MR0420609. [48] N. Bourbaki. El´ements´ de math´ematique. Fasc. XXXIV. Groupes et alg`ebres de Lie. Chapitre IV: Groupes de Coxeter et syst`emesde Tits. Chapitre V: Groupes engendr´espar des r´eflexions.Chapitre VI: syst`emesde racines. Actualit´esScientifiques et Industrielles, No. 1337. Hermann, Paris, 1968. MR0240238 (preview at google books). [49] Richard Brauer. On algebras which are connected with the semisimple continuous groups. Ann. of Math. (2), 38(4):857{872, 1937. MR1503378 DOI:10.2307/1968843. [50] William P. Brown. An algebra related to the orthogonal group. Michigan Math. J., 3:1{22, 1955. MR0072122 euclid.mmj/1031710528. n [51] William P. Brown. The semisimplicity of !f . Ann. of Math. (2), 63:324{335, 1956. MR0075931 DOI:10.2307/1969613. [52] Alain Brugui`eres.Cat´egoriespr´emodulaires, modularisations et invariants des vari´et´esde dimension 3. Math. Ann., 316(2):215{236, 2000. MR1741269 DOI:10.1007/s002080050011. [53] Doug Bullock, Charles Frohman, and Joanna Kania-Bartoszy´nska. Skein homology. Canad. Math. Bull., 41(2):140{144, 1998. arXiv:q-alg/9701019 MR1624157. [54] Frank Calegari, Scott Morrison, and Noah Snyder. Cyclotomic integers, fusion categories, and subfactors. With an appendix by Victor Ostrik. To appear in Communications in Math- ematical Physics. arXiv:1004.0665. [55] Sylvain E. Cappell and Julius L. Shaneson. There exist inequivalent knots with the same complement. Ann. of Math. (2), 103(2):349{353, 1976. MR0413117 DOI:10.2307/1970942. [56] Carmen Livia Caprau. sl(2) tangle homology with a parameter and singular cobordisms, 2008. MR2443094 arXiv:math/0707.3051 DOI:10.2140/agt.2008.8.729. [57] Carmen Livia Caprau. sl(2) tangle homology with a parameter and singular cobor- disms. Algebr. Geom. Topol., 8(2):729{756, 2008.